1
|
Kakumani PK, Harvey LM, Houle F, Guitart T, Gebauer F, Simard MJ. CSDE1 controls gene expression through the miRNA-mediated decay machinery. Life Sci Alliance 2020; 3:e201900632. [PMID: 32161113 PMCID: PMC7067469 DOI: 10.26508/lsa.201900632] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
In animals, miRNAs are the most prevalent small non-coding RNA molecules controlling posttranscriptional gene regulation. The Argonaute proteins (AGO) mediate miRNA-guided gene silencing by recruiting multiple factors involved in translational repression, deadenylation, and decapping. Here, we report that CSDE1, an RNA-binding protein linked to stem cell maintenance and metastasis in cancer, interacts with AGO2 within miRNA-induced silencing complex and mediates gene silencing through its N-terminal domains. We show that CSDE1 interacts with LSM14A, a constituent of P-body assembly and further associates to the DCP1-DCP2 decapping complex, suggesting that CSDE1 could promote the decay of miRNA-induced silencing complex-targeted mRNAs. Together, our findings uncover a hitherto unknown mechanism used by CSDE1 in the control of gene expression mediated by the miRNA pathway.
Collapse
Affiliation(s)
- Pavan Kumar Kakumani
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - Louis-Mathieu Harvey
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - François Houle
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - Tanit Guitart
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| |
Collapse
|
2
|
Bubici G, Prigigallo MI, Garganese F, Nugnes F, Jansen M, Porcelli F. First Report of Aleurocanthus spiniferus on Ailanthus altissima: Profiling of the Insect Microbiome and MicroRNAs. INSECTS 2020; 11:E161. [PMID: 32138145 PMCID: PMC7142546 DOI: 10.3390/insects11030161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
Abstract
We report the first occurrence of the orange spiny whitefly (Aleurocanthus spiniferus; OSW) on the tree of heaven (Ailanthus altissima) in Bari, Apulia region, Italy. After our first observation in 2016, the infestation recurred regularly during the following years and expanded to the neighboring trees. Since then, we have also found the insect on numerous patches of the tree of heaven and other plant species in the Bari province. Nevertheless, the tree of heaven was not particularly threatened by the insect, so that a possible contribution by OSW for the control of such an invasive plant cannot be hypothesized hitherto. This work was also aimed at profiling the microbiome of OSW feeding on A. altissima. For this purpose, we used the denaturing gradient gel electrophoresis (DGGE) and the deep sequencing of small RNAs (sRNAs). Both techniques unveiled the presence of "Candidatus Portiera" (primary endosymbiont), Wolbachia sp. and Rickettsia sp., endosymbionts already reported for other Aleyrodidae. Deep sequencing data were analyzed by four computational pipelines in order to understand the reliability of the detection of fungi, bacteria, and viruses: Kraken, Kaiju, Velvet, and VelvetOptimiser. Some contigs assembled by Velvet or VelvetOptimiser were associated with insects, but not necessarily in the Aleurocanthus genus or Aleyrodidae family, suggesting the non-specificity of sRNAs or possible traces of parasitoids in the sample (e.g., Eretmocerus sp.). Finally, deep sequencing data were used to describe the microtranscriptome of OSW: 56 canonical and at least four high-confidence novel microRNAs (miRNAs) were identified. The overall miRNA abundance in OSW was in agreement with previous works on Bemisia tabaci, and bantam-3p, miR-276a-3p, miR-317-3p, miR-750-3p, and mir-8-3p were the most represented miRNAs.
Collapse
Affiliation(s)
- Giovanni Bubici
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, via Amendola 165/A, 70126 Bari, Italy;
| | - Maria Isabella Prigigallo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, via Amendola 165/A, 70126 Bari, Italy;
| | - Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy; (F.G.); (F.P.)
| | - Francesco Nugnes
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy;
| | - Maurice Jansen
- Ministry of Agriculture, Nature and Food Quality, Laboratories Division, Netherlands Food and Consumer Product Safety Authority (NVWA), Geertjesweg 15, 6706 EA Wageningen, The Netherlands;
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy; (F.G.); (F.P.)
| |
Collapse
|
3
|
Liu S, Ning XH, Guan XL, Li XP, Sun L. Characterization of Streptococcus iniae-induced microRNA profiles in Paralichthys olivaceus and identification of pol-3p-10740_175 as a regulator of antibacterial immune response. FISH & SHELLFISH IMMUNOLOGY 2020; 98:860-867. [PMID: 31756455 DOI: 10.1016/j.fsi.2019.11.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are involved in many biological activities including immune defense against pathogens. In this study, we applied high-throughput sequencing technology to examine miRNAs in Japanese flounder (Paralichthys olivaceus) infected with Streptococcus iniae at different times. A total of 1038 miRNAs were identified, of which, 249 were novel miRNAs, and 81 showed differential expression (named DEmiRNAs) after S. iniae infection. Of the 81 DEmiRNAs identified, 34 and 58 occurred at 6 h and 24 h post-infection, respectively; most DEmiRNAs were strongly time-specific, and only 13.6% of the DEmiRNAs were shared between the two time points. A total of 9582 target genes were predicted for the 81 DEmiRNAs. The putative target genes were enriched in various GO and KEGG pathways of biological processes and molecular/cellular functions, in particular endocytosis, regulation of transcription, lysososme, and the signaling pathways of MAPK, ErbB, and AMPK. One of the DEmiRNAs, pol-3p-10740_175, was found to target dual specificity phosphatase 6 (Dusp6) and repress the expression of the latter. Transfection of flounder FG cells with pol-3p-10740_175 caused a significant inhibition on S. iniae invasion. The results of this study provided the first S. iniae-induced miRNA profile in Japanese flounder and indicated that flounder miRNAs play an important role in antibacterial immunity.
