1
|
Valdivia-Silva J, Chinney-Herrera A. Chemokine receptors and their ligands in breast cancer: The key roles in progression and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:124-161. [PMID: 39260935 DOI: 10.1016/bs.ircmb.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokines and their receptors are a family of chemotactic cytokines with important functions in the immune response in both health and disease. Their known physiological roles such as the regulation of leukocyte trafficking and the development of immune organs generated great interest when it was found that they were also related to the control of early and late inflammatory stages in the tumor microenvironment. In fact, in breast cancer, an imbalance in the synthesis of chemokines and/or in the expression of their receptors was attributed to be involved in the regulation of disease progression, including invasion and metastasis. Research in this area is progressing rapidly and the development of new agents based on chemokine and chemokine receptor antagonists are emerging as attractive alternative strategies. This chapter provides a snapshot of the different functions reported for chemokines and their receptors with respect to the potential to regulate breast cancer progression.
Collapse
Affiliation(s)
- Julio Valdivia-Silva
- Centro de Investigación en Bioingenieria (BIO), Universidad de Ingenieria y Tecnologia-UTEC, Barranco, Lima, Peru.
| | - Alberto Chinney-Herrera
- Facultad de Medicina, Universidad Nacional Autonoma de Mexico-UNAM, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, Mexico
| |
Collapse
|
2
|
Wang J, Li B, Luo M, Huang J, Zhang K, Zheng S, Zhang S, Zhou J. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther 2024; 9:83. [PMID: 38570490 PMCID: PMC10991592 DOI: 10.1038/s41392-024-01779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) represents pre-invasive breast carcinoma. In untreated cases, 25-60% DCIS progress to invasive ductal carcinoma (IDC). The challenge lies in distinguishing between non-progressive and progressive DCIS, often resulting in over- or under-treatment in many cases. With increasing screen-detected DCIS in these years, the nature of DCIS has aroused worldwide attention. A deeper understanding of the biological nature of DCIS and the molecular journey of the DCIS-IDC transition is crucial for more effective clinical management. Here, we reviewed the key signaling pathways in breast cancer that may contribute to DCIS initiation and progression. We also explored the molecular features of DCIS and IDC, shedding light on the progression of DCIS through both inherent changes within tumor cells and alterations in the tumor microenvironment. In addition, valuable research tools utilized in studying DCIS including preclinical models and newer advanced technologies such as single-cell sequencing, spatial transcriptomics and artificial intelligence, have been systematically summarized. Further, we thoroughly discussed the clinical advancements in DCIS and IDC, including prognostic biomarkers and clinical managements, with the aim of facilitating more personalized treatment strategies in the future. Research on DCIS has already yielded significant insights into breast carcinogenesis and will continue to pave the way for practical clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Department of Plastic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Borzone FR, Giorello MB, Sanmartin MC, Yannarelli G, Martinez LM, Chasseing NA. Mesenchymal stem cells and cancer-associated fibroblasts as a therapeutic strategy for breast cancer. Br J Pharmacol 2024; 181:238-256. [PMID: 35485850 DOI: 10.1111/bph.15861] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 04/22/2022] [Indexed: 11/26/2022] Open
Abstract
Breast cancer is the most common type of cancer and the leading cause of death among women. Recent evidence suggests that mesenchymal stromal/stem cells and cancer-associated fibroblasts (CAFs) have an essential role in cancer progression, invasion and therapy resistance. Therefore, they are considered as highly promising future therapeutic targets against breast cancer. The intrinsic tumour tropism and immunomodulatory capacities of mesenchymal stromal/stem cells are of special relevance for developing mesenchymal stromal/stem cells-based anti-tumour therapies that suppress primary tumour growth and metastasis. In addition, the utilization of therapies that target the stromal components of the tumour microenvironment in combination with standard drugs is an innovative tool that could improve patients' response to therapies and their survival. In this review, we discuss the currently available information regarding the possible use of mesenchymal stromal/stem cells-derived anti-tumour therapies, as well as the utilization of therapies that target CAFs in breast cancer microenvironment. Finally, these data can serve as a guide map for future research in this field, ultimately aiding the effective transition of these results into the clinic. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Francisco Raúl Borzone
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Belén Giorello
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Cecilia Sanmartin
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Leandro Marcelo Martinez
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Abubakar M, Klein A, Fan S, Lawrence S, Mutreja K, Henry JE, Pfeiffer RM, Duggan MA, Gierach GL. Host, reproductive, and lifestyle factors in relation to quantitative histologic metrics of the normal breast. Breast Cancer Res 2023; 25:97. [PMID: 37582731 PMCID: PMC10426057 DOI: 10.1186/s13058-023-01692-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/29/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Emerging data indicate that variations in quantitative epithelial and stromal tissue composition and their relative abundance in benign breast biopsies independently impact risk of future invasive breast cancer. To gain further insights into breast cancer etiopathogenesis, we investigated associations between epidemiological factors and quantitative tissue composition metrics of the normal breast. METHODS The study participants were 4108 healthy women ages 18-75 years who voluntarily donated breast tissue to the US-based Susan G. Komen Tissue Bank (KTB; 2008-2019). Using high-accuracy machine learning algorithms, we quantified the percentage of epithelial, stromal, adipose, and fibroglandular tissue, as well as the proportion of fibroglandular tissue that is epithelium relative to stroma (i.e., epithelium-to-stroma proportion, ESP) on digitized hematoxylin and eosin (H&E)-stained normal breast biopsy specimens. Data on epidemiological factors were obtained from participants using a detailed questionnaire administered at the time of tissue donation. Associations between epidemiological factors and square root transformed tissue metrics were investigated using multivariable linear regression models. RESULTS With increasing age, the amount of stromal, epithelial, and fibroglandular tissue declined and adipose tissue increased, while that of ESP demonstrated a bimodal pattern. Several epidemiological factors were associated with individual tissue composition metrics, impacting ESP as a result. Compared with premenopausal women, postmenopausal women had lower ESP [β (95% Confidence Interval (CI)) = -0.28 (- 0.43, - 0.13); P < 0.001] with ESP peaks at 30-40 years and 60-70 years among pre- and postmenopausal women, respectively. Pregnancy [β (95%CI) vs nulligravid = 0.19 (0.08, 0.30); P < 0.001] and increasing number of live births (P-trend < 0.001) were positively associated with ESP, while breastfeeding was inversely associated with ESP [β (95%CI) vs no breastfeeding = -0.15 (- 0.29, - 0.01); P = 0.036]. A positive family history of breast cancer (FHBC) [β (95%CI) vs no FHBC = 0.14 (0.02-0.26); P = 0.02], being overweight or obese [β (95%CI) vs normal weight = 0.18 (0.06-0.30); P = 0.004 and 0.32 (0.21-0.44); P < 0.001, respectively], and Black race [β (95%CI) vs White = 0.12 (- 0.005, 0.25); P = 0.06] were positively associated with ESP. CONCLUSION Our findings revealed that cumulative exposure to etiological factors over the lifespan impacts normal breast tissue composition metrics, individually or jointly, to alter their dynamic equilibrium, with potential implications for breast cancer susceptibility and tumor etiologic heterogeneity.
Collapse
Affiliation(s)
- Mustapha Abubakar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Shady Grove, Bethesda, MD, 20850, USA.
| | - Alyssa Klein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Shady Grove, Bethesda, MD, 20850, USA
| | - Shaoqi Fan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Shady Grove, Bethesda, MD, 20850, USA
| | - Scott Lawrence
- Molecular and Digital Pathology Laboratory, Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - Karun Mutreja
- Molecular and Digital Pathology Laboratory, Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - Jill E Henry
- Biospecimen Collection and Banking Core, Susan G. Komen Tissue Bank at the IU Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Shady Grove, Bethesda, MD, 20850, USA
| | - Maire A Duggan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, T2N2Y9, Canada
| | - Gretchen L Gierach
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Shady Grove, Bethesda, MD, 20850, USA
| |
Collapse
|
5
|
Li Y, Wang C, Huang T, Yu X, Tian B. The role of cancer-associated fibroblasts in breast cancer metastasis. Front Oncol 2023; 13:1194835. [PMID: 37496657 PMCID: PMC10367093 DOI: 10.3389/fonc.2023.1194835] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Breast cancer deaths are primarily caused by metastasis. There are several treatment options that can be used to treat breast cancer. There are, however, a limited number of treatments that can either prevent or inhibit the spread of breast tumor metastases. Thus, novel therapeutic strategies are needed. Studies have increasingly focused on the importance of the tumor microenvironment (TME) in metastasis of breast cancer. As the most abundant cells in the TME, cancer-associated fibroblasts (CAFs) play important roles in cancer pathogenesis. They can remodel the structure of the extracellular matrix (ECM) and engage in crosstalk with cancer cells or other stroma cells by secreting growth factors, cytokines, and chemokines, as well as components of the ECM, which assist the tumor cells to invade through the TME and cause distant metastasis. Clinically, CAFs not only foster the initiation, growth, angiogenesis, invasion, and metastasis of breast cancer but also serve as biomarkers for diagnosis, therapy, and prediction of prognosis. In this review, we summarize the biological characteristics and subtypes of CAFs and their functions in breast cancer metastasis, focusing on their important roles in the diagnosis, prognosis, and treatment of breast cancer. Recent studies suggest that CAFs are vital partners of breast cancer cells that assist metastasis and may represent ideal targets for prevention and treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Yi Li
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Changyuan Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Hepatobiliary Surgery Department II, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Ting Huang
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Wen Z, Wang S, Yang DM, Xie Y, Chen M, Bishop J, Xiao G. Deep learning in digital pathology for personalized treatment plans of cancer patients. Semin Diagn Pathol 2023; 40:109-119. [PMID: 36890029 DOI: 10.1053/j.semdp.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Over the past decade, many new cancer treatments have been developed and made available to patients. However, in most cases, these treatments only benefit a specific subgroup of patients, making the selection of treatment for a specific patient an essential but challenging task for oncologists. Although some biomarkers were found to associate with treatment response, manual assessment is time-consuming and subjective. With the rapid developments and expanded implementation of artificial intelligence (AI) in digital pathology, many biomarkers can be quantified automatically from histopathology images. This approach allows for a more efficient and objective assessment of biomarkers, aiding oncologists in formulating personalized treatment plans for cancer patients. This review presents an overview and summary of the recent studies on biomarker quantification and treatment response prediction using hematoxylin-eosin (H&E) stained pathology images. These studies have shown that an AI-based digital pathology approach can be practical and will become increasingly important in improving the selection of cancer treatments for patients.
Collapse
Affiliation(s)
- Zhuoyu Wen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donghan M Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mingyi Chen
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Justin Bishop
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Song X, Ji J, Rothstein JH, Alexeeff SE, Sakoda LC, Sistig A, Achacoso N, Jorgenson E, Whittemore AS, Klein RJ, Habel LA, Wang P, Sieh W. MiXcan: a framework for cell-type-aware transcriptome-wide association studies with an application to breast cancer. Nat Commun 2023; 14:377. [PMID: 36690614 PMCID: PMC9871010 DOI: 10.1038/s41467-023-35888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
Human bulk tissue samples comprise multiple cell types with diverse roles in disease etiology. Conventional transcriptome-wide association study approaches predict genetically regulated gene expression at the tissue level, without considering cell-type heterogeneity, and test associations of predicted tissue-level expression with disease. Here we develop MiXcan, a cell-type-aware transcriptome-wide association study approach that predicts cell-type-level expression, identifies disease-associated genes via combination of cell-type-level association signals for multiple cell types, and provides insight into the disease-critical cell type. As a proof of concept, we conducted cell-type-aware analyses of breast cancer in 58,648 women and identified 12 transcriptome-wide significant genes using MiXcan compared with only eight genes using conventional approaches. Importantly, MiXcan identified genes with distinct associations in mammary epithelial versus stromal cells, including three new breast cancer susceptibility genes. These findings demonstrate that cell-type-aware transcriptome-wide analyses can reveal new insights into the genetic and cellular etiology of breast cancer and other diseases.
