1
|
Yang Y, Li J, Li D, Zhou W, Yan F, Wang W. Humanized mouse models: A valuable platform for preclinical evaluation of human cancer. Biotechnol Bioeng 2024; 121:835-852. [PMID: 38151887 DOI: 10.1002/bit.28618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/26/2023] [Indexed: 12/29/2023]
Abstract
Animal models are routinely employed to assess the treatments for human cancer. However, due to significant differences in genetic backgrounds, traditional animal models are unable to meet bioresearch needs. To overcome this restriction, researchers have generated and optimized immunodeficient mice, and then engrafted human genes, cells, tissues, or organs in mice so that the responses in the model mice could provide a more reliable reference for treatments. As a bridge connecting clinical application and basic research, humanized mice are increasingly used in the preclinical evaluation of cancer treatments, particularly after gene interleukin 2 receptor gamma mutant mice were generated. Human cancer models established in humanized mice support exploration of the mechanism of cancer occurrence and provide an efficient platform for drug screening. However, it is undeniable that the further application of humanized mice still faces multiple challenges. This review summarizes the construction approaches for humanized mice and their existing limitations. We also report the latest applications of humanized mice in preclinical evaluation for the treatment of cancer and point out directions for future optimization of these models.
Collapse
Affiliation(s)
- Yuening Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqian Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weilin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feiyang Yan
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Vojsovič M, Kratochvilová L, Valková N, Šislerová L, El Rashed Z, Menichini P, Inga A, Monti P, Brázda V. Transactivation by partial function P53 family mutants is increased by the presence of G-quadruplexes at a promoter site. Biochimie 2024; 216:14-23. [PMID: 37838351 DOI: 10.1016/j.biochi.2023.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
The effect of mutations in the P53 family of transcription factors on their biological functions, including partial or complete loss of transcriptional activity, has been confirmed several times. At present, P53 family proteins showing partial loss of activity appear to be promising potential candidates for the development of novel therapeutic strategies which could restore their transcriptional activity. In this context, it is important to employ tools to precisely monitor their activity; in relation to this, non-canonical DNA secondary structures in promoters including G-quadruplexes (G4s) were shown to influence the activity of transcription factors. Here, we used a defined yeast assay to evaluate the impact of differently modeled G4 forming sequences on a panel of partial function P53 family mutant proteins. Specifically, a 22-mer G4 prone sequence (derived from the KSHV virus) and five derivatives that progressively mutate characteristic guanine stretches were placed upstream of a minimal promoter, adjacent to a P53 response element in otherwise isogenic yeast luciferase reporter strains. The transactivation ability of cancer-associated P53 (TA-P53α: A161T, R213L, N235S, V272L, R282W, R283C, R337C, R337H, and G360V) or Ectodermal Dyplasia syndromes-related P63 mutant proteins (ΔN-P63α: G134D, G134V and inR155) were tested. Our results show that the presence of G4 forming sequences can increase the transactivation ability of partial function P53 family proteins. These observations are pointing to the importance of DNA structural characteristics for accurate classification of P53 family proteins functionality in the context of the wide variety of TP53 and TP63 germline and somatic mutations.
Collapse
Affiliation(s)
- Matúš Vojsovič
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Libuše Kratochvilová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Natália Valková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic.
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Zeinab El Rashed
- Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Paola Menichini
- Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| | - Paola Monti
- Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| |
Collapse
|
3
|
Chen J, Baxi K, Lipsitt AE, Hensch NR, Wang L, Sreenivas P, Modi P, Zhao XR, Baudin A, Robledo DG, Bandyopadhyay A, Sugalski A, Challa AK, Kurmashev D, Gilbert AR, Tomlinson GE, Houghton P, Chen Y, Hayes MN, Chen EY, Libich DS, Ignatius MS. Defining function of wild-type and three patient-specific TP53 mutations in a zebrafish model of embryonal rhabdomyosarcoma. eLife 2023; 12:e68221. [PMID: 37266578 PMCID: PMC10322150 DOI: 10.7554/elife.68221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/01/2023] [Indexed: 06/03/2023] Open
Abstract
In embryonal rhabdomyosarcoma (ERMS) and generally in sarcomas, the role of wild-type and loss- or gain-of-function TP53 mutations remains largely undefined. Eliminating mutant or restoring wild-type p53 is challenging; nevertheless, understanding p53 variant effects on tumorigenesis remains central to realizing better treatment outcomes. In ERMS, >70% of patients retain wild-type TP53, yet mutations when present are associated with worse prognosis. Employing a kRASG12D-driven ERMS tumor model and tp53 null (tp53-/-) zebrafish, we define wild-type and patient-specific TP53 mutant effects on tumorigenesis. We demonstrate that tp53 is a major suppressor of tumorigenesis, where tp53 loss expands tumor initiation from <35% to >97% of animals. Characterizing three patient-specific alleles reveals that TP53C176F partially retains wild-type p53 apoptotic activity that can be exploited, whereas TP53P153Δ and TP53Y220C encode two structurally related proteins with gain-of-function effects that predispose to head musculature ERMS. TP53P153Δ unexpectedly also predisposes to hedgehog-expressing medulloblastomas in the kRASG12D-driven ERMS-model.