Collapse
Affiliation(s)
- Shuang Liu
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xian-Hui Ning
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Lu Guan
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
4
|
Menzel P, McCorkindale AL, Stefanov SR, Zinzen RP, Meyer IM. Transcriptional dynamics of microRNAs and their targets during Drosophila neurogenesis. RNA Biol 2019; 16:69-81. [PMID: 30582411 PMCID: PMC6380339 DOI: 10.1080/15476286.2018.1558907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 01/20/2023] Open
Abstract
During Drosophila melanogaster embryogenesis, tight regulation of gene expression in time and space is required for the orderly emergence of specific cell types. While the general importance of microRNAs in regulating eukaryotic gene expression has been well-established, their role in early neurogenesis remains to be addressed. In this survey, we investigate the transcriptional dynamics of microRNAs and their target transcripts during neurogenesis of Drosophila melanogaster. To this end, we use the recently developed DIV-MARIS protocol, a method for enriching specific cell types from the Drosophila embryo in vivo, to sequence cell type-specific transcriptomes. We generate dedicated small and total RNA-seq libraries for neuroblasts, neurons and glia cells at early (6-8 h after egg laying (AEL)) and late (18-22 h AEL) stage. This allows us to directly compare these transcriptomes and investigate the potential functional roles of individual microRNAs with spatiotemporal resolution genome-wide, which is beyond the capabilities of existing in situ hybridization methods. Overall, we identify 74 microRNAs that are significantly differentially expressed between the three cell types and the two developmental stages. In all cell types, predicted target genes of down-regulated microRNAs show a significant enrichment of Gene Ontology terms related to neurogenesis. We also investigate how microRNAs regulate the transcriptome by targeting transcription factors and find many candidate microRNAs with putative roles in neurogenesis. Our survey highlights the roles of microRNAs as regulators of differentiation and glioneurognesis in the fruit fly and provides distinct starting points for dedicated functional follow-up studies.
Collapse
Affiliation(s)
- Peter Menzel
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Alexandra L. McCorkindale
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stefan R. Stefanov
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Biochemistry, Department of Biology, Chemistry, and Pharmacology, Freie Universität Berlin, Berlin, Germany
| | - Robert P. Zinzen
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Irmtraud M. Meyer
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Biochemistry, Department of Biology, Chemistry, and Pharmacology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Li M, Huang Q, Wang J, Li C. Differential expression of microRNAs in Portunus trituberculatus in response to Hematodinium parasites. FISH & SHELLFISH IMMUNOLOGY 2018; 83:134-139. [PMID: 30195909 DOI: 10.1016/j.fsi.2018.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/23/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Latest studies have indicated that microRNAs (miRNAs) play important roles in defending against bacterial and viral infections in marine crustacean, whereas little is known regarding the immunological roles of crustacean miRNAs in response to parasitic infection. To further reveal the host-parasite interactions between the parasitic dinoflagellate Hematodinium and its crustacean hosts, we applied the high-throughput sequencing technology to identify and characterize miRNAs in the Chinese swimming crab Portunus trituberculatus challenged with the Hematodinium parasite at a timescale of 16 days (d). A total of 168 miRNAs were identified and 51 miRNAs were differentially expressed in the hepatopancreas tissues of affected hosts. Eleven of the differentially expressed miRNAs were selected and verified by the quantitative real-time RT-PCR (qRT-PCR), manifesting the consistency between the high throughout sequencing and qRT-PCR assays. Further analysis of the putative target genes indicated that various immune-related pathways (e.g. endocytosis, Fc gamma R-mediated phagocytosis, lysosome, ECM-receptor interaction, complement and coagulation cascades, antigen processing and presentation, focal adhesion, etc.) and signal transduction pathways (e.g. JAK-STAT signaling pathway, MAPK signaling pathway, p53 signaling pathway, etc.) were mediated by the differentially expressed miRNAs. The results presented fundamental knowledge on the immunological roles of crustacean miRNAs and contributed to the better understanding of hosts' miRNAs-mediated immunity against the parasitic infection.
Collapse
Affiliation(s)
- Meng Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qian Huang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Caiwen Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
6
|
Agarwal V, Subtelny AO, Thiru P, Ulitsky I, Bartel DP. Predicting microRNA targeting efficacy in Drosophila. Genome Biol 2018; 19:152. [PMID: 30286781 PMCID: PMC6172730 DOI: 10.1186/s13059-018-1504-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 08/06/2018] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs (miRNAs) are short regulatory RNAs that derive from hairpin precursors. Important for understanding the functional roles of miRNAs is the ability to predict the messenger RNA (mRNA) targets most responsive to each miRNA. Progress towards developing quantitative models of miRNA targeting in Drosophila and other invertebrate species has lagged behind that of mammals due to the paucity of datasets measuring the effects of miRNAs on mRNA levels. Results We acquired datasets suitable for the quantitative study of miRNA targeting in Drosophila. Analyses of these data expanded the types of regulatory sites known to be effective in flies, expanded the mRNA regions with detectable targeting to include 5′ untranslated regions, and identified features of site context that correlate with targeting efficacy in fly cells. Updated evolutionary analyses evaluated the probability of conserved targeting for each predicted site and indicated that more than a third of the Drosophila genes are preferentially conserved targets of miRNAs. Based on these results, a quantitative model was developed to predict targeting efficacy in insects. This model performed better than existing models, and it drives the most recent version, v7, of TargetScanFly. Conclusions Our evolutionary and functional analyses expand the known scope of miRNA targeting in flies and other insects. The existence of a quantitative model that has been developed and trained using Drosophila data will provide a valuable resource for placing miRNAs into gene regulatory networks of this important experimental organism. Electronic supplementary material The online version of this article (10.1186/s13059-018-1504-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vikram Agarwal
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Present address: Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Alexander O Subtelny
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Prathapan Thiru
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA, 02142, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David P Bartel
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Chang ZX, Akinyemi IA, Guo DY, Wu Q. Characterization and comparative analysis of microRNAs in the rice pest Sogatella furcifera. PLoS One 2018; 13:e0204517. [PMID: 30248141 PMCID: PMC6152972 DOI: 10.1371/journal.pone.0204517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous regulatory RNA molecules 21-24 nucleotides in length that act as functional regulators of post-transcriptional repression of messenger RNA. We report the identification and characterization of a conserved miRNA and 171 novel miRNAs in the migratory rice pest Sogatella furcifera by deep sequencing, which were observed to be biased towards female adults of the insect, modulating the functionality and targets of the miRNAs in sex differentiation. A switch in arm usage was also observed in 9 miRNA when compared to the insect ancestor during insect evolution. The miRNA loci showed high 5’ fidelity in both miRNA and star species and about 93.4% of WBPH miRNAs conserved within non-planthopper species were homologous with planthopper species. The novel miRNAs identified in this study provide a better understanding of the sRNA and the regulatory role of miRNA in sexual dimorphism and alteration in the expression or function of miRNAs in the rice pest.