Collapse
Affiliation(s)
- Xiaoyu Song
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jiayi Ji
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph H Rothstein
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Adriana Sistig
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ninah Achacoso
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Alice S Whittemore
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert J Klein
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurel A Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Pei Wang
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Weiva Sieh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Berliere M, Coche M, Lacroix C, Riggi J, Coyette M, Coulie J, Galant C, Fellah L, Leconte I, Maiter D, Duhoux FP, François A. Effects of Hormones on Breast Development and Breast Cancer Risk in Transgender Women. Cancers (Basel) 2022; 15:cancers15010245. [PMID: 36612241 PMCID: PMC9818520 DOI: 10.3390/cancers15010245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Transgender women experience gender dysphoria due to a gender assignment at birth that is incongruent with their gender identity. Transgender people undergo different surgical procedures and receive sex steroids hormones to reduce psychological distress and to induce and maintain desired physical changes. These persons on feminizing hormones represent a unique population to study the hormonal effects on breast development, to evaluate the risk of breast cancer and perhaps to better understand the precise role played by different hormonal components. In MTF (male to female) patients, hormonal treatment usually consists of antiandrogens and estrogens. Exogenous hormones induce breast development with the formation of ducts and lobules and an increase in the deposition of fat. A search of the existing literature dedicated to hormone regimens for MTF patients, their impact on breast tissue (incidence and type of breast lesions) and breast cancer risk provided the available information for this review. The evaluation of breast cancer risk is currently complicated by the heterogeneity of administered treatments and a lack of long-term follow-up in the great majority of studies. Large studies with longer follow-up are required to better evaluate the breast cancer risk and to understand the precise mechanisms on breast development of each exogenous hormone.
Collapse
Affiliation(s)
- Martine Berliere
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Correspondence: (M.B.); (M.C.)
| | - Maximilienne Coche
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Correspondence: (M.B.); (M.C.)
| | - Camille Lacroix
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Julia Riggi
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Maude Coyette
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Plastic Surgery, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Julien Coulie
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Plastic Surgery, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Christine Galant
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Pathology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Latifa Fellah
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Radiology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Isabelle Leconte
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Radiology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Dominique Maiter
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Francois P. Duhoux
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| | - Aline François
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
- Department of Pathology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, 1200 Brussels, Belgium
| |
Collapse
|
9
|
Kantarci A, Kansal S, Hasturk H, Stephens D, Van Dyke TE. Resolvin E1 Reduces Tumor Growth in a Xenograft Model of Lung Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1470-1484. [PMID: 35944728 PMCID: PMC9552033 DOI: 10.1016/j.ajpath.2022.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/05/2022] [Accepted: 07/12/2022] [Indexed: 05/14/2023]
Abstract
Inflammation plays a significant role in carcinogenesis and tumor growth. The current study was designed to test the hypothesis that resolvin E1 (RvE1) and overexpression of the receptor for RvE1 (ERV1) will prevent and/or reverse tumor generation in a gain-of-function mouse model of tumor seeding with lung cancer cells. To measure the impact of enhanced resolution of inflammation on cancer pathogenesis, ERV1-overexpressing transgenic (TG) and wild-type FVB mice were given an injection of 1 × 106 LA-P0297 cells subcutaneously and were treated with RvE1 (100 ng; intraperitoneally) or placebo. To assess the impact of RvE1 as an adjunct to chemotherapy, ERV1-TG and wild-type FVB mice were treated with cisplatin or cisplatin + RvE1. RvE1 significantly prevented tumor growth and reduced tumor size, cyclooxygenase-2, NF-κB, and proinflammatory cytokines in TG animals as compared to wild-type animals. A significant decrease in Ki-67, vascular endothelial growth factor, angiopoietin (Ang)-1, and Ang-2 was also observed in TG animals as compared to wild-type animals. Tumor-associated neutrophils and macrophages were significantly reduced by RvE1 in transgenics (P < 0.001). RvE1 administration with cisplatin led to a significant reduction of tumor volume and reduced cyclooxygenase-2, NF-κB, vascular endothelial growth factor-A, Ang-1, and Ang-2. These data suggest that RvE1 prevents inflammation and vascularization, reduces tumor seeding and tumor size, and, when used as an adjunct to chemotherapy, enhances tumor reduction at significantly lower doses of cisplatin.
Collapse
|
10
|
Jia W, Yang Z, Zhang X, Dong Y, Jia X, Zhou J. Shear wave elastography and pulsed doppler for breast lesions: Similar diagnostic performance and positively correlated stiffness and blood flow resistance. Eur J Radiol 2022; 147:110149. [PMID: 35007981 DOI: 10.1016/j.ejrad.2021.110149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/11/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE To compare the diagnostic performance of shear wave elastography (SWE) and pulsed Doppler ultrasound in breast lesions, and to explore whether the quantitative SWE parameters correlated with pulsed Doppler ultrasound parameters. MATERIALS AND METHODS Seventy-nine patients with 79 breast lesions who had undergone conventional ultrasound, pulsed Doppler ultrasound and SWE examination were included. All of them underwent core needle biopsy or surgery within one week. Parameters including Emax (the maximum elastic modulus), Emean (mean elastic modulus), Emin (minimum elastic modulus), Esd (elastic modulus standard deviation), and RI (resistive index), PI (pulsatility index), PSV (peak systolic velocity) and EDV (end diastolic velocity) were obtained for statistical analysis. RESULTS Almost all SWE parameters were significantly different between benign and malignant breast lesions (P<0.05). There was no significant difference between Esd and PI (P>0.05), which had the best AUC among SWE and vascular parameters respectively (0.877 vs. 0.871). Emax showed a moderate correlation with PI (P = 0.000, r = 0.552) and RI (P = 0.000, r = 0.544), and Esd moderately correlated with PI (P = 0.000, r = 0.567) and RI (P = 0.000, r = 0.546). For the benign group, no parameters showed any significant correlation (P>0.05), while for the malignant group, Emax and Esd also significantly correlated with PI or RI. CONCLUSIONS SWE and pulsed Doppler ultrasound had similar diagnostic efficacy for breast lesions. SWE and pulsed Doppler parameters were significantly correlated in breast lesions, especially in malignant ones, indicating the potential association between elastographic and vascular characteristics of breast tumors.
Collapse
Affiliation(s)
- WanRu Jia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - ZhiFang Yang
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - XiaoXiao Zhang
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - YiJie Dong
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - XiaoHong Jia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - JianQiao Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
11
|
Alraouji NN, Hendrayani SF, Ghebeh H, Al-Mohanna FH, Aboussekhra A. Osteoprotegerin (OPG) mediates the anti-carcinogenic effects of normal breast fibroblasts and targets cancer stem cells through inhibition of the β-catenin pathway. Cancer Lett 2021; 520:374-384. [PMID: 34416336 DOI: 10.1016/j.canlet.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/20/2023]
Abstract
Normal breast fibroblasts (NBFs) support and maintain the architecture of the organ, and can also suppress tumorigenesis. However, the mechanisms involved are not fully understood. We have shown here that NBFs suppress breast carcinogenesis through secretion of osteoprotegerin (OPG), a soluble decoy receptor for the Receptor Activator of NF-κB ligand (RANKL). Indeed, NBFs and human recombinant OPG (rOPG), suppressed breast cancer cells proliferation and motility through inhibition of the epithelial-to-mesenchymal transition (EMT) process both in vitro and in vivo. Additionally, rOPG inhibited the IL-6/STAT3 and NF-κB pathways as well as the OPG gene, which turned out to be STAT3-regulated. This was confirmed using denosumab, a RANKL-targeted antibody, which also inhibited NF-κB, down-regulated OPG and repressed EMT in breast cancer cells grown in 2D and 3D. Importantly, both rOPG and denosumab targeted cancer stem cells (CSCs). This was mediated through inhibition of the CSC-related pathway β-catenin. Moreover, rOPG reduced tumor growth and inhibited breast CSC biomarkers in orthotopic humanized breast tumors. Therefore, normal mammary fibroblasts can suppress carcinogenesis through OPG, which constitutes great potential as preventive and/or therapeutic molecule for breast carcinomas.
Collapse
Affiliation(s)
- Noura N Alraouji
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Siti-Fauziah Hendrayani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Hazem Ghebeh
- Stem Cell & Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, MBC#03, Riyadh, 11211, Saudi Arabia
| | - Falah H Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
12
|
Gomez CR. Role of heat shock proteins in aging and chronic inflammatory diseases. GeroScience 2021; 43:2515-2532. [PMID: 34241808 PMCID: PMC8599533 DOI: 10.1007/s11357-021-00394-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Advanced age is associated with a decline in response to stress. This contributes to the establishment of chronic inflammation, one of the hallmarks of aging and age-related disease. Heat shock proteins (HSP) are determinants of life span, and their progressive malfunction leads to age-related pathology. To discuss the function of HSP on age-related chronic inflammation and illness. An updated review of literature and discussion of relevant work on the topic of HSP in normal aging and chronic inflammatory pathology was performed. HSP contribute to inflamm-aging. They also play a key role in age-associated pathology linked to chronic inflammation such as autoimmune disorders, neurological disease, cardiovascular disorder, and cancer. HSP may be targeted for control of their effects related to age and chronic inflammation. Research on HSP functions in age-linked chronic inflammatory disorders provides an opportunity to improve health span and delay age-related chronic disorders.
Collapse
Affiliation(s)
- Christian R Gomez
- Department of Pathology, University of Mississippi Medical Cent, er, 2500 N. State St, Jackson, MS, 39216, USA.
- Department of Radiation Oncology, University of Mississippi Medical Center, 2500 N. State St, Jackson, MS, 39216, USA.
- Preclinical Research Unit, Center for Clinical and Translational Science, University of Mississippi, 2500 N. State St, Jackson, MS, 39216, USA.
- Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 N. State St, Jackson, MS, 39216, USA.