Collapse
Affiliation(s)
- Jiangfei Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical UniversityWenzhouChina
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Kunal Baxi
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Amanda E Lipsitt
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Pediatrics, Division of Hematology Oncology, UT Health Sciences CenterSan AntonioUnited States
| | - Nicole Rae Hensch
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Long Wang
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Prethish Sreenivas
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Paulomi Modi
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Xiang Ru Zhao
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Antoine Baudin
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Biochemistry and Structural Biology, UT Health Sciences CenterSan AntonioUnited States
| | - Daniel G Robledo
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Abhik Bandyopadhyay
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Aaron Sugalski
- Department of Pediatrics, Division of Hematology Oncology, UT Health Sciences CenterSan AntonioUnited States
| | - Anil K Challa
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Dias Kurmashev
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Andrea R Gilbert
- Department of Pathology and Laboratory Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Gail E Tomlinson
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Pediatrics, Division of Hematology Oncology, UT Health Sciences CenterSan AntonioUnited States
| | - Peter Houghton
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Yidong Chen
- Department of Population Health Sciences, UT Health Sciences CenterSan AntonioUnited States
| | - Madeline N Hayes
- Developmental and Stem Cell Biology, Hospital for Sick ChildrenTorontoCanada
| | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - David S Libich
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Biochemistry and Structural Biology, UT Health Sciences CenterSan AntonioUnited States
| | - Myron S Ignatius
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| |
Collapse
|
4
|
HIF-1 α Is Associated with Resistance to Hypoxia-Induced Apoptosis in Ameloblastoma. Int J Dent 2022; 2021:3060375. [PMID: 34987583 PMCID: PMC8723839 DOI: 10.1155/2021/3060375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background Ameloblastoma (AMB) is a benign odontogenic tumour, with an aggressive local behaviour and a high rate of recurrence. Previous studies have demonstrated that hypoxia-induced factor alpha 1 (HIF-1α) and activated caspase-3 contribute to tumour invasiveness and cytogenesis in ameloblastoma. Hypoxia increases HIF-1α levels, which triggers a number of signalling pathways. This paper aimed to present data in the study of hypoxia-activated signalling pathways that modulate proapoptotic and antiapoptotic events in AMB. Methods Twenty cases of AMB and ten cases of dental follicle (DF) were used to analyse the immunoexpression of HIF-1α, p53, BNIP3, Bcl-2, IAP-2, GLUT1, and Bax. To contribute to the study, an analysis of expression and genetic interaction was performed using the cell line AME-1. Results AMB and DF expressed the studied proteins. These proteins showed significantly greater immunoexpression in AMB compared with the DF (p < 0.05). HIF-1α showed an important association with GLUT1, and a positive correlation was observed among p53, Bcl-2, and IAP-2. Transcriptomic analysis showed the significant expression of the studied proteins, and the network generated showed a direct association of HIF-1αF with GLUT1 (SLC2A1), TP53, and LDHA. Interestingly, GLUT1 also exhibited direct interaction with TP53 and LDHA. Conclusion In AMB tumorigenesis, hypoxia is possibly related to antiapoptotic events, which suggests an important role for HIF-1α, GLUT1, Bcl-2, IAP-2, and possibly p53.
Collapse
|
5
|
Ma W, Qiu Z, Bai Z, Dai Y, Li C, Chen X, Song X, Shi D, Zhou Y, Pan Y, Liao Y, Liao M, Zhou Z. Inhibition of microRNA-30a alleviates vascular remodeling in pulmonary arterial hypertension. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:678-693. [PMID: 34703652 PMCID: PMC8517099 DOI: 10.1016/j.omtn.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/09/2021] [Indexed: 12/04/2022]
Abstract
The excessive and ectopic pulmonary artery smooth muscle cells (PASMCs) are crucial to the pathogenesis of pulmonary arteriole (PA) remodeling in pulmonary arterial hypertension (PAH). We previously found that microRNA (miR)-30a was significantly increased in acute myocardial infarction (AMI) patients and animals, as well as in cultured cardiomyocytes after hypoxia, suggesting that it might be strongly associated with hypoxia-related diseases. Here, we investigated the role of miR-30a in the PASMC remodeling of PAH. The expression of miR-30a was higher in the serum of PAH patients compared with healthy controls. miR-30a was mainly expressed in PAs and was increased in PASMCs after hypoxia, mediating the downregulation of p53 tumor suppressor protein (P53). Genetic knockout of miR-30a effectively decreased right ventricular (RV) systolic pressure (RVSP), PA, and RV remodeling in the Su5416/hypoxia-induced and monocrotaline (MCT)-induced PAH animals. Additionally, pharmacological inhibition of miR-30a via intratracheal liquid instillation (IT-L) delivery strategy showed high efficiency, which downregulated miR-30a to mitigate disease phenotype in the Su5416/hypoxia-induced PAH animals, and these beneficial effects could be partially reduced by simultaneous P53 inhibition. We demonstrate that inhibition of miR-30a could ameliorate experimental PAH through the miR-30a/P53 signaling pathway, and the IT-L delivery strategy shows good therapeutic outcomes, providing a novel and promising approach for the treatment of PAH.