Collapse
Affiliation(s)
- Zhao-Xia Chang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Ibukun A. Akinyemi
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Dong-Yang Guo
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Qingfa Wu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
- * E-mail:
| |
Collapse
|
8
|
Duan H, de Navas LF, Hu F, Sun K, Mavromatakis YE, Viets K, Zhou C, Kavaler J, Johnston RJ, Tomlinson A, Lai EC. The mir-279/996 cluster represses receptor tyrosine kinase signaling to determine cell fates in the Drosophila eye. Development 2018; 145:dev159053. [PMID: 29540498 PMCID: PMC5963866 DOI: 10.1242/dev.159053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/28/2018] [Indexed: 12/14/2022]
Abstract
Photoreceptors in the crystalline Drosophila eye are recruited by receptor tyrosine kinase (RTK)/Ras signaling mediated by Epidermal growth factor receptor (EGFR) and the Sevenless (Sev) receptor. Analyses of an allelic deletion series of the mir-279/996 locus, along with a panel of modified genomic rescue transgenes, show that Drosophila eye patterning depends on both miRNAs. Transcriptional reporter and activity sensor transgenes reveal expression and function of miR-279/996 in non-neural cells of the developing eye. Moreover, mir-279/996 mutants exhibit substantial numbers of ectopic photoreceptors, particularly of R7, and cone cell loss. These miRNAs restrict RTK signaling in the eye, since mir-279/996 nulls are dominantly suppressed by positive components of the EGFR pathway and enhanced by heterozygosity for an EGFR repressor. miR-279/996 limit photoreceptor recruitment by targeting multiple positive RTK/Ras signaling components that promote photoreceptor/R7 specification. Strikingly, deletion of mir-279/996 sufficiently derepresses RTK/Ras signaling so as to rescue a population of R7 cells in R7-specific RTK null mutants boss and sev, which otherwise completely lack this cell fate. Altogether, we reveal a rare setting of developmental cell specification that involves substantial miRNA control.
Collapse
Affiliation(s)
- Hong Duan
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Luis F de Navas
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Fuqu Hu
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Kailiang Sun
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
- Program in Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yannis E Mavromatakis
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Kayla Viets
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Cyrus Zhou
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Joshua Kavaler
- Department of Biology, Colby College, Waterville, ME 04901, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Andrew Tomlinson
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| |
Collapse
|
9
|
|
10
|
Xu J, Xu X, Li S, Wang S, Xu X, Zhou X, Yu J, Yu X, Shakeel M, Jin F. Genome-Wide Profiling of Plutella xylostella Immunity-Related miRNAs after Isaria fumosorosea Infection. Front Physiol 2017; 8:1054. [PMID: 29311981 PMCID: PMC5735356 DOI: 10.3389/fphys.2017.01054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022] Open
Abstract
The development of resistance by Plutella xylostella to almost all insecticides is of significant concern all over the world. Entomopathogenic fungi such as Isaria fumosorosea have been used as an alternative to insecticides. However, the knowledge of miRNA-regulated reactions against entomopathogenic fungi is still in its infant stage. In the present study, P. xylostella was challenged with I. fumosorosea at four different time points (12, 18, 24, and 36 h) including a control, to build miRNA libraries by Illumina sequencing. The results of differential expression analysis exhibited that 23 miRNAs were differentially expressed, compared to control, in all treatments. It is worth mentioning, of these, some conserved miRNAs such as miR-2, miR-9a, miR-745, miR-7b, and miR-2767, known to play critical roles in host-pathogen interaction, were also identified. Furthermore, differentially expressed miRNAs were validated by RT-qPCR. Our results provide an essential information for further functional studies of the interaction between I. fumosorosea and P. xylostella at the post-transcriptional level.
Collapse
Affiliation(s)
- Jin Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaoxia Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Shuzhong Li
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Shuang Wang
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | | | - Jialin Yu
- Beijing Genomic Institute, Shenzhen, China
| | - Xiaoqiang Yu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Muhammad Shakeel
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Kavaler J, Duan H, Aradhya R, de Navas LF, Joseph B, Shklyar B, Lai EC. miRNA suppression of a Notch repressor directs non-neuronal fate in Drosophila mechanosensory organs. J Cell Biol 2017; 217:571-583. [PMID: 29196461 PMCID: PMC5800810 DOI: 10.1083/jcb.201706101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/12/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Large-scale knockout studies suggest that most miRNAs are phenotypically dispensable. However, Kavaler et al. show here that developmental specification toward a non-neuronal fate in the Drosophila melanogaster peripheral sensory organ lineage depends critically on mir-279/996 repression of the Notch repressor Insensible. Although there is abundant evidence that individual microRNA (miRNA) loci repress large cohorts of targets, large-scale knockout studies suggest that most miRNAs are phenotypically dispensable. Here, we identify a rare case of developmental cell specification that is highly dependent on miRNA control of an individual target. We observe that binary cell fate choice in the Drosophila melanogaster peripheral sensory organ lineage is controlled by the non-neuronally expressed mir-279/996 cluster, with a majority of notum sensory organs exhibiting transformation of sheath cells into ectopic neurons. The mir-279/996 defect phenocopies Notch loss of function during the sheath–neuron cell fate decision, suggesting the miRNAs facilitate Notch signaling. Consistent with this, mir-279/996 knockouts are strongly enhanced by Notch heterozygosity, and activated nuclear Notch is impaired in the miRNA mutant. Although Hairless (H) is the canonical nuclear Notch pathway inhibitor, and H heterozygotes exhibit bristle cell fate phenotypes reflecting gain-of-Notch signaling, H/+ does not rescue mir-279/996 mutants. Instead, we identify Insensible (Insb), another neural nuclear Notch pathway inhibitor, as a critical direct miR-279/996 target. Insb is posttranscriptionally restricted to neurons by these miRNAs, and its heterozygosity strongly suppresses ectopic peripheral nervous system neurons in mir-279/996 mutants. Thus, proper assembly of multicellular mechanosensory organs requires a double-negative circuit involving miRNA-mediated suppression of a Notch repressor to assign non-neuronal cell fate.
