1
|
Gobbo A, Messina A, Vallortigara G. Swimming through asymmetry: zebrafish as a model for brain and behavior lateralization. Front Behav Neurosci 2025; 19:1527572. [PMID: 39906337 PMCID: PMC11788415 DOI: 10.3389/fnbeh.2025.1527572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
The left and right sides of the brain show anatomical, neurochemical and functional differences. In the past century, brain and behavior lateralization was considered a human peculiarity associated with language and handedness. However, nowadays lateralization is known to occur among all vertebrates, from primates to fish. Fish, especially zebrafish (Danio rerio), have emerged as a crucial model for exploring the evolution and mechanisms of brain asymmetry. This review summarizes recent advances in zebrafish research on brain lateralization, highlighting how genetic tools, imaging, and transgenic methods have been used to investigate left-right asymmetries and their impact on sensory, cognitive, and social behaviors including possible links to neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | |
Collapse
|
2
|
Wang L, Liu F, Fang Y, Ma J, Wang J, Qu L, Yang Q, Wu W, Jin L, Sun D. Advances in Zebrafish as a Comprehensive Model of Mental Disorders. Depress Anxiety 2023; 2023:6663141. [PMID: 40224594 PMCID: PMC11921866 DOI: 10.1155/2023/6663141] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 04/09/2025] Open
Abstract
As an important part in international disease, mental disorders seriously damage human health and social stability, which show the complex pathogenesis and increasing incidence year by year. In order to analyze the pathogenesis of mental disorders as soon as possible and to look for the targeted drug treatment for psychiatric diseases, a more reasonable animal model is imperious demands. Benefiting from its high homology with the human genome, its brain tissue is highly similar to that of humans, and it is easy to realize whole-body optical visualization and high-throughput screening; zebrafish stands out among many animal models of mental disorders. Here, valuable qualified zebrafish mental disorders models could be established through behavioral test and sociological analysis, which are simulated to humans, and combined with molecular analyses and other detection methods. This review focuses on the advances in the zebrafish model to simulate the human mental disorders; summarizes the various behavioral characterization means, the use of equipment, and operation principle; sums up the various mental disorder zebrafish model modeling methods; puts forward the current challenges and future development trend, which is to contribute the theoretical supports for the exploration of the mechanisms and treatment strategies of mental disorders.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Jiawei Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
- Wenzhou City and Wenzhou OuTai Medical Laboratory Co., Ltd. Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
3
|
Carstensen MB, Medvetzky A, Weinberger A, Driever W, Gothilf Y, Rath MF. Genetic ablation of the Bsx homeodomain transcription factor in zebrafish: Impact on mature pineal gland morphology and circadian behavior. J Pineal Res 2022; 72:e12795. [PMID: 35249239 PMCID: PMC9285933 DOI: 10.1111/jpi.12795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
The pineal gland is a neuroendocrine structure in the brain, which produces and secretes the hormone melatonin at nighttime and is considered a key element in the circadian clock system. Early morphogenesis of the gland is controlled by a number of transcription factors, some of which remain active in adult life. One of these is the brain-specific homeobox (Bsx), a highly conserved homeodomain transcription factor with a developmental role in the pineal gland of several species, including zebrafish, and regulatory roles in mature pinealocytes of the rat. To determine the role of Bsx in circadian biology, we here examined the effects of a bsx loss-of-function mutation on the pineal gland in adult zebrafish and on behavioral circadian rhythms in larvae. In pineal cell type-specific Gfp/Egfp reporter zebrafish lines, we did not detect fluorescence signals in the pineal area of homozygous (bsx-/- ) mutants. Interestingly, a nonpigmented area on the dorsal surface of the head above the gland, known as the pineal window, was pigmented in the homozygous mutants. Furthermore, a structure corresponding to the pineal gland was not detectable in the midline of the adult brain in histological sections analyzed by Nissl staining and S-antigen immunohistochemistry. Moreover, the levels of pineal transcripts were greatly reduced in bsx-/- mutants, as revealed by quantitative real-time polymerase chain reaction analysis. Notably, analysis of locomotor activity at the larval stage revealed altered circadian rhythmicity in the bsx mutants with periods and phases similar to wildtype, but severely reduced amplitudes in locomotor activity patterns. Thus, Bsx is essential for full development of the pineal gland, with its absence resulting in a phenotype of morphological pineal gland ablation and disrupted circadian behavior.