Collapse
Affiliation(s)
- Wenrui Ma
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zeyang Bai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Dai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chang Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoxiao Song
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dingyang Shi
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanzhao Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Pan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengyang Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Corresponding author: Mengyang Liao, PhD, Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Corresponding author: Zihua Zhou, PhD, Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| |
Collapse
|
6
|
Hill W, Caswell DR, Swanton C. Capturing cancer evolution using genetically engineered mouse models (GEMMs). Trends Cell Biol 2021; 31:1007-1018. [PMID: 34400045 DOI: 10.1016/j.tcb.2021.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
Initiating from a single cell, cancer undergoes clonal evolution, leading to a high degree of intratumor heterogeneity (ITH). The arising genetic heterogeneity between cancer cells is influenced by exogenous and endogenous forces that shape the composition of clones within tumors. Preclinical mouse models have provided a valuable tool for understanding cancer, helping to build a fundamental understanding of tumor initiation, progression, and metastasis. Until recently, genetically engineered mouse models (GEMMS) of cancer had lacked the genetic diversity found in human tumors, in which evolution may be driven by long-term carcinogen exposure and DNA damage. However, advances in sequencing technology and in our understanding of the drivers of genetic instability have given us the knowledge to generate new mouse models, offering an approach to functionally explore mechanisms of tumor evolution.
Collapse
Affiliation(s)
- William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Deborah R Caswell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London, UK; University College London Hospitals NHS Trust, London, UK.
| |
Collapse
|
7
|
Timofeev O, Stiewe T. Rely on Each Other: DNA Binding Cooperativity Shapes p53 Functions in Tumor Suppression and Cancer Therapy. Cancers (Basel) 2021; 13:2422. [PMID: 34067731 PMCID: PMC8155944 DOI: 10.3390/cancers13102422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022] Open
Abstract
p53 is a tumor suppressor that is mutated in half of all cancers. The high clinical relevance has made p53 a model transcription factor for delineating general mechanisms of transcriptional regulation. p53 forms tetramers that bind DNA in a highly cooperative manner. The DNA binding cooperativity of p53 has been studied by structural and molecular biologists as well as clinical oncologists. These experiments have revealed the structural basis for cooperative DNA binding and its impact on sequence specificity and target gene spectrum. Cooperativity was found to be critical for the control of p53-mediated cell fate decisions and tumor suppression. Importantly, an estimated number of 34,000 cancer patients per year world-wide have mutations of the amino acids mediating cooperativity, and knock-in mouse models have confirmed such mutations to be tumorigenic. While p53 cancer mutations are classically subdivided into "contact" and "structural" mutations, "cooperativity" mutations form a mechanistically distinct third class that affect the quaternary structure but leave DNA contacting residues and the three-dimensional folding of the DNA-binding domain intact. In this review we discuss the concept of DNA binding cooperativity and highlight the unique nature of cooperativity mutations and their clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, 35037 Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, 35037 Marburg, Germany
| |
Collapse
|
8
|
Abboodi F, Buckhaults P, Altomare D, Liu C, Hosseinipour M, Banister CE, Creek KE, Pirisi L. HPV-inactive cell populations arise from HPV16-transformed human keratinocytes after p53 knockout. Virology 2020; 554:9-16. [PMID: 33321328 DOI: 10.1016/j.virol.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
HPV-inactive head and neck and cervical cancers contain HPV DNA but do not express HPV E6/E7. HPV-positive primary head and neck tumors usually express E6/E7, however they may produce HPV-inactive metastases. These observations led to our hypothesis that HPV-inactive cancers begin as HPV-active lesions, losing dependence on E6/E7 expression during progression. Because HPV-inactive cervical cancers often have mutated p53, we investigated whether p53 loss may play a role in the genesis of HPV-inactive cancers. p53 knockout (p53-KO) by CRISPR-Cas9 resulted in a 5-fold reduction of E7 mRNA in differentiation-resistant HPV16 immortalized human keratinocytes (HKc/DR). E7 expression was restored by 5-Aza-2 deoxycytidine in p53 KO lines, suggesting a role of DNA methylation in this process. In-situ hybridization showed that p53 KO lines consist of mixed populations of E6/E7-positive and negative cells. Hence, loss of p53 predisposes HPV16 transformed cells to losing dependence on the continuous expression of HPV oncogenes for proliferation.