Collapse
Affiliation(s)
| | - Hong Duan
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY
| | - Rajaguru Aradhya
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY
| | - Luis F de Navas
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY
| | - Brian Joseph
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY.,Gerstner Sloan-Kettering Graduate Program of Biomedical Sciences, New York, NY
| | - Boris Shklyar
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY .,Gerstner Sloan-Kettering Graduate Program of Biomedical Sciences, New York, NY
| |
Collapse
|
12
|
Liufu Z, Zhao Y, Guo L, Miao G, Xiao J, Lyu Y, Chen Y, Shi S, Tang T, Wu CI. Redundant and incoherent regulations of multiple phenotypes suggest microRNAs' role in stability control. Genome Res 2017; 27:1665-1673. [PMID: 28904014 PMCID: PMC5630030 DOI: 10.1101/gr.222505.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022]
Abstract
Each microRNA (miRNA) represses a web of target genes and, through them, controls multiple phenotypes. The difficulties inherent in such controls cast doubt on how effective miRNAs are in driving phenotypic changes. A "simple regulation" model posits "one target-one phenotype" control under which most targeting is nonfunctional. In an alternative "coordinate regulation" model, multiple targets are assumed to control the same phenotypes coherently, and most targeting is functional. Both models have some empirical support but pose different conceptual challenges. Here, we concurrently analyze multiple targets and phenotypes associated with the miRNA-310 family (miR310s) of Drosophila Phenotypic rescue in the mir310s knockout background is achieved by promoter-directed RNA interference that restores wild-type expression. For one phenotype (eggshell morphology), we observed redundant regulation, hence rejecting "simple regulation" in favor of the "coordinate regulation" model. For other phenotypes (egg-hatching and male fertility), however, one gene shows full rescue, but three other rescues aggravate the phenotype. Overall, phenotypic controls by miR310s do not support either model. Like a thermostat that controls both heating and cooling elements to regulate temperature, redundancy and incoherence in regulation generally suggest some capacity in stability control. Our results therefore support the published view that miRNAs play a role in the canalization of transcriptome and, hence, phenotypes.
Collapse
Affiliation(s)
- Zhongqi Liufu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yixin Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Li Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Guangxia Miao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Juan Xiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yang Lyu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yuxin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Tian Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
13
|
Comparative profiling of microRNAs and their association with sexual dimorphism in the fig wasp Ceratosolen solmsi. Gene 2017; 633:54-60. [DOI: 10.1016/j.gene.2017.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022]
|
14
|
Weak Regulation of Many Targets Is Cumulatively Powerful—An Evolutionary Perspective on microRNA Functionality. Mol Biol Evol 2017; 34:3041-3046. [DOI: 10.1093/molbev/msx260] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Kaewkascholkul N, Somboonviwat K, Asakawa S, Hirono I, Tassanakajon A, Somboonwiwat K. Shrimp miRNAs regulate innate immune response against white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:191-201. [PMID: 26945623 DOI: 10.1016/j.dci.2016.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
MicroRNAs are short noncoding RNAs of RNA interference pathways that regulate gene expression through partial complementary base-pairing to target mRNAs. In this study, miRNAs that are expressed in white spot syndrome virus (WSSV)-infected Penaeus monodon, were identified using next generation sequencing. Forty-six miRNA homologs were identified from WSSV-infected shrimp hemocyte. Stem-loop real-time RT-PCR analysis showed that 11 out of 16 selected miRNAs were differentially expressed upon WSSV infection. Of those, pmo-miR-315 and pmo-miR-750 were highly responsive miRNAs. miRNA target prediction revealed that the miRNAs were targeted at 5'UTR, ORF, and 3'UTR of several immune-related genes such as genes encoding antimicrobial peptides, signaling transduction proteins, heat shock proteins, oxidative stress proteins, proteinases or proteinase inhibitors, proteins in blood clotting system, apoptosis-related proteins, proteins in prophenoloxidase system, pattern recognition proteins and other immune molecules. The highly conserved miRNA homolog, pmo-bantam, was characterized for its function in shrimp. The pmo-bantam was predicted to target the 3'UTR of Kunitz-type serine protease inhibitor (KuSPI). Binding of pmo-bantam to the target sequence of KuSPI gene was analyzed by luciferase reporter assay. Correlation of pmo-bantam and KuSPI expression was observed in lymphoid organ of WSSV-infected shrimp. These results implied that miRNAs might play roles as immune gene regulators in shrimp antiviral response.
Collapse
Affiliation(s)
- Napol Kaewkascholkul
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Kulwadee Somboonviwat
- Software Engineering Program, International College, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
16
|
Hox miRNA regulation within the Drosophila Bithorax complex: Patterning behavior. Mech Dev 2015; 138 Pt 2:151-159. [PMID: 26311219 DOI: 10.1016/j.mod.2015.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/02/2023]
Abstract
The study of Drosophila Hox genes, located in the Antennapedia complex (ANT-C) and Bithorax complex (BX-C), has provided fundamental insights into mechanisms of how the segments of the animal body plan are specified. Notably, even though the analysis of the BX-C formally began over a century ago, surprises continue to emerge regarding its regulation and function. Even simply the gene content of the BX-C has been regularly revised in past years, especially with regard to non-coding RNAs (ncRNAs), including microRNAs. In this perspective, we review the history of studies of non-coding transcription in the BX-C, and highlight recent studies of its miRNAs that provide new insights into their tissue-specific roles in Hox gene regulation. In particular, we have demonstrated unexpected importance of endogenous BX-C miRNAs to restrict the spatial accumulation of Hox proteins and their TALE cofactors in the ventral nerve cord, and link this to aberrant neural differentiation and reproductive behavior. These findings open new directions on studying Hox miRNA function, and we speculate that further understanding of their roles in insect models may provide new leads for studying the enigmatic biological functions of analogous miRNAs located in vertebrate Hox clusters.
Collapse
|
17
|
Huang Y, Ren HT, Wang ZB, Sun XH. Identification and validation of novel microrna molecule from the Pelodiscus sinensis by bioinformatics approaches. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1068162015040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Sun K, Jee D, de Navas LF, Duan H, Lai EC. Multiple In Vivo Biological Processes Are Mediated by Functionally Redundant Activities of Drosophila mir-279 and mir-996. PLoS Genet 2015; 11:e1005245. [PMID: 26042831 PMCID: PMC4456407 DOI: 10.1371/journal.pgen.1005245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
While most miRNA knockouts exhibit only subtle defects, a handful of miRNAs are profoundly required for development or physiology. A particularly compelling locus is Drosophila mir-279, which was reported as essential to restrict the emergence of CO2-sensing neurons, to maintain circadian rhythm, and to regulate ovarian border cells. The mir-996 locus is located near mir-279 and bears a similar seed, but they otherwise have distinct, conserved, non-seed sequences, suggesting their evolutionary maintenance for separate functions. We generated single and double deletion mutants of the mir-279 and mir-996 hairpins, and cursory analysis suggested that miR-996 was dispensable. However, discrepancies in the strength of individual mir-279 deletion alleles led us to uncover that all extant mir-279 mutants are deficient for mature miR-996, even though they retain its genomic locus. We therefore engineered a panel of genomic rescue transgenes into the double deletion background, allowing a pure assessment of miR-279 and miR-996 requirements. Surprisingly, detailed analyses of viability, olfactory neuron specification, and circadian rhythm indicate that miR-279 is completely dispensable. Instead, an endogenous supply of either mir-279 or mir-996 suffices for normal development and behavior. Sensor tests of nine key miR-279/996 targets showed their similar regulatory capacities, although transgenic gain-of-function experiments indicate partially distinct activities of these miRNAs that may underlie that co-maintenance in genomes. Altogether, we elucidate the unexpected genetics of this critical miRNA operon, and provide a foundation for their further study. More importantly, these studies demonstrate that multiple, vital, loss-of-function phenotypes can be rescued by endogenous expression of divergent seed family members, highlighting the importance of this miRNA region for in vivo function.