- Division of Lung Diseases, National Institutes of Health (NIH), National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD, USA.
| |
Collapse
|
13
|
Ruiz TFR, Taboga SR, Leonel ECR. Molecular mechanisms of mammary gland remodeling: A review of the homeostatic versus bisphenol a disrupted microenvironment. Reprod Toxicol 2021; 105:1-16. [PMID: 34343637 DOI: 10.1016/j.reprotox.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022]
Abstract
Mammary gland (MG) undergoes critical points of structural changes throughout a woman's life. During the perinatal and pubertal stages, MG develops through growth and differentiation to establish a pre-mature feature. If pregnancy and lactation occur, the epithelial compartment branches and differentiates to create a specialized structure for milk secretion and nurturing of the newborn. However, the ultimate MG modification consists of a regression process aiming to reestablish the smaller and less energy demanding structure until another production cycle happens. The unraveling of these fascinating physiologic cycles has helped the scientific community elucidate aspects of molecular regulation of proliferative and apoptotic events and remodeling of the stromal compartment. However, greater understanding of the hormonal pathways involved in MG developmental stages led to concern that endocrine disruptors such as bisphenol A (BPA), may influence these specific development/involution stages, called "windows of susceptibility". Since it is used in the manufacture of polycarbonate plastics and epoxy resins, BPA is a ubiquitous chemical present in human everyday life, exerting an estrogenic effect. Thus, descriptions of its deleterious effects on the MG, especially in terms of serum hormone concentrations, hormonal receptor expression, molecular pathways, and epigenetic alterations, have been widely published. Therefore, allied to a didactic description of the main physiological mechanisms involved in different critical points of MG development, the current review provides a summary of key mechanisms by which the endocrine disruptor BPA impacts MG homeostasis at different windows of susceptibility, causing short- and long-term effects.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil.
| | - Sebastião Roberto Taboga
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil.
| | - Ellen Cristina Rivas Leonel
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil; Federal University of Goiás (UFG), Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Goiânia, Brazil.
| |
Collapse
|
14
|
Lu Z, Zhan X, Wu Y, Cheng J, Shao W, Ni D, Han Z, Zhang J, Feng Q, Huang K. BrcaSeg: A Deep Learning Approach for Tissue Quantification and Genomic Correlations of Histopathological Images. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:1032-1042. [PMID: 34280546 PMCID: PMC9403022 DOI: 10.1016/j.gpb.2020.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/09/2019] [Accepted: 08/09/2020] [Indexed: 11/25/2022]
Abstract
Epithelial and stromal tissues are components of the tumor microenvironment and play a major role in tumor initiation and progression. Distinguishing stroma from epithelial tissues is critically important for spatial characterization of the tumor microenvironment. Here, we propose BrcaSeg, an image analysis pipeline based on a convolutional neural network (CNN) model to classify epithelial and stromal regions in whole-slide hematoxylin and eosin (H&E) stained histopathological images. The CNN model is trained using well-annotated breast cancer tissue microarrays and validated with images from The Cancer Genome Atlas (TCGA) Program. BrcaSeg achieves a classification accuracy of 91.02%, which outperforms other state-of-the-art methods. Using this model, we generate pixel-level epithelial/stromal tissue maps for 1000 TCGA breast cancer slide images that are paired with gene expression data. We subsequently estimate the epithelial and stromal ratios and perform correlation analysis to model the relationship between gene expression and tissue ratios. Gene Ontology (GO) enrichment analyses of genes that are highly correlated with tissue ratios suggest that the same tissue is associated with similar biological processes in different breast cancer subtypes, whereas each subtype also has its own idiosyncratic biological processes governing the development of these tissues. Taken all together, our approach can lead to new insights in exploring relationships between image-based phenotypes and their underlying genomic events and biological processes for all types of solid tumors. BrcaSeg can be accessed at https://github.com/Serian1992/ImgBio.
Collapse
Affiliation(s)
- Zixiao Lu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiaohui Zhan
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yi Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Cheng
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wei Shao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dong Ni
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhi Han
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qianjin Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Kun Huang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Regenstrief Institute, Indianapolis, IN 46202, USA.
| |
Collapse
|
15
|
Giorello MB, Borzone FR, Labovsky V, Piccioni FV, Chasseing NA. Cancer-Associated Fibroblasts in the Breast Tumor Microenvironment. J Mammary Gland Biol Neoplasia 2021; 26:135-155. [PMID: 33398516 DOI: 10.1007/s10911-020-09475-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Years of investigation have shed light on a theory in which breast tumor epithelial cells are under the effect of the stromal microenvironment. This review aims to discuss recent findings concerning the phenotypic and functional characteristics of cancer associated fibroblasts (CAFs) and their involvement in tumor evolution, as well as their potential implications for anti-cancer therapy. In this manuscript, we reviewed that CAFs play a fundamental role in initiation, growth, invasion, and metastasis of breast cancer, and also serve as biomarkers in the clinical diagnosis, therapy, and prognosis of this disease.
Collapse
Affiliation(s)
- María Belén Giorello
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| | - Francisco Raúl Borzone
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Vivian Labovsky
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Flavia Valeria Piccioni
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos (IBYME) y Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Wang Y, Liang F, Zhou Y, Qiu J, Lv Q, Du Z. Sharp Downregulation of Hub Genes Associated With the Pathogenesis of Breast Cancer From Ductal Carcinoma In Situ to Invasive Ductal Carcinoma. Front Oncol 2021; 11:634569. [PMID: 34094915 PMCID: PMC8175990 DOI: 10.3389/fonc.2021.634569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
Introduction Breast atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS) are precursor stages of invasive ductal carcinoma (IDC). This study aimed to investigate the pathogenesis of breast cancer by dynamically analyzing expression changes of hub genes from normal mammary epithelium (NME) to simple ductal hyperplasia (SH), ADH, DCIS, and finally to IDC. Methods Laser-capture microdissection (LCM) data for NME, SH, ADH, DCIS, and IDC cells were obtained. Weighted gene co-expression network analysis (WGCNA) was performed to dynamically analyze the gene modules and hub genes associated with the pathogenesis of breast cancer. Tissue microarray, immunohistochemical, and western blot analyses were performed to determine the protein expression trends of hub genes. Results Two modules showed a trend of increasing expression during the development of breast disease from NME to DCIS, whereas a third module displayed a completely different trend. Interestingly, the three modules displayed inverse trends from DCIS to IDC compared with from NME to DCIS; that is, previously upregulated modules were subsequently downregulated and vice versa. We further analyzed the module that was most closely associated with DCIS (p=7e-07). Kyoto Gene and Genomic Gene Encyclopedia enrichment analysis revealed that the genes in this module were closely related to the cell cycle (p= 4.3e-12). WGCNA revealed eight hub genes in the module, namely, CDK1, NUSAP1, CEP55, TOP2A, MELK, PBK, RRM2, and MAD2L1. Subsequent analysis of these hub genes revealed that their expression levels were lower in IDC tissues than in DCIS tissues, consistent with the expression trend of the module. The protein expression levels of five of the hub genes gradually increased from NME to DCIS and then decreased in IDC. Survival analysis predicted poor survival among breast cancer patients if these hub genes were not downregulated from DCIS to IDC. Conclusions Five hub genes, RRM2, TOP2A, PBK, MELK, and NUSAP1, which are associated with breast cancer pathogenesis, are gradually upregulated from NME to DCIS and then downregulated in IDC. If these hub genes are not downregulated from DCIS to IDC, patient survival is compromised. However, the underlying mechanisms warrant further elucidation in future studies.
Collapse
Affiliation(s)
- Yao Wang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Faqing Liang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Zhou
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Public Experimental Platform, West China Hospital, Sichuan University, Chengdu, China
| | - Juanjuan Qiu
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Lv
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenggui Du
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Public Experimental Platform, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Down-Regulation of the Proteoglycan Decorin Fills in the Tumor-Promoting Phenotype of Ionizing Radiation-Induced Senescent Human Breast Stromal Fibroblasts. Cancers (Basel) 2021; 13:cancers13081987. [PMID: 33924197 PMCID: PMC8074608 DOI: 10.3390/cancers13081987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Ionizing radiation (a typical remedy for breast cancer) results in the premature senescence of the adjacent to the neoplastic cells stromal fibroblasts. Here, we showed that these senescent fibroblasts are characterized by the down-regulation of the small leucine-rich proteoglycan decorin, a poor prognostic factor for the progression of the disease. Decorin down-regulation is mediated by secreted growth factors in an autocrine and paracrine (due to the interaction with breast cancer cells) manner, with bFGF and VEGF being the key players of this regulation in young and senescent breast stromal fibroblasts. Autophagy activation increases decorin mRNA levels, indicating that impaired autophagy is implicated in the reduction in decorin in this cell model. Decorin down-regulation acts additively to the already tumor-promoting phenotype of ionizing radiation-induced prematurely senescent human stromal fibroblasts, confirming that stromal senescence is a side-effect of radiotherapy that should be taken into account in the design of anticancer treatments. Abstract Down-regulation of the small leucine-rich proteoglycan decorin in the stroma is considered a poor prognostic factor for breast cancer progression. Ionizing radiation, an established treatment for breast cancer, provokes the premature senescence of the adjacent to the tumor stromal fibroblasts. Here, we showed that senescent human breast stromal fibroblasts are characterized by the down-regulation of decorin at the mRNA and protein level, as well as by its decreased deposition in the pericellular extracellular matrix in vitro. Senescence-associated decorin down-regulation is a long-lasting process rather than an immediate response to γ-irradiation. Growth factors were demonstrated to participate in an autocrine manner in decorin down-regulation, with bFGF and VEGF being the critical mediators of the phenomenon. Autophagy inhibition by chloroquine reduced decorin mRNA levels, while autophagy activation using the mTOR inhibitor rapamycin enhanced decorin transcription. Interestingly, the secretome from a series of both untreated and irradiated human breast cancer cell lines with different molecular profiles inhibited decorin expression in young and senescent stromal fibroblasts, which was annulled by SU5402, a bFGF and VEGF inhibitor. The novel phenotypic trait of senescent human breast stromal fibroblasts revealed here is added to their already described cancer-promoting role via the formation of a tumor-permissive environment.
Collapse
|
18
|
Systemic alterations play a dominant role in epigenetic predisposition to breast cancer in offspring of obese fathers and is transmitted to a second generation. Sci Rep 2021; 11:7317. [PMID: 33795711 PMCID: PMC8016877 DOI: 10.1038/s41598-021-86548-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
We previously showed that environmentally-induced epigenetic inheritance of cancer occurs in rodent models. For instance, we reported that paternal consumption of an obesity-inducing diet (OID) increased breast cancer susceptibility in the offspring (F1). Nevertheless, it is still unclear whether programming of breast cancer in daughters is due to systemic alterations or mammary epithelium-specific factors and whether the breast cancer predisposition in F1 progeny can be transmitted to subsequent generations. In this study, we show that mammary glands from F1 control (CO) female offspring exhibit enhanced growth when transplanted into OID females compared to CO mammary glands transplanted into CO females. Similarly, carcinogen-induced mammary tumors from F1 CO female offspring transplanted into OID females has a higher proliferation/apoptosis rate. Further, we show that granddaughters (F2) from the OID grand-paternal germline have accelerated tumor growth compared to CO granddaughters. This between-generation transmission of cancer predisposition is associated with changes in sperm tRNA fragments in OID males. Our findings indicate that systemic and mammary stromal alterations are significant contributors to programming of mammary development and likely cancer predisposition in OID daughters. Our data also show that breast cancer predisposition is transmitted to subsequent generations and may explain some familial cancers, if confirmed in humans.
Collapse
|
19
|
Loftus PG, Watson L, Deedigan LM, Camarillo‐Retamosa E, Dwyer RM, O'Flynn L, Alagesan S, Griffin M, O'Brien T, Kerin MJ, Elliman SJ, Barkley LR. Targeting stromal cell Syndecan-2 reduces breast tumour growth, metastasis and limits immune evasion. Int J Cancer 2021; 148:1245-1259. [PMID: 33152121 PMCID: PMC7839764 DOI: 10.1002/ijc.33383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 01/09/2023]
Abstract
Tumour stromal cells support tumourigenesis. We report that Syndecan-2 (SDC2) is expressed on a nonepithelial, nonhaematopoietic, nonendothelial stromal cell population within breast cancer tissue. In vitro, syndecan-2 modulated TGFβ signalling (SMAD7, PAI-1), migration and immunosuppression of patient-derived tumour-associated stromal cells (TASCs). In an orthotopic immunocompromised breast cancer model, overexpression of syndecan-2 in TASCs significantly enhanced TGFβ signalling (SMAD7, PAI-1), tumour growth and metastasis, whereas reducing levels of SDC2 in TASCs attenuated TGFβ signalling (SMAD7, PAI-1, CXCR4), tumour growth and metastasis. To explore the potential for therapeutic application, a syndecan-2-peptide was generated that inhibited the migratory and immunosuppressive properties of TASCs in association with reduced expression of TGFβ-regulated immunosuppressive genes, such as CXCR4 and PD-L1. Moreover, using an orthotopic syngeneic breast cancer model, overexpression of syndecan-2-peptide in TASCs reduced tumour growth and immunosuppression within the TME. These data provide evidence that targeting stromal syndecan-2 within the TME inhibits tumour growth and metastasis due to decreased TGFβ signalling and increased immune control.