Collapse
Affiliation(s)
- Fadi Abboodi
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, USA; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, USA; Department of Pediatrics, Mosul Medical College, University of Mosul, Iraq.
| | - Phillip Buckhaults
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, USA
| | - Changlong Liu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, USA
| | - Maria Hosseinipour
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, USA
| | - Carolyn E Banister
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, USA
| | - Kim E Creek
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, USA
| | - Lucia Pirisi
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, USA.
| |
Collapse
|
9
|
Martinho MS, Nancarrow DJ, Lawrence TS, Beer DG, Ray D. Chaperones and Ubiquitin Ligases Balance Mutant p53 Protein Stability in Esophageal and Other Digestive Cancers. Cell Mol Gastroenterol Hepatol 2020; 11:449-464. [PMID: 33130332 PMCID: PMC7788241 DOI: 10.1016/j.jcmgh.2020.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
The incidence of esophageal adenocarcinoma (EAC) and other gastrointestinal (GI) cancers have risen dramatically, thus defining the oncogenic drivers to develop effective therapies are necessary. Patients with Barrett's Esophagus (BE), have an elevated risk of developing EAC. Around 70%-80% of BE cases that progress to dysplasia and cancer have detectable TP53 mutations. Similarly, in other GI cancers higher rates of TP53 mutation are reported, which provide a significant survival advantage to dysplastic/cancer cells. Targeting molecular chaperones that mediate mutant p53 stability may effectively induce mutant p53 degradation and improve cancer outcomes. Statins can achieve this via disrupting the interaction between mutant p53 and the chaperone DNAJA1, promoting CHIP-mediated degradation of mutant p53, and statins are reported to significantly reduce the risk of BE progression to EAC. However, statins demonstrated sub-optimal efficacy depending on cancer types and TP53 mutation specificity. Besides the well-established role of MDM2 in p53 stability, we reported that individual isoforms of the E3 ubiquitin ligase GRAIL (RNF128) are critical, tissue-specific regulators of mutant p53 stability in BE progression to EAC, and targeting the interaction of mutant p53 with these isoforms may help mitigate EAC development. In this review, we discuss the critical ubiquitin-proteasome and chaperone regulation of mutant p53 stability in EAC and other GI cancers with future insights as to how to affect mutant p53 stability, further noting how the precise p53 mutation may influence the efficacy of treatment strategies and identifying necessary directions for further research in this field.
Collapse
Affiliation(s)
- May San Martinho
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Derek J Nancarrow
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - David G Beer
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
10
|
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020; 5:90. [PMID: 32532965 PMCID: PMC7293209 DOI: 10.1038/s41392-020-0196-9] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor genes cooperate with each other in tumors. Three important tumor suppressor proteins, retinoblastoma (Rb), p53, phosphatase, and tensin homolog deleted on chromosome ten (PTEN) are functionally associated and they regulated by post-translational modification (PTMs) as well. PTMs include phosphorylation, SUMOylation, acetylation, and other novel modifications becoming growing appreciated. Because most of PTMs are reversible, normal cells use them as a switch to control the state of cells being the resting or proliferating, and PTMs also involve in cell survival and cell cycle, which may lead to abnormal proliferation and tumorigenesis. Although a lot of studies focus on the importance of each kind of PTM, further discoveries shows that tumor suppressor genes (TSGs) form a complex "network" by the interaction of modification. Recently, there are several promising strategies for TSGs for they change more frequently than carcinogenic genes in cancers. We here review the necessity, characteristics, and mechanisms of each kind of post-translational modification on Rb, p53, PTEN, and its influence on the precise and selective function. We also discuss the current antitumoral therapies of Rb, p53 and PTEN as predictive, prognostic, and therapeutic target in cancer.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
11
|
Garufi A, Federici G, Gilardini Montani MS, Crispini A, Cirone M, D’Orazi G. Interplay between Endoplasmic Reticulum (ER) Stress and Autophagy Induces Mutant p53H273 Degradation. Biomolecules 2020; 10:biom10030392. [PMID: 32138264 PMCID: PMC7175121 DOI: 10.3390/biom10030392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 02/08/2023] Open
Abstract
The unfolded protein response (UPR) is an adaptive response to intrinsic and external stressors, and it is mainly activated by the accumulation of misfolded proteins at the endoplasmic reticulum (ER) lumen producing ER stress. The UPR signaling network is interconnected with autophagy, the proteolytic machinery specifically devoted to clearing misfolded proteins in order to survive bioenergetic stress and/or induce cell death. Oncosuppressor TP53 may undergo inactivation following missense mutations within the DNA-binding domain (DBD), and mutant p53 (mutp53) proteins may acquire a misfolded conformation, often due to the loss of the DBD-bound zinc ion, leading to accumulation of hyperstable mutp53 proteins that correlates with more aggressive tumors, resistance to therapies, and poorer outcomes. We previously showed that zinc supplementation induces mutp53 protein degradation by autophagy. Here, we show that mutp53 (i.e., Arg273) degradation following zinc supplementation is correlated with activation of ER stress and of the IRE1α/XBPI arm of the UPR. ER stress inhibition with chemical chaperone 4-phenyl butyrate (PBA) impaired mutp53 downregulation, which is similar to IRE1α/XBPI specific inhibition, reducing cancer cell death. Knockdown of mutp53 failed to induce UPR/autophagy activation indicating that the effect of zinc on mutp53 folding was likely the key event occurring in ER stress activation. Recently discovered small molecules targeting components of the UPR show promise as a novel anticancer therapeutic intervention. However, our findings showing UPR activation during mutp53 degradation indicate that caution is necessary in the design of therapies that inhibit UPR components.