Collapse
Affiliation(s)
- Kailiang Sun
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York, United States of America
- Neuroscience Program, Weill Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
| | - David Jee
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York, United States of America
- Molecular Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
| | - Luis F. de Navas
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York, United States of America
| | - Hong Duan
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York, United States of America
| | - Eric C. Lai
- Sloan-Kettering Institute, Department of Developmental Biology, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Rong X, Zhang YK, Zhang KJ, Hong XY. Identification of Wolbachia-responsive microRNAs in the two-spotted spider mite, Tetranychus urticae. BMC Genomics 2014; 15:1122. [PMID: 25515563 PMCID: PMC4378230 DOI: 10.1186/1471-2164-15-1122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/09/2014] [Indexed: 01/05/2023] Open
Abstract
Background The two-spotted spider mite, Tetranychus urticae, is infected with Wolbachia, which have the ability to manipulate host reproduction and fitness. MicroRNAs (miRNAs) are small non-coding RNAs that are involved in many biological processes such as development, reproduction and host-pathogen interactions. Although miRNA was observed to involve in Wolbachia-host interactions in the other insect systems, its roles have not been fully deciphered in the two-spotted spider mite. Results Small RNA libraries of infected and uninfected T. urticae for both sexes (in total four libraries) were constructed. By integrating the mRNA data originated from the same samples, the target genes of the differentially expressed miRNAs were predicted. Then, GO and pathway analyses were performed for the target genes. Comparison of libraries showed that Wolbachia infection significantly regulated 91 miRNAs in females and 20 miRNAs in males, with an overall suppression of miRNAs in Wolbachia-infected libraries. A comparison of the miRNA and mRNA data predicted that the differentially expressed miRNAs negatively regulated 90 mRNAs in females and 9 mRNAs in males. An analysis of target genes showed that Wolbachia-responsive miRNAs regulated genes with function in sphingolipid metabolism, lysosome function, apoptosis and lipid transporting in both sexes, as well as reproduction in females. Conclusion Comparisons of the miRNA and mRNA data can help to identify miRNAs and miRNA target genes involving in Wolbachia-host interactions. The molecular targets identified in this study should be useful in further functional studies. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1122) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Xiao-Yue Hong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
Aparicio R, Simoes Da Silva CJ, Busturia A. MicroRNAmiR-7contributes to the control ofDrosophilawing growth. Dev Dyn 2014; 244:21-30. [DOI: 10.1002/dvdy.24214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 01/21/2023] Open
Affiliation(s)
- Ricardo Aparicio
- Centro de Biología Molecular “Severo Ochoa” CSIC-UAM; Madrid Spain
| | | | - Ana Busturia
- Centro de Biología Molecular “Severo Ochoa” CSIC-UAM; Madrid Spain
| |
Collapse
|
21
|
Fagegaltier D, König A, Gordon A, Lai EC, Gingeras TR, Hannon GJ, Shcherbata HR. A genome-wide survey of sexually dimorphic expression of Drosophila miRNAs identifies the steroid hormone-induced miRNA let-7 as a regulator of sexual identity. Genetics 2014; 198:647-68. [PMID: 25081570 PMCID: PMC4196619 DOI: 10.1534/genetics.114.169268] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/14/2014] [Indexed: 12/23/2022] Open
Abstract
MiRNAs bear an increasing number of functions throughout development and in the aging adult. Here we address their role in establishing sexually dimorphic traits and sexual identity in male and female Drosophila. Our survey of miRNA populations in each sex identifies sets of miRNAs differentially expressed in male and female tissues across various stages of development. The pervasive sex-biased expression of miRNAs generally increases with the complexity and sexual dimorphism of tissues, gonads revealing the most striking biases. We find that the male-specific regulation of the X chromosome is relevant to miRNA expression on two levels. First, in the male gonad, testis-biased miRNAs tend to reside on the X chromosome. Second, in the soma, X-linked miRNAs do not systematically rely on dosage compensation. We set out to address the importance of a sex-biased expression of miRNAs in establishing sexually dimorphic traits. Our study of the conserved let-7-C miRNA cluster controlled by the sex-biased hormone ecdysone places let-7 as a primary modulator of the sex-determination hierarchy. Flies with modified let-7 levels present doublesex-related phenotypes and express sex-determination genes normally restricted to the opposite sex. In testes and ovaries, alterations of the ecdysone-induced let-7 result in aberrant gonadal somatic cell behavior and non-cell-autonomous defects in early germline differentiation. Gonadal defects as well as aberrant expression of sex-determination genes persist in aging adults under hormonal control. Together, our findings place ecdysone and let-7 as modulators of a somatic systemic signal that helps establish and sustain sexual identity in males and females and differentiation in gonads. This work establishes the foundation for a role of miRNAs in sexual dimorphism and demonstrates that similar to vertebrate hormonal control of cellular sexual identity exists in Drosophila.