Collapse
Affiliation(s)
- Paul G. Loftus
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
- Orbsen TherapeuticsNational University of IrelandGalwayIreland
| | - Luke Watson
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| | | | | | - Róisín M. Dwyer
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| | - Lisa O'Flynn
- Orbsen TherapeuticsNational University of IrelandGalwayIreland
- Lisa O'Flynn, Avectas Ltd, Maynooth UniversityCo KildareIreland
| | | | - Matthew Griffin
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| | - Timothy O'Brien
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| | - Michael J. Kerin
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| | | | - Laura R. Barkley
- Lambe Institute for Translational ResearchNational University of IrelandGalwayIreland
| |
Collapse
|
20
|
Rohira AD, Lonard DM, O’Malley BW. Emerging roles of steroid receptor coactivators in stromal cell responses. J Endocrinol 2021; 248:R41-R50. [PMID: 33337343 PMCID: PMC7925431 DOI: 10.1530/joe-20-0511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Tissue parenchyma is the functional unit of an organ and all of the remaining cells within that organ collectively make up the tissue stroma. The stroma includes fibroblasts, endothelial cells, immune cells, and nerves. Interactions between stromal and epithelial cells are essential for tissue development and healing after injury. These interactions are governed by growth factors, inflammatory cytokines and hormone signaling cascades. The steroid receptor coactivator (SRC) family of proteins includes three transcriptional coactivators that facilitate the assembly of multi-protein complexes to induce gene expression in response to activation of many cellular transcription factor signaling cascades. They are ubiquitously expressed and are especially critical for the developmental function of steroid hormone responsive tissues. The SRCs are overexpressed in multiple cancers including breast, ovarian, prostate and endometrial cancers. In this review, we focus on the role of the SRCs in regulating the functions of stromal cell components responsible for angiogenesis, inflammation and cell differentiation.
Collapse
Affiliation(s)
- Aarti D. Rohira
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Bert W O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
- Corresponding author: Bert W. O’Malley, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, Tel: 713-798-6205, Fax: 713-798-1275,
| |
Collapse
|
21
|
Stromal CCL2 Signaling Promotes Mammary Tumor Fibrosis through Recruitment of Myeloid-Lineage Cells. Cancers (Basel) 2020; 12:cancers12082083. [PMID: 32731354 PMCID: PMC7465971 DOI: 10.3390/cancers12082083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is correlated with breast tumor desmoplasia, leading to diminished chemotherapy response and disease-free survival. Obesity causes chronic, macrophage-driven inflammation within breast tissue, initiated by chemokine ligand 2 (CCL2) signaling from adipose stromal cells. To understand how CCL2-induced inflammation alters breast tumor pathology, we transplanted oncogenically transformed human breast epithelial cells with breast stromal cells expressing CCL2 or empty vector into murine mammary glands and examined tumor formation and progression with time. As tumors developed, macrophages were rapidly recruited, followed by the emergence of cancer-associated fibroblasts (CAFs) and collagen deposition. Depletion of CD11b + myeloid lineage cells early in tumor formation reduced tumor growth, CAF numbers, and collagen deposition. CCL2 expression within developing tumors also enhanced recruitment of myeloid progenitor cells from the bone marrow into the tumor site. The myeloid progenitor cell population contained elevated numbers of fibrocytes, which exhibited platelet-derived growth factor receptor-alpha (PDGFRα)-dependent colony formation and growth in vitro. Together, these results suggest that chronic inflammation induced by CCL2 significantly enhances tumor growth and promotes the formation of a desmoplastic stroma through early recruitment of macrophages and fibrocytes into the tumor microenvironment. Fibrocytes may be a novel target in the tumor microenvironment to reduce tumor fibrosis and enhance treatment responses for obese breast cancer patients.
Collapse
|
22
|
Barros da Silva P, Coelho M, Bidarra SJ, Neves SC, Barrias CC. Reshaping in vitro Models of Breast Tissue: Integration of Stromal and Parenchymal Compartments in 3D Printed Hydrogels. Front Bioeng Biotechnol 2020; 8:494. [PMID: 32596217 PMCID: PMC7300215 DOI: 10.3389/fbioe.2020.00494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
Breast tissue consists of an epithelial parenchyma embedded in stroma, of heterogeneous and complex composition, undergoing several morphological and functional alterations throughout females' lifespan. Improved knowledge on the crosstalk between parenchymal and stromal mammary cells should provide important insights on breast tissue dynamics, both under healthy and diseased states. Here, we describe an advanced 3D in vitro model of breast tissue, combining multiple components, namely stromal cells and their extracellular matrix (ECM), as well as parenchymal epithelial cells, in a hybrid system. To build the model, porous scaffolds were produced by extrusion 3D printing of peptide-modified alginate hydrogels, and then populated with human mammary fibroblasts. Seeded fibroblasts were able to adhere, spread and produce endogenous ECM, providing adequate coverage of the scaffold surface, without obstructing the pores. On a second stage, a peptide-modified alginate pre-gel laden with mammary gland epithelial cells was used to fill the scaffold's pores, forming a hydrogel in situ by ionic crosslinking. Throughout time, epithelial cells formed prototypical mammary acini-like structures, in close proximity with fibroblasts and their ECM. This generated a heterotypic 3D model that partially recreates both stromal and parenchymal compartments of breast tissue, promoting cell-cell and cell-matrix crosstalk. Furthermore, the hybrid system could be easily dissolved for cell recovery and subsequent analysis by standard cellular/molecular assays. In particular, we show that retrieved cell populations could be discriminated by flow cytometry using cell-type specific markers. This integrative 3D model stands out as a promising in vitro platform for studying breast stroma-parenchyma interactions, both under physiological and pathological settings.
Collapse
Affiliation(s)
- Patrícia Barros da Silva
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Mariana Coelho
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sílvia Joana Bidarra
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sara Carvalheira Neves
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Cristina Carvalho Barrias
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
23
|
Bahcecioglu G, Basara G, Ellis BW, Ren X, Zorlutuna P. Breast cancer models: Engineering the tumor microenvironment. Acta Biomater 2020; 106:1-21. [PMID: 32045679 PMCID: PMC7185577 DOI: 10.1016/j.actbio.2020.02.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/14/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022]
Abstract
The mechanisms behind cancer initiation and progression are not clear. Therefore, development of clinically relevant models to study cancer biology and drug response in tumors is essential. In vivo models are very valuable tools for studying cancer biology and for testing drugs; however, they often suffer from not accurately representing the clinical scenario because they lack either human cells or a functional immune system. On the other hand, two-dimensional (2D) in vitro models lack the three-dimensional (3D) network of cells and extracellular matrix (ECM) and thus do not represent the tumor microenvironment (TME). As an alternative approach, 3D models have started to gain more attention, as such models offer a platform with the ability to study cell-cell and cell-material interactions parametrically, and possibly include all the components present in the TME. Here, we first give an overview of the breast cancer TME, and then discuss the current state of the pre-clinical breast cancer models, with a focus on the engineered 3D tissue models. We also highlight two engineering approaches that we think are promising in constructing models representative of human tumors: 3D printing and microfluidics. In addition to giving basic information about the TME in the breast tissue, this review article presents the state-of-the-art tissue engineered breast cancer models. STATEMENT OF SIGNIFICANCE: Involvement of biomaterials and tissue engineering fields in cancer research enables realistic mimicry of the cell-cell and cell-extracellular matrix (ECM) interactions in the tumor microenvironment (TME), and thus creation of better models that reflect the tumor response against drugs. Engineering the 3D in vitro models also requires a good understanding of the TME. Here, an overview of the breast cancer TME is given, and the current state of the pre-clinical breast cancer models, with a focus on the engineered 3D tissue models is discussed. This review article is useful not only for biomaterials scientists aiming to engineer 3D in vitro TME models, but also for cancer researchers willing to use these models for studying cancer biology and drug testing.
Collapse
Affiliation(s)
- Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Xiang Ren
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
24
|
Fernández-Nogueira P, Mancino M, Fuster G, Bragado P, Prats de Puig M, Gascón P, Casado FJ, Carbó N. Breast Mammographic Density: Stromal Implications on Breast Cancer Detection and Therapy. J Clin Med 2020; 9:jcm9030776. [PMID: 32178425 PMCID: PMC7141321 DOI: 10.3390/jcm9030776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022] Open
Abstract
Current evidences state clear that both normal development of breast tissue as well as its malignant progression need many-sided local and systemic communications between epithelial cells and stromal components. During development, the stroma, through remarkably regulated contextual signals, affects the fate of the different mammary cells regarding their specification and differentiation. Likewise, the stroma can generate tumour environments that facilitate the neoplastic growth of the breast carcinoma. Mammographic density has been described as a risk factor in the development of breast cancer and is ascribed to modifications in the composition of breast tissue, including both stromal and glandular compartments. Thus, stroma composition can dramatically affect the progression of breast cancer but also its early detection since it is mainly responsible for the differences in mammographic density among individuals. This review highlights both the pathological and biological evidences for a pivotal role of the breast stroma in mammographic density, with particular emphasis on dense and malignant stromas, their clinical meaning and potential therapeutic implications for breast cancer patients.
Collapse
Affiliation(s)
- Patricia Fernández-Nogueira
- Institut d’Investigacions Biomèdiques Augustí Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Correspondence: (P.F.-N.); (M.M.)
| | - Mario Mancino
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Correspondence: (P.F.-N.); (M.M.)
| | - Gemma Fuster
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain
- Department of Biochemistry & Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Department of Biosciences, Faculty of Sciences and Technology, University of Vic, 08500 Vic, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Miquel Prats de Puig
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Breast Committee, Hospital El Pilar, Quirón salud Group, 08006 Barcelona, Spain
| | - Pere Gascón
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain
- Oncology and Multidisciplinary Knowledge, 08036 Barcelona, Spain
| | - Francisco Javier Casado
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain
| | - Neus Carbó
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain
| |
Collapse
|
25
|
Feng L, Huang S, An G, Wang G, Gu S, Zhao X. Identification of new cancer stem cell markers and signaling pathways in HER‑2‑positive breast cancer by transcriptome sequencing. Int J Oncol 2019; 55:1003-1018. [PMID: 31545416 PMCID: PMC6776190 DOI: 10.3892/ijo.2019.4876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Human epidermal growth factor receptor (HER)‑2‑positive breast cancer accounts for ~25% of all breast cancer cases, has a high propensity for relapse, metastasis and drug resistance, and is associated with a poor prognosis. Therefore, it is necessary to develop more effective therapeutic targets for the treatment of HER‑2‑positive breast cancer. CD44+/CD24‑/low is currently the most commonly used marker for breast cancer stem cells (CSCs), which are considered the main cause of drug resistance, relapse and metastasis. In the present study, the ratio of CD44+/CD24‑/low cells was almost zero in SK‑BR‑3 cells; however, it was >90% in MDA‑MB‑231 cells, as determined by flow cytometry. Since SK‑BR‑3 and MDA‑MB‑231 cells both exhibit a strong propensity for invasion and migration, it was hypothesized that there may be other markers of CSCs in SK‑BR‑3 cells. Therefore, transcriptome sequencing was performed for SK‑BR‑3 and MDA‑MB‑231 cells. It was observed that several leukocyte differentiation antigens and other CSC markers were significantly more highly expressed in SK‑BR‑3 cells. Furthermore, the expression of aldehyde dehydrogenase (ALDH)1A3, CD164 and epithelial cell adhesion molecule (EpCAM) was higher in SK‑BR‑3 cells compared with in other subtypes of breast cell lines, as determined by reverse transcription‑polymerase chain reaction and western blot analysis. In addition, the expression levels of ALDH1A3, ALDH3B2 and EpCAM were higher in HER‑2‑positive breast cancer compared with in paracancerous tissues and other subtypes of breast cancer, as determined by immunohistochemistry. The expression of β‑catenin in the Wnt signaling pathway was lower in SK‑BR‑3 cells compared with in MDA‑MB‑231 cells, which may be used as a prognostic indicator for breast cancer. These findings may help identify novel CSC markers and therapeutic targets for HER‑2‑positive breast cancer.