Collapse
Affiliation(s)
- Alessia Garufi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.G.); (G.F.)
- University “G. D’Annunzio”, School of Medicine, 66100 Chieti, Italy
| | - Giulia Federici
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.G.); (G.F.)
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy (M.C.)
| | - Alessandra Crispini
- Department of Chemistry and Chemical Technologies, laboratory MAT_IN LAB, Calabria University, 87036 Rende, Italy;
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy (M.C.)
| | - Gabriella D’Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.G.); (G.F.)
- Correspondence:
| |
Collapse
|
12
|
Thayer KM, Carcamo C. Homologs of the Tumor Suppressor Protein p53: A Bioinformatics Study for Drug Design. MOJ PROTEOMICS & BIOINFORMATICS 2020; 9:5-14. [PMID: 34532721 PMCID: PMC8442938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sequence and structure of proteins related to the tumor suppressor protein p53 were studied from the perspective of gaining insight for the development of therapeutic drugs. Our study addresses two major issues encumber bringing novel drugs to market: side effects and artifacts from animal models. In the first phase of our study, we performed a genome-wide search to identify potentially similar proteins to p53 that may be susceptible to off target effects. In the second phase, we chose a selection of common model organisms that could potentially be available to undergraduate researchers in the university setting to assess which ones utilize p53 most similar to humans on the basis of sequence homology and structural similarity from predicted structures. Our results confirm the proteins in the humans significantly similar to p53 are known paralogs within the p53 family. In considering model organisms, murine p53 bore great similarity to human p53 in terms of both sequence and structure, but others performed similarly well. We discuss the findings against the background of other structural benchmarks and point out potential benefits and drawbacks of various alternatives for use in future drug design pilot studies.
Collapse
Affiliation(s)
- Kelly M Thayer
- Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Claudia Carcamo
- Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| |
Collapse
|
13
|
Zhong S, Jin Q, Yu T, Zhu J, Li Y. Phellinus gilvus‑derived protocatechualdehyde induces G0/G1 phase arrest and apoptosis in murine B16‑F10 cells. Mol Med Rep 2019; 21:1107-1114. [PMID: 31894337 PMCID: PMC7002996 DOI: 10.3892/mmr.2019.10896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/18/2019] [Indexed: 11/09/2022] Open
Abstract
Protocatechualdehyde (PCA) is considered to be the main phenolic component of Phellinus gilvus responsible for its anticancer properties. Previous studies have demonstrated that PCA can have an anticancer effect on multiple cancer types, but little is known about the effect of PCA on melanoma cells. The present study investigated the inhibitory abilities and potential anticancer mechanisms of PCA on B16-F10 cells using MTT assay. Cell apoptosis and cell cycle were assessed by flow cytometry using Annexin V-FITC and propidium iodide staining. Whole-transcriptome analysis was used to investigate the effects of PCA on gene expression. PCA significantly decreased cell viability, induced cell cycle arrest at G0/G1 phase and promoted apoptosis of B16-F10 cells, suggesting that PCA could have anticancer effects against melanoma cells. Whole-transcriptome analysis indicated that PCA treatment upregulated genes involved in histone modification and decreased the transcription of genes involved in DNA repair and replication. Kyoto Encyclopedia of Genes and Genomes analysis showed that PCA treatment enhanced the complement and coagulation cascades, and the p53 signaling pathway. The present results indicated that PCA could act as an antitumor agent in melanoma cells, which may provide experimental support for the development of novel therapies to treat melanoma.
Collapse
Affiliation(s)
- Shi Zhong
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P.R. China
| | - Qinshen Jin
- Nanxun District Agricultural Technology Extension Service Center, Huzhou, Zhejiang 313009, P.R. China
| | - Taihen Yu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Jianxun Zhu
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P.R. China
| | - Yougui Li
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P.R. China
| |
Collapse
|
14
|
Guo H, Shen S, Li Y, Bi R, Zhang N, Zheng W, Deng Y, Yang Y, Yu XF, Wang C, Wei W. Adenovirus oncoprotein E4orf6 triggers Cullin5 neddylation to activate the CLR5 E3 ligase for p53 degradation. Biochem Biophys Res Commun 2019; 516:1242-1247. [PMID: 31301771 DOI: 10.1016/j.bbrc.2019.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 11/25/2022]
Abstract
The human adenovirus oncoprotein E4orf6 hijacks intracellular Cullin 5-based E3 ubiquitin ligases (CRL5s) to induce the degradation of host proteins, including p53, that impede efficient viral replication. The complex also relies on another viral protein, E1B55K, to recruit substrates for ubiquitination. However, the determinants of adenoviral E4orf6-CRL5 E3 ligase-mediated p53 degradation in the scaffolding protein Cullin5 remain rarely investigated. Here, we demonstrated that the viral protein E4orf6 triggered relocalization of the Cullin5 protein from the cytoplasm to the nucleus and induced activation of the CRL5 E3 ligase via facilitating neddylation. The expression of the deneddylase SENP8/Den1 was significantly downregulated by E4orf6. We then identified SENP8 as a natural restriction factor for E4orf6-induced p53 degradation. Furthermore, our results indicated that the NEDD8-conjugating E2 enzyme UBE2M was essential for E4orf6-mediated p53 degradation and that its dominant negative mutant UBE2M C111S dramatically blocked E4orf6 functions. The Nedd8-activating enzyme inhibitor MLN4924 decreased E4orf6-induced neddylation of the cullin5 protein and subsequently suppressed p53 degradation. Collectively, our findings illuminate the strategy by which this viral oncoprotein specifically utilizes the neddylation pathway to activate host CRL E3 ligases to degrade host restriction factors. Disrupting this post-translational modification is an attractive pharmacological intervention against human adenoviruses.