Collapse
Affiliation(s)
- Delphine Fagegaltier
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Annekatrin König
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Assaf Gordon
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065
| | - Thomas R Gingeras
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Gregory J Hannon
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
22
|
Biryukova I, Ye T, Levashina E. Transcriptome-wide analysis of microRNA expression in the malaria mosquito Anopheles gambiae. BMC Genomics 2014; 15:557. [PMID: 24997592 PMCID: PMC4112208 DOI: 10.1186/1471-2164-15-557] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 06/25/2014] [Indexed: 12/29/2022] Open
Abstract
Background microRNAs (miRNAs) are a highly abundant class of small noncoding regulatory RNAs that post-transcriptionally regulate gene expression in multicellular organisms. miRNAs are involved in a wide range of biological and physiological processes, including the regulation of host immune responses to microbial infections. Small-scale studies of miRNA expression in the malaria mosquito Anopheles gambiae have been reported, however no comprehensive analysis of miRNAs has been performed so far. Results Using small RNA sequencing, we characterized de novo A. gambiae miRNA repertoire expressed in adult sugar- and blood-fed females. We provided transcriptional evidences for 123 miRNAs, including 58 newly identified miRNAs. Out of the newly described miRNAs, 19 miRNAs are homologs to known miRNAs in other insect species and 17 miRNAs share sequence similarity restricted to the seed sequence. The remaining 21 novel miRNAs displayed no obvious sequence homology with known miRNAs. Detailed bioinformatics analysis of the mature miRNAs revealed a sequence variation occurring at their 5’-end and leading to functional seed shifting in more than 5% of miRNAs. We also detected significant sequence heterogeneity at the 3’-ends of the mature miRNAs, mostly due to imprecise processing and post-transcriptional modifications. Comparative analysis of arm-switching events revealed the existence of species-specific production of dominant mature miRNAs induced by blood feeding in mosquitoes. We also identified new conserved and fragmented miRNA clusters and A. gambiae-specific miRNA gene duplication. Using miRNA expression profiling, we identified the differentially expressed miRNAs at an early time point after regular blood feeding and after infection with the rodent malaria parasite Plasmodium berghei. Significant changes were detected in the expression levels of 4 miRNAs in blood-fed mosquitoes, whereas 6 miRNAs were significantly upregulated after P. berghei infection. Conclusions In the current study, we performed the first systematic analysis of miRNAs in A. gambiae. We provided new insights on mature miRNA sequence diversity and functional shifts in the mosquito miRNA evolution. We identified a set of the differentially expressed miRNAs that respond to normal and infectious blood meals. The extended set of Anopheles miRNAs and their isoforms provides a basis for further experimental studies of miRNA expression patterns and biological functions in A. gambiae. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-557) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inna Biryukova
- Department of Vector Biology, Max Planck Institute for Infection Biology, Berlin 10117, Germany.
| | | | | |
Collapse
|
23
|
Liang P, Feng B, Zhou X, Gao X. Identification and developmental profiling of microRNAs in diamondback moth, Plutellaxylostella (L.). PLoS One 2013; 8:e78787. [PMID: 24236051 PMCID: PMC3827265 DOI: 10.1371/journal.pone.0078787] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/22/2013] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of small RNAs involved in various biological processes through negative regulation of mRNAs at the post-transcriptional level. Although miRNA profiles have been documented in over two dozen insect species, few are agricultural pests. In this study, both conserved and novel miRNAs in the diamondback moth, Plutella xylostella L., a devastating insect pest of cruciferous crops worldwide, were documented. High-throughput sequencing of a small RNA library constructed from a mixed life stages of P. xylostella, including eggs, 1st to 4th (last) instar larvae, pupae and adults, identified 384 miRNAs, of which 174 were P. xylostella specific. In addition, temporal expressions of 234 miRNAs at various developmental stages were investigated using a customized microarray analysis. Among the 91 differentially expressed miRNAs, qRT-PCR analysis was used to validate highly expressed miRNAs at each stage. The combined results not only systematically document miRNA profiles in an agriculturally important insect pest, but also provide molecular targets for future functional analysis and, ultimately, genetic-based pest control practice.
Collapse
Affiliation(s)
- Pei Liang
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Bing Feng
- Department of Entomology, China Agricultural University, Beijing, P. R. China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (XZ); (XG)
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, P. R. China
- * E-mail: (XZ); (XG)
| |
Collapse
|
24
|
Abstract
MicroRNAs (miRNAs) are ~22 nt RNAs that coordinate vast regulatory networks in animals and thereby influence myriad processes. This Review examines evidence that miRNAs have continuous roles in adults in ways that are separable from developmental control. Adult-specific activities for miRNAs have been described in various stem cell populations, in the context of neural function and cardiovascular biology, in metabolism and ageing, and during cancer. In addition to reviewing recent results, we also discuss methods for studying miRNA activities specifically in adults and evaluate their relative strengths and weaknesses. A fuller understanding of continuous functions of miRNAs in adults has bearing on efforts and opportunities to manipulate miRNAs for therapeutic purposes.
Collapse
Affiliation(s)
- Kailiang Sun
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065
| | - Eric C. Lai
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065
| |
Collapse
|
25
|
Etebari K, Asgari S. Conserved microRNA miR-8 blocks activation of the Toll pathway by upregulating Serpin 27 transcripts. RNA Biol 2013; 10:1356-64. [PMID: 23806890 DOI: 10.4161/rna.25481] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRNAs) play significant regulatory roles in gene expression at the post-transcriptional level. This includes modulating processes such as development, immunity, cancer, and host-pathogen interactions. It was recently shown that the phylogenetically deeply conserved miRNA, miR-8, plays a role in maintaining the homeostasis of immunity by suppressing the production of anti-microbial peptides. In this study, we show that miR-8 from the insect Plutella xylostella positively regulates the transcript levels of the serine protease inhibitor Serpin 27, which has been shown to regulate activation of the Toll pathway and prophenoloxidase involved in the melanization response in insects. Interestingly, miR-8 is downregulated following parasitization by Diadegma semiclausum leading to significant declines in Serpin 27 transcript levels. This allows upregulation of antimicrobial peptides, such as gloverin, that are controlled by the Toll pathway and activation of proteolytic cascades essential for humoral immune responses to foreign invasion.