Collapse
Affiliation(s)
- Lu Feng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gaili An
- Department of Clinical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Guanying Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shanzhi Gu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Xinhan Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
26
|
Tossas-Milligan K, Shalabi S, Jones V, Keely PJ, Conklin MW, Elicerie KW, Winn R, Sistrunk C, Geradts J, Miranda-Carboni G, Dietze EC, Yee LD, Seewaldt VL. Mammographic density: intersection of advocacy, science, and clinical practice. CURRENT BREAST CANCER REPORTS 2019; 11:100-110. [PMID: 33312342 PMCID: PMC7728377 DOI: 10.1007/s12609-019-00316-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Purpose Here we aim to review the association between mammographic density, collagen structure and breast cancer risk. Findings While mammographic density is a strong predictor of breast cancer risk in populations, studies by Boyd show that mammographic density does not predict breast cancer risk in individuals. Mammographic density is affected by age, parity, menopausal status, race/ethnicity, and body mass index (BMI).New studies normalize mammographic density to BMI may provide a more accurate way to compare mammographic density in women of diverse race and ethnicity. Preclinical and tissue-based studies have investigated the role collagen composition and structure in predicting breast cancer risk. There is emerging evidence that collagen structure may activate signaling pathways associated with aggressive breast cancer biology. Summary Measurement of film mammographic density does not adequately capture the complex signaling that occurs in women with at-risk collagen. New ways to measure at-risk collagen potentially can provide a more accurate view of risk.
Collapse
Affiliation(s)
| | - Sundus Shalabi
- City of Hope Comprehensive Cancer Center, Duarte, CA
- Al Quds University, Jerusalem, West Bank
| | | | | | | | | | - Robert Winn
- University of Illinois, Chicago Cancer Center, Chicago, IL
| | | | | | | | | | - Lisa D. Yee
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | | |
Collapse
|
27
|
Pfefferle AD, Darr DB, Calhoun BC, Mott KR, Rosen JM, Perou CM. The MMTV-Wnt1 murine model produces two phenotypically distinct subtypes of mammary tumors with unique therapeutic responses to an EGFR inhibitor. Dis Model Mech 2019; 12:dmm.037192. [PMID: 31213486 PMCID: PMC6679375 DOI: 10.1242/dmm.037192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 06/06/2019] [Indexed: 12/23/2022] Open
Abstract
The Wnt gene family encodes an evolutionarily conserved group of proteins that regulate cell growth, differentiation and stem cell self-renewal. Aberrant Wnt signaling in human breast tumors has been proposed as a driver of tumorigenesis, especially in the basal-like tumor subtype where canonical Wnt signaling is both enriched and predictive of poor clinical outcomes. The development of effective Wnt-based therapeutics, however, has been slowed in part by a limited understanding of the context-dependent nature with which these aberrations influence breast tumorigenesis. We previously reported that MMTV-Wnt1 mice, an established model for studying Wnt signaling in breast tumors, develop two subtypes of tumors by gene expression classification: Wnt1-EarlyEx and Wnt1-LateEx Here, we extend this initial observation and show that Wnt1-EarlyEx tumors exhibit high expression of canonical Wnt, non-canonical Wnt, and EGFR signaling pathway signatures. Therapeutically, Wnt1-EarlyEx tumors showed a dynamic reduction in tumor volume when treated with an EGFR inhibitor. Wnt1-EarlyEx tumors had primarily Cd49fpos/Epcamneg FACS profiles, but it was not possible to serially transplant these tumors into wild-type FVB female mice. Conversely, Wnt1-LateEx tumors had a bloody gross pathology, which was highlighted by the presence of 'blood lakes' identified by H&E staining. These tumors had primarily Cd49fpos/Epcampos FACS profiles, but also contained a secondary Cd49fpos/Epcamneg subpopulation. Wnt1-LateEx tumors were enriched for activating Hras1 mutations and were capable of reproducing tumors when serially transplanted into wild-type FVB female mice. This study definitively shows that the MMTV-Wnt1 mouse model produces two phenotypically distinct subtypes of mammary tumors that differ in multiple biological aspects including sensitivity to an EGFR inhibitor.
Collapse
Affiliation(s)
- Adam D Pfefferle
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David B Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Benjamin C Calhoun
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin R Mott
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles M Perou
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Wei X, Li S, He J, Du H, Liu Y, Yu W, Hu H, Han L, Wang C, Li H, Shi X, Zhan M, Lu L, Yuan S, Sun L. Tumor-secreted PAI-1 promotes breast cancer metastasis via the induction of adipocyte-derived collagen remodeling. Cell Commun Signal 2019; 17:58. [PMID: 31170987 PMCID: PMC6554964 DOI: 10.1186/s12964-019-0373-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022] Open
Abstract
Background Breast cancer cells recruit surrounding stromal cells, such as cancer-associated fibroblasts (CAFs), to remodel collagen and promote tumor metastasis. Adipocytes are the most abundant stromal partners in breast tissue, local invasion of breast cancer leads to the proximity of cancer cells and adipocytes, which respond to generate cancer-associated adipocytes (CAAs). These cells exhibit enhanced secretion of extracellular matrix related proteins, including collagens. However, the role of adipocyte-derived collagen on breast cancer progression still remains unclear. Methods Adipocytes were cocultured with breast cancer cells for 3D collagen invasion and collagen organization exploration. Breast cancer cells and adipose tissue co- implanted mouse model, clinical breast cancer samples analysis were used to study the crosstalk between adipose and breast cancer cells in vivo. A combination of proteomics, enzyme-linked immunosorbent assay, loss of function assay, qPCR, western blot, database analysis and chromatin immunoprecipitation assays were performed to study the mechanism mediated the activation of PLOD2 in adipocytes. Results It was found that CAAs remodeled collagen alignment during crosstalk with breast cancer cells in vitro and in vivo, which further promoted breast cancer metastasis. Tumor-derived PAI-1 was required to activate the expression of the intracellular enzyme procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in CAAs. Pharmacologic blockade of PAI-1 or PLOD2 disrupted the collagen reorganization in CAAs. Mechanistically, it was observed that PI3K/AKT pathway was activated in adipocytes upon co-culturing with breast cancer cells or treatment with recombinant PAI-1, which could promote the translocation of transcription factor FOXP1 into the nucleus and further enhanced the promoter activity of PLOD2 in CAAs. In addition, collagen reorganization at the tumor-adipose periphery, as well as the positive relevance between PAI-1 and PLOD2 in invasive breast carcinoma were confirmed in clinical specimens of breast cancer. Conclusion In summary, our findings revealed a new stromal collagen network that favors tumor invasion and metastasis establish between breast cancer cells and surrounding adipocytes at the tumor invasive front, and identified PLOD2 as a therapeutic target for metastatic breast cancer treatment. Electronic supplementary material The online version of this article (10.1186/s12964-019-0373-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaohui Wei
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China
| | - Sijing Li
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, China
| | - Jinyong He
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yang Liu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China
| | - Wei Yu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China
| | - Haolin Hu
- Breast Disease Center, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Lifei Han
- Breast Disease Center, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Chenfei Wang
- Breast Disease Center, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Hongyang Li
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xin Shi
- Department of General Surgery, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China.
| | - Li Sun
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, China.
| |
Collapse
|
29
|
Interleukin-8 Activates Breast Cancer-Associated Adipocytes and Promotes Their Angiogenesis- and Tumorigenesis-Promoting Effects. Mol Cell Biol 2019; 39:MCB.00332-18. [PMID: 30397072 DOI: 10.1128/mcb.00332-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/25/2018] [Indexed: 01/23/2023] Open
Abstract
Increasing evidence supports the critical role of active stromal adipocytes in breast cancer development and spread. However, the mediators and the mechanisms of action are still elusive. We show here that cancer-associated adipocytes (CAAs) isolated from 10 invasive breast carcinomas are proinflammatory and exhibit active phenotypes, including higher proliferative, invasive, and migratory capacities compared to their adjacent tumor-counterpart adipocytes (TCAs). Furthermore, all CAAs secreted higher level of interleukin-8 (IL-8), which is critical in mediating the paracrine procarcinogenic effects of these cells. Importantly, ectopic expression of IL-8 in TCA cells activated them and enhanced their procarcinogenic effects both in vitro, in a STAT3-dependent manner, and in vivo In contrast, inhibition of the IL-8 signaling using specific short hairpin RNA, anti-IL-8 antibody, or reparixin suppressed the active features of CAAs, including their non-cell-autonomous tumor-promoting activities both on breast luminal cells and in orthotopic tumor xenografts in mice. IL-8 played also an important role in enhancing the proangiogenic effects of breast adipocytes. These results provide clear indication that IL-8 plays key roles in the activation of breast CAAs and acts as a major mediator for their paracrine protumorigenic effects. Thus, targeting CAAs by inhibiting the IL-8 pathway could have great therapeutic value.
Collapse
|
30
|
Primed atypical ductal hyperplasia-associated fibroblasts promote cell growth and polarity changes of transformed epithelium-like breast cancer MCF-7 cells via miR-200b/c-IKKβ signaling. Cell Death Dis 2018; 9:122. [PMID: 29374150 PMCID: PMC5833401 DOI: 10.1038/s41419-017-0133-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/24/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
Cancer-associated fibroblasts (CAFs) support tumorigenesis by stimulating cancer cell proliferation, and invasion, but how the premalignant stromal fibroblasts trigger epithelial changes remain unclear. We demonstrate that atypical ductal hyperplasia-associated fibroblasts (AHFs) are one kind of activated fibroblasts and stimulate cell growth and polarity change of epithelium-like tumor cell MCF-7 as CAFs-like fibroblasts. Microarray shows miR-200b and miR-200c are downregulated during AHFs and CAFs, and contribute to stromal fibroblast activity. Additionally, miR-200b/c with target gene IKKβ (inhibitor of nuclear factor kappa-B kinase β) control PAI-1 (plasminogen activator inhibitor-1) expression to regulate growth and polarity changes of MCF-7 cells through NF-κB pathway. Exploring the difference of AHFs in premalignant transformation is crucial for understanding the pathobiology of breast cancer progression.