Collapse
Affiliation(s)
- Haoran Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Siyu Shen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Yan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Ran Bi
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Nannan Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Wenwen Zheng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Yuyou Deng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Ying Yang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiao-Fang Yu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Chunxi Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Wei Wei
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China.
| |
Collapse
|
15
|
Gruffaz M, Yuan H, Meng W, Liu H, Bae S, Kim JS, Lu C, Huang Y, Gao SJ. CRISPR-Cas9 Screening of Kaposi's Sarcoma-Associated Herpesvirus-Transformed Cells Identifies XPO1 as a Vulnerable Target of Cancer Cells. mBio 2019; 10:e00866-19. [PMID: 31088931 PMCID: PMC6520457 DOI: 10.1128/mbio.00866-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 02/05/2023] Open
Abstract
The abnormal proliferation of cancer cells is driven by deregulated oncogenes or tumor suppressors, among which the cancer-vulnerable genes are attractive therapeutic targets. Targeting mislocalization of oncogenes and tumor suppressors resulting from aberrant nuclear export is effective for inhibiting growth transformation of cancer cells. We performed a clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) screening in a unique model of matched primary and oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-transformed cells and identified genes that were growth promoting and growth suppressive for both types of cells, among which exportin XPO1 was demonstrated to be critical for the survival of transformed cells. Using XPO1 inhibitor KPT-8602 and by small interfering RNA (siRNA) knockdown, we confirmed the essential role of XPO1 in cell proliferation and growth transformation of KSHV-transformed cells and in cell lines of other cancers, including gastric cancer and liver cancer. XPO1 inhibition induced cell cycle arrest through p53 activation, but the mechanisms of p53 activation differed among the different types of cancer cells. p53 activation depended on the formation of promyelocytic leukemia (PML) nuclear bodies in gastric cancer and liver cancer cells. Mechanistically, XPO1 inhibition induced relocalization of autophagy adaptor protein p62 (SQSTM1), recruiting p53 for activation in PML nuclear bodies. Taken the data together, we have identified novel growth-promoting and growth-suppressive genes of primary and cancer cells and have demonstrated that XPO1 is a vulnerable target of cancer cells. XPO1 inhibition induces cell arrest through a novel PML- and p62-dependent mechanism of p53 activation in some types of cancer cells.IMPORTANCE Using a model of oncogenic virus KSHV-driven cellular transformation of primary cells, we have performed a genome-wide CRISPR-Cas9 screening to identify vulnerable genes of cancer cells. This screening is unique in that this virus-induced oncogenesis model does not depend on any cellular genetic alterations and has matched primary and KSHV-transformed cells, which are not available for similar screenings in other types of cancer. We have identified genes that are both growth promoting and growth suppressive in primary and transformed cells, some of which could represent novel proto-oncogenes and tumor suppressors. In particular, we have demonstrated that the exportin XPO1 is a critical factor for the survival of transformed cells. Using a XPO1 inhibitor (KPT-8602) and siRNA-mediated knockdown, we have confirmed the essential role of XPO1 in cell proliferation and in growth transformation of KSHV-transformed cells, as well as of gastric and liver cancer cells. XPO1 inhibition induces cell cycle arrest by activating p53, but the mechanisms of p53 activation differed among different types of cancer cells. p53 activation is dependent on the formation of PML nuclear bodies in gastric and liver cancer cells. Mechanistically, XPO1 inhibition induces relocalization of autophagy adaptor protein p62 (SQSTM1), recruiting p53 for activation in PML nuclear bodies. These results illustrate that XPO1 is a vulnerable target of cancer cells and reveal a novel mechanism for blocking cancer cell proliferation by XPO1 inhibition as well as a novel PML- and p62-mediated mechanism of p53 activation in some types of cancer cells.