Collapse
Affiliation(s)
- Kayvan Etebari
- School of Biological Sciences; The University of Queensland; St Lucia, QLD Australia
| | | |
Collapse
|
26
|
Etebari K, Hussain M, Asgari S. Identification of microRNAs from Plutella xylostella larvae associated with parasitization by Diadegma semiclausum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:309-318. [PMID: 23352895 DOI: 10.1016/j.ibmb.2013.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/16/2012] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
MicroRNAs (miRNAs) as small non-coding RNAs play important roles in many biological processes such as development, cell signaling and immune response. Small RNA deep sequencing technology provided an opportunity for a thorough survey of miRNAs in a global key pest Plutella xylostella as well as comparative analysis of miRNA expression profile of the insect in association with parasitization by Diadegma semiclausum. Combining the deep sequencing data and bioinformatics, 235 miRNAs were identified from P. xylostella. Differential expression of host cellular miRNAs in response to parasitism was examined by making small RNA libraries from parasitized and naive second instar larvae of P. xylostella. Bantam, miR-276*, miR-10, miR-31 and miR-184 were detected as five most abundant miRNAs in both libraries and 96 miRNAs were identified that were differentially expressed after parasitization. Bantam*, miR-184 and miR-281* were significantly down-regulated and two miRNAs miR-279b and miR-2944b* were highly induced in parasitized larvae. Interestingly, high copy numbers and differential expression of several miRNA passenger strands (miRNA*) suggest their potential roles in host-parasitoid interaction. In conclusion, expression profiling of miRNAs provided insights into their possible involvement in insect immune response to parasitism and offer an important resource for further studies.
Collapse
Affiliation(s)
- Kayvan Etebari
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | | |
Collapse
|
27
|
Abstract
During development, it is essential for gene expression to occur in a very precise spatial and temporal manner. There are many levels at which regulation of gene expression can occur, and recent evidence demonstrates the importance of mRNA stability in governing the amount of mRNA that can be translated into functional protein. One of the most important discoveries in this field has been miRNAs (microRNAs) and their function in targeting specific mRNAs for repression. The wing imaginal discs of Drosophila are an excellent model system to study the roles of miRNAs during development and illustrate their importance in gene regulation. This review aims at discussing the developmental processes where control of gene expression by miRNAs is required, together with the known mechanisms of this regulation. These developmental processes include Hox gene regulation, developmental timing, growth control, specification of SOPs (sensory organ precursors) and the regulation of signalling pathways.
Collapse
|
28
|
Abstract
Animal microRNAs (miRNA) are implicated in the control of nearly all cellular functions. Due to high sequence redundancy within the miRNA gene pool, loss of most of these 21- to 24-bp long RNAs individually does not cause a phenotype. Thus, only very few miRNAs have been associated with clear functional roles. We constructed a transgenic UAS-miRNA library in Drosophila melanogaster that contains 180 fly miRNAs. This library circumvents the redundancy issues by facilitating the controlled misexpression of individual miRNAs and is a useful tool to complement loss-of-function approaches. Demonstrating the effectiveness of our library, 78 miRNAs induced clear phenotypes. Most of these miRNAs were previously unstudied. Furthermore, we present a simple system to create GFP sensors to monitor miRNA expression and test direct functional interactions in vivo. Finally, we focus on the miR-92 family and identify a direct target gene that is responsible for the specific wing phenotype induced by the misexpression of miR-92 family members.
Collapse
|
29
|
Bejarano F, Bortolamiol-Becet D, Dai Q, Sun K, Saj A, Chou YT, Raleigh DR, Kim K, Ni JQ, Duan H, Yang JS, Fulga TA, Van Vactor D, Perrimon N, Lai EC. A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development 2012; 139:2821-31. [PMID: 22745315 DOI: 10.1242/dev.079939] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) are endogenous short RNAs that mediate vast networks of post-transcriptional gene regulation. Although computational searches and experimental profiling provide evidence for hundreds of functional targets for individual miRNAs, such data rarely provide clear insight into the phenotypic consequences of manipulating miRNAs in vivo. We describe a genome-wide collection of 165 Drosophila miRNA transgenes and find that a majority induced specific developmental defects, including phenocopies of mutants in myriad cell-signaling and patterning genes. Such connections allowed us to validate several likely targets for miRNA-induced phenotypes. Importantly, few of these phenotypes could be predicted from computationally predicted target lists, thus highlighting the value of whole-animal readouts of miRNA activities. Finally, we provide an example of the relevance of these data to miRNA loss-of-function conditions. Whereas misexpression of several K box miRNAs inhibited Notch pathway activity, reciprocal genetic interaction tests with miRNA sponges demonstrated endogenous roles of the K box miRNA family in restricting Notch signaling. In summary, we provide extensive evidence that misexpression of individual miRNAs often induces specific mutant phenotypes that can guide their functional study. By extension, these data suggest that the deregulation of individual miRNAs in other animals may frequently yield relatively specific phenotypes during disease conditions.
Collapse
Affiliation(s)
- Fernando Bejarano
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Somorjai IML, Lohmann JU, Holstein TW, Zhao Z. Stem cells: a view from the roots. Biotechnol J 2012; 7:704-22. [PMID: 22581706 DOI: 10.1002/biot.201100349] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/15/2012] [Accepted: 04/12/2012] [Indexed: 12/22/2022]
Abstract
In both plants and animals, regeneration requires the activation of stem cells. This is possibly related to the origin and requirements of multicellularity. Although long diverged from a common ancestry, plant and animal models such as Arabidopsis, Drosophila and mouse share considerable similarities in stem cell regulation. This includes stem cell niche organisation, epigenetic modification of DNA and histones, and the role of small RNA machinery in differentiation and pluripotency states. Dysregulation of any of these can lead to premature ageing, patterning and specification defects, as well as cancers. Moreover, emerging basal animal and plant systems are beginning to provide important clues concerning the diversity and evolutionary history of stem cell regulatory mechanisms in eukaryotes. This review provides a comparative framework, highlighting both the commonalities and differences among groups, which should promote the intelligent design of artificial stem cell systems, and thereby fuel the field of biomaterials science.
Collapse
Affiliation(s)
- Ildiko M L Somorjai
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
31
|
Kennell JA, Cadigan KM, Shakhmantsir I, Waldron EJ. The microRNA miR-8 is a positive regulator of pigmentation and eclosion in Drosophila. Dev Dyn 2012; 241:161-8. [PMID: 22174085 DOI: 10.1002/dvdy.23705] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are short, non-coding RNAs that post-transcriptionally silence gene expression by binding to target mRNAs. Previous studies have identified the miRNA miR-8 as a pleiotropic regulator of Drosophila development, controlling body size and neuronal survival by targeting multiple mRNAs. In this study we demonstrate that miR-8 is also required for proper spatial patterning of pigment on the adult abdominal cuticle in females but not males. RESULTS Female adult flies lacking miR-8 exhibit decreased pigmentation of the dorsal abdomen, with a pattern of pigmentation similar to wild type flies grown at higher temperatures. This pigmentation defect in miR-8 mutants is independent of the previously reported body size defect, and miR-8 acts directly in the developing cuticle to regulate pigmentation patterning. The decrease in pigmentation in miR-8 mutants was more pronounced in flies grown at higher temperatures. We also found that loss of miR-8 dramatically affected the ability to eclose at higher temperatures. CONCLUSION Loss of miR-8 increased the sensitivity of Drosophila to higher temperatures for both pigmentation patterning and the ability to eclose. Together, these data suggest that miR-8 acts as a buffer to stabilize gene expression patterns in the midst of environmental variation.