Collapse
|
31
|
Ren Y, Jia HH, Xu YQ, Zhou X, Zhao XH, Wang YF, Song X, Zhu ZY, Sun T, Dou Y, Tian WP, Zhao XL, Kang CS, Mei M. Paracrine and epigenetic control of CAF-induced metastasis: the role of HOTAIR stimulated by TGF-ß1 secretion. Mol Cancer 2018; 17:5. [PMID: 29325547 PMCID: PMC5765658 DOI: 10.1186/s12943-018-0758-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/02/2018] [Indexed: 01/05/2023] Open
Abstract
Background The communication between carcinoma associated fibroblasts (CAFs) and cancer cells facilitate tumor metastasis. In this study, we further underlying the epigenetic mechanisms of CAFs feed the cancer cells and the molecular mediators involved in these processes. Methods MCF-7 and MDA-MB-231 cells were treated with CAFs culture conditioned medium, respectively. Cytokine antibody array, enzyme-linked immunosorbent assay, western blotting and immunofluorescence were used to identify the key chemokines. Chromatin immunoprecipitation and luciferase reporter assay were performed to explore the transactivation of target LncRNA by CAFs. A series of in vitro assays was performed with RNAi-mediated knockdown to elucidate the function of LncRNA. An orthotopic mouse model of MDA-MB-231 was conducted to confirm the mechanism in vivo. Results Here we reported that TGF-β1 was top one highest level of cytokine secreted by CAFs as revealed by cytokine antibody array. Paracrine TGF-β1 was essential for CAFs induced EMT and metastasis in breast cancer cells, which is a crucial mediator of the interaction between stromal and cancer cells. CAF-CM significantly enhanced the HOTAIR expression to promote EMT, whereas treatment with small-molecule inhibitors of TGF-β1 attenuated the activation of HOTAIR. Most importantly, SMAD2/3/4 directly bound the promoter site of HOTAIR, located between nucleotides -386 and -398, -440 and -452, suggesting that HOTAIR was a directly transcriptional target of SMAD2/3/4. Additionally, CAFs mediated EMT by targeting CDK5 signaling through H3K27 tri-methylation. Depletion of HOTAIR inhibited CAFs-induced tumor growth and lung metastasis in MDA-MB-231 orthotopic animal model. Conclusions Our findings demonstrated that CAFs promoted the metastatic activity of breast cancer cells by activating the transcription of HOTAIR via TGF-β1 secretion, supporting the pursuit of the TGF-β1/HOTAIR axis as a target in breast cancer treatment. Electronic supplementary material The online version of this article (10.1186/s12943-018-0758-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Ren
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Huan-Huan Jia
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yi-Qi Xu
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xuan Zhou
- Department of Head and Neck, Tianjin Medical University Cancer Hospital, Tianjin, 300060, China
| | - Xiao-Hui Zhao
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yun-Fei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Lab of Neuro- oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Xin Song
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi-Yan Zhu
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ting Sun
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yan Dou
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wei-Ping Tian
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiu-Lan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Chun-Sheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Lab of Neuro- oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Mei Mei
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
32
|
Christopoulos PF, Corthay A, Koutsilieris M. Aiming for the Insulin-like Growth Factor-1 system in breast cancer therapeutics. Cancer Treat Rev 2017; 63:79-95. [PMID: 29253837 DOI: 10.1016/j.ctrv.2017.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
Despite the major discoveries occurred in oncology the recent years, breast malignancies remain one of the most common causes of cancer-related deaths for women in developed countries. Development of HER2-targeting drugs has been considered a breakthrough in anti-cancer approaches and alluded to the potential of targeting growth factors in breast cancer (BrCa) therapeutics. More than twenty-five years have passed since the Insulin-like Growth Factor-1 (IGF-1) system was initially recognized as a potential target candidate in BrCa therapy. To date, a growing body of studies have implicated the IGF-1 signaling with the BrCa biology. Despite the promising experimental evidence, the impression from clinical trials is rather disappointing. Several reasons may account for this and the last word regarding the efficacy of this system as a target candidate in BrCa therapeutics is probably not written yet. Herein, we provide the theoretical basis, as well as, a comprehensive overview of the current literature, regarding the different strategies targeting the various components of the IGF-1/IGF-1R axis in several pathophysiological aspects of BrCa, including the tumor micro-environment and cancer stemness. In addition, we review the rationale for targeting the IGF-1 system in the different BrCa molecular subtypes and in treatment resistant breast tumors with a focus on both the molecular mechanisms and on the clinical perspectives of such approaches in specific population subgroups. We also discuss the future challenges, as well as, the development of novel molecules and strategies targeting the system and suggest potential improvements in the field.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece; Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway.
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
33
|
Miroshnikova YA, Rozenberg GI, Cassereau L, Pickup M, Mouw JK, Ou G, Templeman KL, Hannachi EI, Gooch KJ, Sarang-Sieminski AL, García AJ, Weaver VM. α5β1-Integrin promotes tension-dependent mammary epithelial cell invasion by engaging the fibronectin synergy site. Mol Biol Cell 2017; 28:2958-2977. [PMID: 28877984 PMCID: PMC5662256 DOI: 10.1091/mbc.e17-02-0126] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
Fibronectin-ligated α5β1 integrin promotes malignancy by inducing tissue tension. Tumors are fibrotic and characterized by abundant, remodeled, and cross-linked collagen that stiffens the extracellular matrix stroma. The stiffened collagenous stroma fosters malignant transformation of the tissue by increasing tumor cell tension to promote focal adhesion formation and potentiate growth factor receptor signaling through kinase. Importantly, collagen cross-linking requires fibronectin (FN). Fibrotic tumors contain abundant FN, and tumor cells frequently up-regulate the FN receptor α5β1 integrin. Using transgenic and xenograft models and tunable two- and three-dimensional substrates, we show that FN-bound α5β1 integrin promotes tension-dependent malignant transformation through engagement of the synergy site that enhances integrin adhesion force. We determined that ligation of the synergy site of FN permits tumor cells to engage a zyxin-stabilized, vinculin-linked scaffold that facilitates nucleation of phosphatidylinositol (3,4,5)-triphosphate at the plasma membrane to enhance phosphoinositide 3-kinase (PI3K)-dependent tumor cell invasion. The data explain why rigid collagen fibrils potentiate PI3K activation to promote malignancy and offer a perspective regarding the consistent up-regulation of α5β1 integrin and FN in many tumors and their correlation with cancer aggression.
Collapse
Affiliation(s)
- Y A Miroshnikova
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - G I Rozenberg
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - L Cassereau
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - M Pickup
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - J K Mouw
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - G Ou
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - K L Templeman
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - E-I Hannachi
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - K J Gooch
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - A L Sarang-Sieminski
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - A J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - V M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143 .,Department of Anatomy and Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
34
|
Sameni M, Cavallo-Medved D, Franco OE, Chalasani A, Ji K, Aggarwal N, Anbalagan A, Chen X, Mattingly RR, Hayward SW, Sloane BF. Pathomimetic avatars reveal divergent roles of microenvironment in invasive transition of ductal carcinoma in situ. Breast Cancer Res 2017; 19:56. [PMID: 28506312 PMCID: PMC5433063 DOI: 10.1186/s13058-017-0847-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/25/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The breast tumor microenvironment regulates progression of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC). However, it is unclear how interactions between breast epithelial and stromal cells can drive this progression and whether there are reliable microenvironmental biomarkers to predict transition of DCIS to IDC. METHODS We used xenograft mouse models and a 3D pathomimetic model termed mammary architecture and microenvironment engineering (MAME) to study the interplay between human breast myoepithelial cells (MEPs) and cancer-associated fibroblasts (CAFs) on DCIS progression. RESULTS Our results show that MEPs suppress tumor formation by DCIS cells in vivo even in the presence of CAFs. In the in vitro MAME model, MEPs reduce the size of 3D DCIS structures and their degradation of extracellular matrix. We further show that the tumor-suppressive effects of MEPs on DCIS are linked to inhibition of urokinase plasminogen activator (uPA)/urokinase plasminogen activator receptor (uPAR)-mediated proteolysis by plasminogen activator inhibitor 1 (PAI-1) and that they can lessen the tumor-promoting effects of CAFs by attenuating interleukin 6 (IL-6) signaling pathways. CONCLUSIONS Our studies using MAME are, to our knowledge, the first to demonstrate a divergent interplay between MEPs and CAFs within the DCIS tumor microenvironment. We show that the tumor-suppressive actions of MEPs are mediated by PAI-1, uPA and its receptor, uPAR, and are sustained even in the presence of the CAFs, which themselves enhance DCIS tumorigenesis via IL-6 signaling. Identifying tumor microenvironmental regulators of DCIS progression will be critical for defining a robust and predictive molecular signature for clinical use.
Collapse
Affiliation(s)
- Mansoureh Sameni
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Dora Cavallo-Medved
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Biological Sciences, University of Windsor, Windsor, ON N9B 3P4 Canada
| | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, IL 60201 USA
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Anita Chalasani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Arulselvi Anbalagan
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Xuequn Chen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Raymond R. Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Simon W. Hayward
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, IL 60201 USA
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Bonnie F. Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Biological Sciences, University of Windsor, Windsor, ON N9B 3P4 Canada
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| |
Collapse
|
35
|
Law AMK, Lim E, Ormandy CJ, Gallego-Ortega D. The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy. Endocr Relat Cancer 2017; 24:R123-R144. [PMID: 28193698 PMCID: PMC5425956 DOI: 10.1530/erc-16-0404] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
A cancer cell-centric view has long dominated the field of cancer biology. Research efforts have focussed on aberrant cancer cell signalling pathways and on changes to cancer cell DNA. Mounting evidence demonstrates that many cancer-associated cell types within the tumour stroma co-evolve and support tumour growth and development, greatly modifying cancer cell behaviour, facilitating invasion and metastasis and controlling dormancy and sensitivity to drug therapy. Thus, these stromal cells represent potential targets for cancer therapy. Among these cell types, immune cells have emerged as a promising target for therapy. The adaptive and the innate immune system play an important role in normal mammary development and breast cancer. The number of infiltrating adaptive immune system cells with tumour-rejecting capacity, primarily, T lymphocytes, is lower in breast cancer compared with other cancer types, but infiltration occurs in a large proportion of cases. There is strong evidence demonstrating the importance of the immunosuppressive role of the innate immune system during breast cancer progression. A consideration of components of both the innate and the adaptive immune system is essential for the design and development of immunotherapies in breast cancer. In this review, we focus on the importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) as potential targets for breast cancer therapy.
Collapse
Affiliation(s)
- Andrew M K Law
- Tumour Development GroupThe Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Cancer Biology LaboratoryThe Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Elgene Lim
- Connie Johnson Breast Cancer Research LaboratoryThe Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Christopher J Ormandy
- Cancer Biology LaboratoryThe Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - David Gallego-Ortega
- Tumour Development GroupThe Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Majeed H, Okoro C, Kajdacsy-Balla A, Toussaint KC, Popescu G. Quantifying collagen fiber orientation in breast cancer using quantitative phase imaging. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:46004. [PMID: 28388706 DOI: 10.1117/1.jbo.22.4.046004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/16/2017] [Indexed: 05/20/2023]
Abstract
Tumor progression in breast cancer is significantly influenced by its interaction with the surrounding stromal tissue. Specifically, the composition, orientation, and alignment of collagen fibers in tumor-adjacent stroma affect tumor growth and metastasis. Most of the work done on measuring this prognostic marker has involved imaging of collagen fibers using second-harmonic generation microscopy (SHGM), which provides label-free specificity. Here, we show that spatial light interference microscopy (SLIM), a label-free quantitative phase imaging technique, is able to provide information on collagen-fiber orientation that is comparable to that provided by SHGM. Due to its wide-field geometry, the throughput of the SLIM system is much higher than that of SHGM and, because of the linear imaging, the equipment is simpler and significantly less expensive. Our results indicate that SLIM images can be used to extract important prognostic information from collagen fibers in breast tissue, potentially providing a convenient high throughput clinical tool for assessing patient prognosis.