Collapse
Affiliation(s)
- Marion Gruffaz
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hongfeng Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wen Meng
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hui Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul, South Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Daejon, South Korea
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Chun Lu
- Nanjing Medical University, Nanjing, China
| | - Yufei Huang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Nanjing Medical University, Nanjing, China
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| |
Collapse
|
16
|
Mutant p53 and Cellular Stress Pathways: A Criminal Alliance That Promotes Cancer Progression. Cancers (Basel) 2019; 11:cancers11050614. [PMID: 31052524 PMCID: PMC6563084 DOI: 10.3390/cancers11050614] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
The capability of cancer cells to manage stress induced by hypoxia, nutrient shortage, acidosis, redox imbalance, loss of calcium homeostasis and exposure to drugs is a key factor to ensure cancer survival and chemoresistance. Among the protective mechanisms utilized by cancer cells to cope with stress a pivotal role is played by the activation of heat shock proteins (HSP) response, anti-oxidant response induced by nuclear factor erythroid 2-related factor 2 (NRF2), the hypoxia-inducible factor-1 (HIF-1), the unfolded protein response (UPR) and autophagy, cellular processes strictly interconnected. However, depending on the type, intensity or duration of cellular stress, the balance between pro-survival and pro-death pathways may change, and cell survival may be shifted into cell death. Mutations of p53 (mutp53), occurring in more than 50% of human cancers, may confer oncogenic gain-of-function (GOF) to the protein, mainly due to its stabilization and interaction with the above reported cellular pathways that help cancer cells to adapt to stress. This review will focus on the interplay of mutp53 with HSPs, NRF2, UPR, and autophagy and discuss how the manipulation of these interconnected processes may tip the balance towards cell death or survival, particularly in response to therapies.
Collapse
|
17
|
Gunaratna RT, Santos A, Luo L, Nagi C, Lambertz I, Spier M, Conti CJ, Fuchs-Young RS. Dynamic role of the codon 72 p53 single-nucleotide polymorphism in mammary tumorigenesis in a humanized mouse model. Oncogene 2019; 38:3535-3550. [PMID: 30651598 PMCID: PMC6756019 DOI: 10.1038/s41388-018-0630-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/14/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Abstract
Female breast cancer (BrCa) is the most common noncutaneous cancer among women in the United States. Human epidemiological studies reveal that a p53 single-nucleotide polymorphism (SNP) at codon 72, encoding proline (P72) or arginine (R72), is associated with differential risk of several cancers, including BrCa. However, the molecular mechanisms by which these variants affect mammary tumorigenesis remain unresolved. To investigate the effects of this polymorphism on susceptibility to mammary cancer, we used a humanized p53 mouse model, homozygous for either P72 or R72. Our studies revealed that R72 mice had a significantly higher mammary tumor incidence and reduced latency in both DMBA-induced and MMTV-Erbb2/Neu mouse mammary tumor models compared to P72 mice. Analyses showed that susceptible mammary glands from E-R72 (R72 x MMTV-Erbb2/Neu) mice developed a senescence-associated secretory phenotype (SASP) with influx of proinflammatory macrophages, ultimately resulting in chronic, protumorigenic inflammation. Mammary tumors arising in E-R72 mice also had an increased influx of tumor-associated macrophages, contributing to angiogenesis and elevated tumor growth rates. These results demonstrate that the p53 R72 variant increased susceptibility to mammary tumorigenesis through chronic inflammation.
Collapse
Affiliation(s)
- Ramesh T Gunaratna
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andres Santos
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Linjie Luo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Chandandeep Nagi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Isabel Lambertz
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Madison Spier
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Claudio J Conti
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain.,Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Robin S Fuchs-Young
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA. .,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
18
|
Zhang QS, Deater M, Phan N, Marcogliese A, Major A, Guinan EC, Grompe M. Combination therapy with atorvastatin and celecoxib delays tumor formation in a Fanconi anemia mouse model. Pediatr Blood Cancer 2019; 66:e27460. [PMID: 30255556 PMCID: PMC6249055 DOI: 10.1002/pbc.27460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/17/2018] [Accepted: 08/14/2018] [Indexed: 11/05/2022]
Abstract
BACKGROUND Fanconi anemia is an inherited bone marrow failure disorder associated with a high incidence of leukemia and solid tumors. Currently, no interventions to prevent or delay the formation of solid tumors are available. PROCEDURE Two of the most important hallmarks of Fanconi anemia are inflammation and oxidative stress. In this study, we administrated the antioxidant atorvastatin and the anti-inflammatory drug celecoxib to cohorts of Fancd2-/- /Trp53+/- mice, a model of Fanconi anemia. Treatment started at weaning and continued until the mice developed a palpable mass or suffered from >20% weight loss. Tumor samples and selected tissues were subjected to histopathological examination. χ2 test was performed to analyze tumor incidence, and Kaplan-Meier survival curves were evaluated with log-rank test. In addition, a small cohort of mice was monitored for the safety of the drugs. RESULTS The combined oral administration of both drugs significantly delayed tumor onset in Fancd2-/- /Trp53+/- mice. Specifically, the treatment delayed the onset of ovarian tumors in Fancd2-/- /Trp53+/- mice and increased the mean ovarian tumor-free survival time by 17%, whereas this combinatorial drug regimen did not have a significant effect on other tumor types. In addition, no detrimental effects on hematopoiesis from the drug treatment were observed during a 12-month safety monitoring. CONCLUSIONS The data presented here suggest that a combination of atorvastatin and celecoxib may be a good candidate for chemoprevention in Fanconi anemia.