Collapse
Affiliation(s)
- Jennifer A Kennell
- Department of Biology, Vassar College, Poughkeepsie, New York 12604, USA.
| | | | | | | |
Collapse
|
32
|
Sun K, Westholm JO, Tsurudome K, Hagen JW, Lu Y, Kohwi M, Betel D, Gao FB, Haghighi AP, Doe CQ, Lai EC. Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants. PLoS Genet 2012; 8:e1002515. [PMID: 22347817 PMCID: PMC3276548 DOI: 10.1371/journal.pgen.1002515] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/15/2011] [Indexed: 01/31/2023] Open
Abstract
miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124–expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology. microRNAs are abundant ∼22 nucleotide RNAs inferred to mediate pervasive post-transcriptional control of most genes. Still, relatively little is understood about their endogenous requirements and impact, especially in animal systems. We analyzed a knockout of Drosophila mir-124, which is conserved in sequence and neuronal expression across the animal kingdom, and predicted to have hundreds of mRNA targets. While dispensable for gross neural specification and differentiation, deletion of mir-124 caused short lifespan, increased variation in dendrite numbers, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Loss of miR-124 broadly upregulated its direct targets but did not support the proposed mutual exclusion model, as its functional target genes were relatively highly expressed in neurons. One notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons phenocopies loss of miR-124. Derepression of the direct miR-124 target network had many secondary effects, including over-activity of other post-transcriptional repressors and impaired transition from neuroblast to neuronal transcriptome signatures. Altogether, we demonstrate complex requirements for this conserved miRNA on gene expression and neurophysiology.
Collapse
Affiliation(s)
- Kailiang Sun
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
A new strategy for identification of highly conserved microRNAs in non-model insect, Spodoptera litura. Int J Mol Sci 2012; 13:612-627. [PMID: 22312275 PMCID: PMC3269709 DOI: 10.3390/ijms13010612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/23/2011] [Accepted: 12/28/2011] [Indexed: 12/19/2022] Open
Abstract
The indigenous small non-coding RNAs, known as microRNAs (miRNAs), are important regulators of gene expression and many of them are evolutionarily conserved. Whether stem-loop RT-PCR, as a sensitive method, could be utilized to clone conserved miRNAs from non-model insects lacks information. Here, three miRNAs, sli-miR-14, sli-miR-2a and sli-bantam, were cloned from Spodoptera litura by stem-loop RT-PCR. Two groups of primers were designed, and one of them performed especially well and proved stable. The sequences of two highly conserved miRNAs, sli-miR-14 and sli-miR-2a were identical to those in Drosophila melanogaster. To validate the reliability of this strategy, pre-miR-14 and pre-miR-2a in S. litura as representatives were given as well; this shared high homology with those in D. melanogaster and Bombyx mori, and both mature sequences of sli-miR-14 and sli-miR-2a in their precursors shared 100% identity to the results shown by stem-loop RT-PCR. Moreover, expression patterns of these miRNAs were investigated by real-time quantitative PCR. Sli-miR-14 and sli-miR-2a could be detected successfully and their expression patterns showed similar characteristics with those in model insects, further suggesting stem-loop RT-PCR technology can be used for identification of highly conserved miRNAs in non-model insects. These results provide a simplified and efficient strategy for studying the structure and function of highly conserved miRNAs, especially some critical miRNAs in non-model insects.
Collapse
|
34
|
Abstract
Although a great deal is known about the identity, biogenesis, and targeting capacity of microRNAs (miRNAs) in animal cells, far less is known about their functional requirements at the organismal level. Much remains to be understood about the necessity of miRNAs for overt phenotypes, the identity of critical miRNA targets, and the control of miRNA transcription. In this review, we provide an overview of genetic strategies to study miRNAs in the Drosophila system, including loss- and gain-of-function techniques, genetic interaction strategies, and transgenic reporters of miRNA expression and activity. As we illustrate the usage of these techniques in intact Drosophila, we see certain recurrent themes for miRNA functions, including energy homeostasis, apoptosis suppression, growth control, and regulation of core cell signaling pathways. Overall, we hope that this exposition of Drosophila genetic techniques, well known to the legions of fly geneticists and used to study all genes, can inform the general miRNA community that focuses on other biochemical, molecular, computational, and structural avenues. Clearly, it is the combination of these myriad techniques that has accelerated miRNA research to its extraordinary pace.
Collapse
Affiliation(s)
- Qi Dai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York NY 10065
| | - Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York NY 10065
| | - Eric C. Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York NY 10065
| |
Collapse
|
35
|
microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2010; 107:22391-8. [PMID: 21115818 DOI: 10.1073/pnas.1016230107] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mosquito Aedes aegypti is the major vector of arboviral diseases, particularly of Dengue fever, of which there are more than 100 million cases annually. Mosquitoes, such as A. aegypti, serve as vectors for disease pathogens because they require vertebrate blood for their egg production. Pathogen transmission is tightly linked to repeated cycles of obligatory blood feeding and egg maturation. Thus, the understanding of mechanisms governing egg production is necessary to develop approaches that limit the spread of mosquito-borne diseases. Previous studies have identified critical roles of hormonal- and nutrition-based target of rapamycin (TOR) pathways in controlling blood-meal-mediated egg maturation in mosquitoes. In this work, we uncovered another essential regulator of blood-meal-activated processes, the microRNA miR-275. The depletion of this microRNA in A. aegypti females after injection of its specific antagomir resulted in severe defects in blood digestion, fluid excretion, and egg development, clearly demonstrating that miR-275 is indispensable for these physiological processes. miR-275 exhibits an expression profile that suggests its regulation by a steroid hormone, 20-hydroxyecdysone (20E). In vitro organ culture experiments demonstrated that miR-275 is induced by this hormone in the presence of amino acids, indicative of a dual regulation by 20E and TOR. This report has uncovered the critical importance of microRNAs in controlling blood-meal-activated physiological events required for completion of egg development in mosquito disease vectors.
Collapse
|