Collapse
Affiliation(s)
- Mikkel Bloss Carstensen
- Department of Neuroscience, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Adar Medvetzky
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Alon Weinberger
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Wolfgang Driever
- Developmental Biology, Institute Biology, Faculty of BiologyAlbert Ludwig University of FreiburgFreiburgGermany
| | - Yoav Gothilf
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Miletto Petrazzini ME, Sovrano VA, Vallortigara G, Messina A. Brain and Behavioral Asymmetry: A Lesson From Fish. Front Neuroanat 2020; 14:11. [PMID: 32273841 PMCID: PMC7113390 DOI: 10.3389/fnana.2020.00011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/05/2020] [Indexed: 11/27/2022] Open
Abstract
It is widely acknowledged that the left and right hemispheres of human brains display both anatomical and functional asymmetries. For more than a century, brain and behavioral lateralization have been considered a uniquely human feature linked to language and handedness. However, over the past decades this idea has been challenged by an increasing number of studies describing structural asymmetries and lateralized behaviors in non-human species extending from primates to fish. Evidence suggesting that a similar pattern of brain lateralization occurs in all vertebrates, humans included, has allowed the emergence of different model systems to investigate the development of brain asymmetries and their impact on behavior. Among animal models, fish have contributed much to the research on lateralization as several fish species exhibit lateralized behaviors. For instance, behavioral studies have shown that the advantages of having an asymmetric brain, such as the ability of simultaneously processing different information and perform parallel tasks compensate the potential costs associated with poor integration of information between the two hemispheres thus helping to better understand the possible evolutionary significance of lateralization. However, these studies inferred how the two sides of the brains are differentially specialized by measuring the differences in the behavioral responses but did not allow to directly investigate the relation between anatomical and functional asymmetries. With respect to this issue, in recent years zebrafish has become a powerful model to address lateralization at different level of complexity, from genes to neural circuitry and behavior. The possibility of combining genetic manipulation of brain asymmetries with cutting-edge in vivo imaging technique and behavioral tests makes the zebrafish a valuable model to investigate the phylogeny and ontogeny of brain lateralization and its relevance for normal brain function and behavior.
Collapse
Affiliation(s)
| | - Valeria Anna Sovrano
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.,Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | | | - Andrea Messina
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
5
|
Alqadah A, Hsieh YW, Xiong R, Chuang CF. Stochastic left-right neuronal asymmetry in Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0407. [PMID: 27821536 DOI: 10.1098/rstb.2015.0407] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2016] [Indexed: 12/28/2022] Open
Abstract
Left-right asymmetry in the nervous system is observed across species. Defects in left-right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing 'C' (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWCOFF (default) and AWCON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Rui Xiong
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| |
Collapse
|
6
|
Güntürkün O, Ocklenburg S. Ontogenesis of Lateralization. Neuron 2017; 94:249-263. [DOI: 10.1016/j.neuron.2017.02.045] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 02/07/2023]
|
7
|
The ancestral role of nodal signalling in breaking L/R symmetry in the vertebrate forebrain. Nat Commun 2015; 6:6686. [DOI: 10.1038/ncomms7686] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/19/2015] [Indexed: 12/25/2022] Open
|
8
|
Pavlou S, Astell K, Kasioulis I, Gakovic M, Baldock R, van Heyningen V, Coutinho P. Pleiotropic effects of Sox2 during the development of the zebrafish epithalamus. PLoS One 2014; 9:e87546. [PMID: 24498133 PMCID: PMC3909122 DOI: 10.1371/journal.pone.0087546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/26/2013] [Indexed: 12/01/2022] Open
Abstract
The zebrafish epithalamus is part of the diencephalon and encompasses three major components: the pineal, the parapineal and the habenular nuclei. Using sox2 knockdown, we show here that this key transcriptional regulator has pleiotropic effects during the development of these structures. Sox2 negatively regulates pineal neurogenesis. Also, Sox2 is identified as the unknown factor responsible for pineal photoreceptor prepatterning and performs this function independently of the BMP signaling. The correct levels of sox2 are critical for the functionally important asymmetrical positioning of the parapineal organ and for the migration of parapineal cells as a coherent structure. Deviations from this strict control result in defects associated with abnormal habenular laterality, which we have documented and quantified in sox2 morphants.