Collapse
Affiliation(s)
- Hassaan Majeed
- University of Illinois at Urbana Champaign, Quantitative Light Imaging (QLI) Lab, Department of Bioengineering, Beckman Institute of Advanced Science and Technology, Urbana, Illinois, United States
| | - Chukwuemeka Okoro
- University of Illinois at Urbana Champaign, Photonics Research of Bio/Nano Environments (PROBE) Lab, Department of Electrical and Computer Engineering, Mechanical Engineering Lab, Urbana, Illinois, United States
| | - André Kajdacsy-Balla
- University of Illinois at Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Kimani C Toussaint
- University of Illinois at Urbana Champaign, Photonics Research of Bio/Nano Environments (PROBE) Lab, Department of Mechanical Science and Engineering, Mechanical Engineering Lab, Urbana, Illinois, United States
| | - Gabriel Popescu
- University of Illinois at Urbana Champaign, Quantitative Light Imaging (QLI) Lab, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, Urbana, Illinois, United States
| |
Collapse
|
37
|
Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev 2017; 30:1002-19. [PMID: 27151975 PMCID: PMC4863733 DOI: 10.1101/gad.279737.116] [Citation(s) in RCA: 556] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor stroma is no longer seen solely as physical support for mutated epithelial cells but as an important modulator and even a driver of tumorigenicity. Within the tumor stromal milieu, heterogeneous populations of fibroblast-like cells, collectively termed carcinoma-associated fibroblasts (CAFs), are key players in the multicellular, stromal-dependent alterations that contribute to malignant initiation and progression. This review focuses on novel insights into the contributions of CAFs to disease progression, emergent events leading to the generation of CAFs, identification of CAF-specific biomarkers predictive of disease outcome, and recent therapeutic approaches aimed at blunting or reverting detrimental protumorigenic phenotypes associated with CAFs.
Collapse
Affiliation(s)
- Philippe Gascard
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Thea D Tlsty
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
38
|
Al-Rakan MA, Hendrayani SF, Aboussekhra A. CHEK2 represses breast stromal fibroblasts and their paracrine tumor-promoting effects through suppressing SDF-1 and IL-6. BMC Cancer 2016; 16:575. [PMID: 27484185 PMCID: PMC4970236 DOI: 10.1186/s12885-016-2614-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022] Open
Abstract
Background Active fibroblasts, the predominant and the most active cells of breast cancer stroma, are responsible for tumor growth and spread. However, the molecular mediators and pathways responsible for stromal fibroblast activation, and their paracrine pro-carcinogenic effects are still not well defined. The CHEK2 tumor suppressor gene codes for a protein kinase, which plays important roles in the cellular response to various genotoxic stresses. Methods Immunoblotting, quantitative RT-PCR and Immunofluorescence were used to assess the expression of CHEK2 in different primary breast fibroblasts and in tissues. The effect of CHEK2 on the expression and secretion of SDF-1 and IL-6 was evaluated by immunoblotting and ELISA. The WST-1 colorimetric assay was used to assess cell proliferation, while the BD BioCoat Matrigel invasion chambers were utilized to determine the effects of CHEK2 on the migratory and the invasiveness capacities of breast stromal fibroblasts as well as breast cancer cells. Results We have shown that CHEK2 is down-regulated in most cancer-associated fibroblasts (CAFs) as compared to their corresponding tumor counterpart fibroblasts (TCFs) at both the mRNA and protein levels. Interestingly, CHEK2 down-regulation using specific siRNA increased the expression/secretion of both cancer-promoting cytokines SDF-1 and IL-6, and transdifferentiated stromal fibroblasts to myofibroblasts. These cells were able to enhance the proliferation of non-cancerous epithelial cells, and also boosted the migration/invasion abilities of breast cancer cells in a paracrine manner. The later effect was SDF-1/IL-6-dependent. Importantly, ectopic expression of CHEK2 in active CAFs converted these cells to a normal state, with lower migration/invasion capacities and reduced paracrine pro-carcinogenic effects. Conclusion These results indicate that CHEK2 possesses non-cell-autonomous tumor suppressor functions, and present the Chk2 protein as an important mediator in the functional interplay between breast carcinomas and their stromal fibroblasts.
Collapse
Affiliation(s)
- Maha A Al-Rakan
- Present address: Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11211, Kingdom of Saudi Arabia.,Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, MBC# 03, PO BOX 3354, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Siti-Faujiah Hendrayani
- Present address: Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11211, Kingdom of Saudi Arabia.,Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, MBC# 03, PO BOX 3354, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Abdelilah Aboussekhra
- Present address: Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11211, Kingdom of Saudi Arabia. .,Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, MBC# 03, PO BOX 3354, Riyadh, 11211, Kingdom of Saudi Arabia.
| |
Collapse
|
39
|
Luo H, Liu M, Luo S, Yu T, Wu C, Yang G, Tu G. Dynamic monitoring of GPER-mediated estrogenic effects in breast cancer associated fibroblasts: An alternative role of estrogen in mammary carcinoma development. Steroids 2016; 112:1-11. [PMID: 27016131 DOI: 10.1016/j.steroids.2016.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 03/09/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022]
Abstract
Cancer associated fibroblasts (CAFs) are crucial contributors to breast cancer development. Estrogen affects mammary stroma in both physiological and pathophysiological conditions. We show here that estrogen (G-protein coupled) receptor (GPER) could be detected by immunohistochemistry in stromal fibroblasts of primary breast cancers. The presence of GPER expression was further confirmed by immunofluorescence and quantitative PCR in CAFs isolated from primary breast cancers. Based on dynamic monitoring by real time cell analyzer (RTCA) system, 17-β-estradiol (E2) as well as GPER specific agonist G1 were observed to trigger transient cell index increasing within an hour in a dosage-dependent manner in breast CAFs. In addition, E2 and G1 stimulated intracellular calcium modulation and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 within seconds and minutes in CAFs, respectively. Moreover, E2 and G1 promoted cell proliferation of breast CAFs measured by RTCA monitoring, cell viability assay and cell cycle analysis, and this promotion could be blocked by a GPER-selective antagonist G15. Interestingly, dynamic RTCA monitoring indicated that E2 increased adhesion of resuspended cells, and microscopy confirmed that E2 stimulated cell spreading. Both the adhesion and spreading were proposed to be mediated by GPER, since G1 also stimulated these effects similar to E2, and G15 reduced them. Moreover, GPER was found to mediate migration that was increased by E2 and G1 but reduced by G15 in RTCA cell migration assay and transwell assay. Accordingly, GPER mediates not only rapid actions but also slow effects including adhesion/spreading, proliferation and migration in breast CAFs. Estrogen is likely to affect tumor associated stroma and contributes to mammary carcinoma development through CAFs.
Collapse
Affiliation(s)
- Haojun Luo
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Shujuan Luo
- Department of Gynecology and Obstetrics, Chongqing Health Center for Women and Children, Chongqing 400010, China
| | - Tenghua Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Chengyi Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Guanglun Yang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
40
|
Wion D, Appaix F, Burruss M, Berger F, van der Sanden B. Cancer research in need of a scientific revolution: Using 'paradigm shift' as a method of investigation. J Biosci 2016; 40:657-66. [PMID: 26333409 DOI: 10.1007/s12038-015-9543-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite important human and financial resources and considerable accumulation of scientific publications, patents, and clinical trials, cancer research has been slow in achieving a therapeutic revolution similar to the one that occurred in the last century for infectious diseases. It has been proposed that science proceeds not only by accumulating data but also through paradigm shifts. Here, we propose to use the concept of 'paradigm shift' as a method of investigation when dominant paradigms fail to achieve their promises. The first step in using the 'paradigm shift' method in cancer research requires identifying its founding paradigms. In this review, two of these founding paradigms will be discussed: (i) the reification of cancer as a tumour mass and (ii) the translation of the concepts issued from infectious disease in cancer research. We show how these founding paradigms can generate biases that lead to over-diagnosis and over-treatment and also hamper the development of curative cancer therapies. We apply the 'paradigm shift' method to produce perspective reversals consistent with current experimental evidence. The 'paradigm shift' method enlightens the existence of a tumour physiologic-prophylactic-pathologic continuum. It integrates the target/antitarget concept and that cancer is also an extracellular disease. The 'paradigm shift' method has immediate implications for cancer prevention and therapy. It could be a general method of investigation for other diseases awaiting therapy.
Collapse
Affiliation(s)
- Didier Wion
- INSERM UA 01, Clinatec, Centre de Recherche Biomedicale Edmond J. Safra, CHU Michallon, Universite Joseph Fourier, CEA 17 rue des Martyrs, 38054, Grenoble Cedex, France,
| | | | | | | | | |
Collapse
|
41
|
Qiao A, Gu F, Guo X, Zhang X, Fu L. Breast cancer-associated fibroblasts: their roles in tumor initiation, progression and clinical applications. Front Med 2016; 10:33-40. [DOI: 10.1007/s11684-016-0431-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023]
|
42
|
Arendt LM. Modeling Breast Tumor Development with a Humanized Mouse Model. Methods Mol Biol 2016; 1458:247-259. [PMID: 27581027 DOI: 10.1007/978-1-4939-3801-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The tumor microenvironment plays a critical role in breast cancer growth and progression to metastasis. Here, we describe a method to examine stromal-epithelial interactions during tumor formation and progression utilizing human-derived mammary epithelial cells and breast stromal cells. This method outlines the isolation of each cell type from reduction mammoplasty tissue, the culture and genetic modification of both epithelial and stromal cells using lentiviral technology, and the method of humanizing and implantation of transformed epithelial cells into the cleared mammary fat pads of immunocompromised mice. This model system may be a useful tool to dissect signaling interactions that contribute to invasive tumor behavior and therapeutic resistance.
Collapse
Affiliation(s)
- Lisa M Arendt
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
43
|
Targeted Proteomics Enables Simultaneous Quantification of Folate Receptor Isoforms and Potential Isoform-based Diagnosis in Breast Cancer. Sci Rep 2015; 5:16733. [PMID: 26573433 PMCID: PMC4648081 DOI: 10.1038/srep16733] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/19/2015] [Indexed: 01/03/2023] Open
Abstract
The distinct roles of protein isoforms in cancer are becoming increasingly evident. FRα and FRβ, two major isoforms of the folate receptor family, generally have different cellular distribution and tissue specificity. However, the presence of FRβ in breast tumors, where FRα is normally expressed, complicates this situation. Prior to applying any FR isoform-based diagnosis and therapeutics, it is essential to monitor the expression profile of FR isoforms in a more accurate manner. An LC-MS/MS-based targeted proteomics assay was developed and validated in this study because of the lack of suitable methodology for the simultaneous and specific measurement of highly homologous isoforms occurring at low concentrations. FRα and FRβ monitoring was achieved by measuring their surrogate isoform-specific peptides. Five human breast cell lines, isolated macrophages and 60 matched pairs of breast tissue samples were subjected to the analysis. The results indicated that FRβ was overexpressed in tumor-associated macrophages (TAMs) but not epithelial cells, in addition to an enhanced level of FRα in breast cancer cells and tissue samples. Moreover, the levels of the FR isoforms were evaluated according to the histology, histopathological features and molecular subtypes of breast cancer. Several positive associations with PR/ER and HER2 status and metastasis were revealed.
Collapse
|
44
|
The extracellular matrix in breast cancer predicts prognosis through composition, splicing, and crosslinking. Exp Cell Res 2015; 343:73-81. [PMID: 26597760 DOI: 10.1016/j.yexcr.2015.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/11/2015] [Indexed: 12/19/2022]
Abstract
The extracellular matrix in the healthy breast has an important tumor suppressive role, whereas the abnormal ECM in tumors can promote aggressiveness, and has been linked to breast cancer relapse, survival and resistance to chemotherapy. This review article gives an overview of the elements of the ECM which have been linked to prognosis of breast cancers, including changes in ECM protein composition, splicing, and microstructure.