Collapse
Affiliation(s)
- Sofia Pavlou
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Katy Astell
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Ioannis Kasioulis
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Milica Gakovic
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Baldock
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Veronica van Heyningen
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Pedro Coutinho
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Wu SY, de Borsetti NH, Bain EJ, Bulow CR, Gamse JT. Mediator subunit 12 coordinates intrinsic and extrinsic control of epithalamic development. Dev Biol 2014; 385:13-22. [DOI: 10.1016/j.ydbio.2013.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/01/2013] [Accepted: 10/23/2013] [Indexed: 12/22/2022]
|
10
|
Alqadah A, Hsieh YW, Chuang CF. microRNA function in left-right neuronal asymmetry: perspectives from C. elegans. Front Cell Neurosci 2013; 7:158. [PMID: 24065887 PMCID: PMC3779813 DOI: 10.3389/fncel.2013.00158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/01/2013] [Indexed: 11/13/2022] Open
Abstract
Left-right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders. Although anatomical and functional asymmetries are observed in mammalian nervous systems, it has been a challenge to identify the molecular basis of these asymmetries. C. elegans has emerged as a prime model organism to investigate molecular asymmetries in the nervous system, as it has been shown to display functional asymmetries clearly correlated to asymmetric distribution and regulation of biologically relevant molecules. Small non-coding RNAs have been recently implicated in various aspects of neural development. Here, we review cases in which microRNAs are crucial for establishing left-right asymmetries in the C. elegans nervous system. These studies may provide insight into how molecular and functional asymmetries are established in the human brain.
Collapse
Affiliation(s)
- Amel Alqadah
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation Cincinnati, OH, USA ; Molecular and Developmental Biology Graduate Program, University of Cincinnati Cincinnati, OH, USA
| | | | | |
Collapse
|
11
|
|
12
|
Ocklenburg S, Güntürkün O. Hemispheric asymmetries: the comparative view. Front Psychol 2012; 3:5. [PMID: 22303295 PMCID: PMC3266613 DOI: 10.3389/fpsyg.2012.00005] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/05/2012] [Indexed: 12/02/2022] Open
Abstract
Hemispheric asymmetries play an important role in almost all cognitive functions. For more than a century, they were considered to be uniquely human but now an increasing number of findings in all vertebrate classes make it likely that we inherited our asymmetries from common ancestors. Thus, studying animal models could provide unique insights into the mechanisms of lateralization. We outline three such avenues of research by providing an overview of experiments on left-right differences in the connectivity of sensory systems, the embryonic determinants of brain asymmetries, and the genetics of lateralization. All these lines of studies could provide a wealth of insights into our own asymmetries that should and will be exploited by future analyses.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr-University BochumBochum, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr-University BochumBochum, Germany
| |
Collapse
|
13
|
Taylor RW, Hsieh YW, Gamse JT, Chuang CF. Making a difference together: reciprocal interactions in C. elegans and zebrafish asymmetric neural development. Development 2010; 137:681-91. [PMID: 20147373 DOI: 10.1242/dev.038695] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Brain asymmetries are thought to increase neural processing capacity and to prevent interhemispheric conflict. In order to develop asymmetrically, neurons must be specified along the left-right axis, assigned left-side versus right-side identities and differentiate appropriately. In C. elegans and zebrafish, the cellular and molecular mechanisms that lead to neural asymmetries have recently come to light. Here, we consider recent insights into the mechanisms involved in asymmetrical neural development in these two species. Although the molecular details are divergent, both organisms use iterative cell-cell communication to establish left-right neuronal identity.
Collapse
Affiliation(s)
- Robert W Taylor
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|