Collapse
|
45
|
Elkhattouti A, Hassan M, Gomez CR. Stromal Fibroblast in Age-Related Cancer: Role in Tumorigenesis and Potential as Novel Therapeutic Target. Front Oncol 2015; 5:158. [PMID: 26284191 PMCID: PMC4515566 DOI: 10.3389/fonc.2015.00158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/02/2015] [Indexed: 12/28/2022] Open
Abstract
Incidence of most common cancers increases with age due to accumulation of damage to cells and tissues. Stroma, the structure close to the basement membrane, is gaining increased attention from clinicians and researchers due to its increasingly, yet incompletely understood role in the development of age-related cancer. With advanced age, stroma generates a pro-tumorigenic microenvironment, exemplified by the senescence-associated secretory phenotype (SASP). Components of the SASP, such as cytokines, chemokines, and high energy metabolites are main drivers of age-related cancer initiation and sustain its progression. Our purpose is to provide insight into the mechanistic role of the stroma, with particular emphasis on stromal fibroblasts, on the development of age-related tumors. We also present evidence of the potential of the stroma as target for tumor therapy. Likewise, a rationale for age-related antitumor therapy targeting the stroma is presented. We expect to foster debate on the underlining basis of age-related cancer pathobiology. We also would like to promote discussion on novel stroma-based anticancer therapeutic strategies tailored to treat the elderly.
Collapse
Affiliation(s)
| | - Mohamed Hassan
- Cancer Institute, University of Mississippi Medical Center , Jackson, MS , USA
| | - Christian R Gomez
- Cancer Institute, University of Mississippi Medical Center , Jackson, MS , USA ; Department of Pathology, University of Mississippi Medical Center , Jackson, MS , USA ; Department of Radiation Oncology, University of Mississippi Medical Center , Jackson, MS , USA
| |
Collapse
|
46
|
Huo CW, Chew G, Hill P, Huang D, Ingman W, Hodson L, Brown KA, Magenau A, Allam AH, McGhee E, Timpson P, Henderson MA, Thompson EW, Britt K. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res 2015; 17:79. [PMID: 26040322 PMCID: PMC4485361 DOI: 10.1186/s13058-015-0592-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Mammographic density (MD), after adjustment for a women's age and body mass index, is a strong and independent risk factor for breast cancer (BC). Although the BC risk attributable to increased MD is significant in healthy women, the biological basis of high mammographic density (HMD) causation and how it raises BC risk remain elusive. We assessed the histological and immunohistochemical differences between matched HMD and low mammographic density (LMD) breast tissues from healthy women to define which cell features may mediate the increased MD and MD-associated BC risk. METHODS Tissues were obtained between 2008 and 2013 from 41 women undergoing prophylactic mastectomy because of their high BC risk profile. Tissue slices resected from the mastectomy specimens were X-rayed, then HMD and LMD regions were dissected based on radiological appearance. The histological composition, aromatase immunoreactivity, hormone receptor status and proliferation status were assessed, as were collagen amount and orientation, epithelial subsets and immune cell status. RESULTS HMD tissue had a significantly greater proportion of stroma, collagen and epithelium, as well as less fat, than LMD tissue did. Second harmonic generation imaging demonstrated more organised stromal collagen in HMD tissues than in LMD tissues. There was significantly more aromatase immunoreactivity in both the stromal and glandular regions of HMD tissues than in those regions of LMD tissues, although no significant differences in levels of oestrogen receptor, progesterone receptor or Ki-67 expression were detected. The number of macrophages within the epithelium or stroma did not change; however, HMD stroma exhibited less CD206(+) alternatively activated macrophages. Epithelial cell maturation was not altered in HMD samples, and no evidence of epithelial-mesenchymal transition was seen; however, there was a significant increase in vimentin(+)/CD45(+) immune cells within the epithelial layer in HMD tissues. CONCLUSIONS We confirmed increased proportions of stroma and epithelium, increased aromatase activity and no changes in hormone receptor or Ki-67 marker status in HMD tissue. The HMD region showed increased collagen deposition and organisation as well as decreased alternatively activated macrophages in the stroma. The HMD epithelium may be a site for local inflammation, as we observed a significant increase in CD45(+)/vimentin(+) immune cells in this area.
Collapse
Affiliation(s)
- Cecilia W Huo
- University of Melbourne Department of Surgery, St. Vincent's Hospital, Level 2, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia.
| | - Grace Chew
- University of Melbourne Department of Surgery, St. Vincent's Hospital, Level 2, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia.
| | - Prue Hill
- Department of Pathology, St. Vincent's Hospital, 41 Victoria Parade, Fitzroy, VIC, 3065, Australia.
| | - Dexing Huang
- St. Vincent's Institute, 9 Princes Street, Fitzroy, VIC, 3065, Australia.
| | - Wendy Ingman
- Discipline of Surgery, Faculty of Health Sciences, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia. .,Robinson Research Institute, University of Adelaide, Ground Floor, Norwich Centre, 55 King William Road, North Adelaide, SA, 5006, Australia.
| | - Leigh Hodson
- Discipline of Surgery, Faculty of Health Sciences, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia. .,Robinson Research Institute, University of Adelaide, Ground Floor, Norwich Centre, 55 King William Road, North Adelaide, SA, 5006, Australia.
| | - Kristy A Brown
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.
| | - Astrid Magenau
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Clayton, Australia.
| | - Amr H Allam
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Clayton, Australia.
| | - Ewan McGhee
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, Australia.
| | - Paul Timpson
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Clayton, Australia.
| | - Michael A Henderson
- University of Melbourne Department of Surgery, St. Vincent's Hospital, Level 2, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia. .,Peter MacCallum Cancer Centre, 2 St. Andrews Place, East Melbourne, VIC, 3002, Australia.
| | - Erik W Thompson
- University of Melbourne Department of Surgery, St. Vincent's Hospital, Level 2, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia. .,St. Vincent's Institute, 9 Princes Street, Fitzroy, VIC, 3065, Australia. .,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia.
| | - Kara Britt
- The Beatson Institute for Cancer Research, Switchback Road, Bearsden Glasgow, G61 1BD, UK. .,The Sir Peter MacCallum Department of Oncology, University of Melbourne, St. Andrews Place, East Melbourne, VIC, 3002, Australia. .,Department of Anatomy and Developmental Biology, Monash University, 19 Innovation Walk, Clayton, VIC, s, Australia.
| |
Collapse
|
47
|
Mazumdar S, Arendt LM, Phillips S, Sedic M, Kuperwasser C, Gill G. CoREST1 promotes tumor formation and tumor stroma interactions in a mouse model of breast cancer. PLoS One 2015; 10:e0121281. [PMID: 25793264 PMCID: PMC4368644 DOI: 10.1371/journal.pone.0121281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/29/2015] [Indexed: 01/14/2023] Open
Abstract
Regulators of chromatin structure and gene expression contribute to tumor formation and progression. The co-repressor CoREST1 regulates the localization and activity of associated histone modifying enzymes including lysine specific demethylase 1 (LSD1) and histone deacetylase 1 (HDAC1). Although several CoREST1 associated proteins have been reported to enhance breast cancer progression, the role of CoREST1 in breast cancer is currently unclear. Here we report that knockdown of CoREST1 in the basal-type breast cancer cell line, MDA-MB-231, led to significantly reduced incidence and diminished size of tumors compared to controls in mouse xenograft studies. Notably, CoREST1-depleted cells gave rise to tumors with a marked decrease in angiogenesis. CoREST1 knockdown led to a decrease in secreted angiogenic and inflammatory factors, and mRNA analysis suggests that CoREST1 promotes expression of genes related to angiogenesis and inflammation including VEGF-A and CCL2. CoREST1 knockdown decreased the ability of MDA-MB-231 conditioned media to promote endothelial cell tube formation and migration. Further, tumors derived from CoREST1-depleted cells had reduced macrophage infiltration and the secretome of CoREST1 knockdown cells was deficient in promoting macrophage migration and macrophage-mediated angiogenesis. Taken together, these findings reveal that the epigenetic regulator CoREST1 promotes tumorigenesis in a breast cancer model at least in part through regulation of gene expression patterns in tumor cells that have profound non-cell autonomous effects on endothelial and inflammatory cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Sohini Mazumdar
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Lisa M. Arendt
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Sarah Phillips
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Maja Sedic
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Cellular, Molecular and Developmental Biology Program, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Charlotte Kuperwasser
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Grace Gill
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
48
|
Barcus CE, Holt EC, Keely PJ, Eliceiri KW, Schuler LA. Dense collagen-I matrices enhance pro-tumorigenic estrogen-prolactin crosstalk in MCF-7 and T47D breast cancer cells. PLoS One 2015; 10:e0116891. [PMID: 25607819 PMCID: PMC4301649 DOI: 10.1371/journal.pone.0116891] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/16/2014] [Indexed: 02/07/2023] Open
Abstract
Breast cancers that express estrogen receptor alpha (ERα+) constitute the majority of breast tumors. Estrogen is a major driver of their growth, and targeting ER-mediated signals is a largely successful primary therapeutic strategy. Nonetheless, ERα+ tumors also result in the most breast cancer mortalities. Other factors, including altered characteristics of the extracellular matrix such as density and orientation and consequences for estrogen crosstalk with other hormones such as prolactin (PRL), may contribute to these poor outcomes. Here we employed defined three dimensional low density/compliant and high density/stiff collagen-I matrices to investigate the effects on 17β-estradiol (E2) activity and PRL/E2 interactions in two well-characterized ERα+/PRLR+ luminal breast cancer cell lines in vitro. We demonstrate that matrix density modulated E2-induced transcripts, but did not alter the growth response. However, matrix density was a potent determinant of the behavioral outcomes of PRL/E2 crosstalk. High density/stiff matrices enhanced PRL/E2-induced growth mediated by increased activation of Src family kinases and insensitivity to the estrogen antagonist, 4-hydroxytamoxifen. It also permitted these hormones in combination to drive invasion and modify the alignment of collagen fibers. In contrast, low density/compliant matrices allowed modest if any cooperation between E2 and PRL to growth and did not permit hormone-induced invasion or collagen reorientation. Our studies demonstrate the power of matrix density to determine the outcomes of hormone actions and suggest that stiff matrices are potent collaborators of estrogen and PRL in progression of ERα+ breast cancer. Our evidence for bidirectional interactions between these hormones and the extracellular matrix provides novel insights into the regulation of the microenvironment of ERα+ breast cancer and suggests new therapeutic approaches.
Collapse
Affiliation(s)
- Craig E Barcus
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth C Holt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia J Keely
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kevin W Eliceiri
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
49
|
O'Leary KA, Shea MP, Schuler LA. Modeling prolactin actions in breast cancer in vivo: insights from the NRL-PRL mouse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:201-20. [PMID: 25472540 DOI: 10.1007/978-3-319-12114-7_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Elevated exposure to prolactin (PRL) is epidemiologically associated with an increased risk of aggressive ER+ breast cancer. To understand the underlying mechanisms and crosstalk with other oncogenic factors, we developed the NRL-PRL mouse. In this model, mammary expression of a rat prolactin transgene raises local exposure to PRL without altering estrous cycling. Nulliparous females develop metastatic, histotypically diverse mammary carcinomas independent from ovarian steroids, and most are ER+. These characteristics resemble the human clinical disease, facilitating study of tumorigenesis, and identification of novel preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA,
| | | | | |
Collapse
|
50
|
Abstract
Although mouse models have provided invaluable information on the mechanisms of mammary gland development, anatomical and developmental differences between human and mice limit full understanding of this fundamental process. Humanization of the mouse mammary gland by injecting immortalized human breast stromal cells into the cleared murine mammary fat pad enables the growth and development of human mammary epithelial cells or tissue. This facilitates the characterization of human mammary gland development or tumorigenesis by utilizing the mouse mammary fat pad. Here we describe the process of isolating human mammary stromal and epithelial cells as well as their introduction into the mammary fat pads of immunocompromised mice.
Collapse
Affiliation(s)
- A Wronski
- Developmental, Molecular, and Chemical Biology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | | | | |
Collapse
|