Collapse
Affiliation(s)
- Qing-shuo Zhang
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health and Science University, Portland, USA
| | - Matthew Deater
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health and Science University, Portland, USA
| | - Ngoc Phan
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health and Science University, Portland, USA
| | | | - Angela Major
- Department of Pathology, Baylor College of Medicine, Houston, USA
| | - Eva C. Guinan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA,Department of Radiation Oncology, Harvard Medical School, Boston, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health and Science University, Portland, USA
| |
Collapse
|
19
|
Rotblat B, Agostini M, Niklison-Chirou MV, Amelio I, Willis AE, Melino G. Sustained protein synthesis and reduced eEF2K levels in TAp73 -\- mice brain: a possible compensatory mechanism. Cell Cycle 2018; 17:2637-2643. [PMID: 30507330 DOI: 10.1080/15384101.2018.1553341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transcription factor p73 is a member of the p53 family, of which the transactivation domain containing isoform (TAp73) plays key roles in brain development and neuronal stem cells. TAp73 also facilitates homoeostasis and prevents oxidative damage in vivo by inducing the expression of its target genes. Recently, we found that in addition to its role in regulation of transcription, TAp73 also affects mRNA translation. In cultured cells, acute TAp73 depletion activates eEF2K, which phosphorylates eEF2 reducing mRNA translation elongation. As a consequence, there is a reduction in global proteins synthesis rates and reprogramming of the translatome, leading to a selective decrease in the translation of rRNA processing factors. Given the dramatic effects of Tap73 depletion in vitro it was important to determine whether similar effects were observed in vivo. Here, we report the surprising finding that in brains of TAp73 KO mice there is a reduced level of eEF2K, which allows protein synthesis rates to be maintained suggesting a compensation model. These data provide new insights to the role of TAp73 in translation regulation and the eEF2K pathway in the brain.
Collapse
Affiliation(s)
- Barak Rotblat
- a MRC Toxicology Unit , University of Cambridge , Rome , UK.,b Department of Life Sciences , Ben Gurion University in the Negev , Beer Sheva , Israel
| | - Massimiliano Agostini
- a MRC Toxicology Unit , University of Cambridge , Rome , UK.,c Department of Experimental Medicine and Surgery, IDI-IRCCS , University of Rome Tor Vergata , Rome , Italy
| | - Maria Victoria Niklison-Chirou
- a MRC Toxicology Unit , University of Cambridge , Rome , UK.,d Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry , Queen Mary University of London , London , UK
| | - Ivano Amelio
- a MRC Toxicology Unit , University of Cambridge , Rome , UK
| | - Anne E Willis
- a MRC Toxicology Unit , University of Cambridge , Rome , UK
| | - Gerry Melino
- a MRC Toxicology Unit , University of Cambridge , Rome , UK.,c Department of Experimental Medicine and Surgery, IDI-IRCCS , University of Rome Tor Vergata , Rome , Italy
| |
Collapse
|
20
|
Yogosawa S, Yoshida K. Tumor suppressive role for kinases phosphorylating p53 in DNA damage-induced apoptosis. Cancer Sci 2018; 109:3376-3382. [PMID: 30191640 PMCID: PMC6215896 DOI: 10.1111/cas.13792] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/23/2018] [Accepted: 09/02/2018] [Indexed: 12/20/2022] Open
Abstract
Tumor suppressor p53 plays an important role in cancer prevention. Under normal conditions, p53 is maintained at a low level. However, in response to various cellular stresses, p53 is stabilized and activated, which, in turn, initiates DNA repair, cell-cycle arrest, senescence and apoptosis. Post-translational modifications of p53 including phosphorylation, ubiquitination, and acetylation at multiple sites are important to regulate its activation and subsequent transcriptional gene expression. Particularly, phosphorylation of p53 plays a critical role in modulating its activation to induce apoptosis in cancer cells. In this context, previous studies show that several serine/threonine kinases regulate p53 phosphorylation and downstream gene expression. The molecular basis by which p53 and its kinases induce apoptosis for cancer prevention has been extensively studied. However, the relationship between p53 phosphorylation and its kinases and how the activity of kinases is controlled are still largely unclear; hence, they need to be investigated. In this review, we discuss various roles for p53 phosphorylation and its responsible kinases to induce apoptosis and a new therapeutic approach in a broad range of cancers.
Collapse
Affiliation(s)
- Satomi Yogosawa
- Department of Biochemistry, Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
A mouse model of the Δ133p53 isoform: roles in cancer progression and inflammation. Mamm Genome 2018; 29:831-842. [PMID: 29992419 DOI: 10.1007/s00335-018-9758-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/05/2018] [Indexed: 01/19/2023]
Abstract
This review paper outlines studies on the Δ122p53 mouse, a model of the human Δ133p53 isoform, together with studies in other model organisms, cell culture, and where available, clinical investigations. In general, these studies imply that, in contrast to the canonical p53 tumor suppressor, Δ133p53 family members have oncogenic capability. Δ122p53 is multi-functional, conferring survival and proliferative advantages on cells, promoting invasion, metastasis and vascularization, as does Δ133p53. Cancers with high levels of Δ133p53 often have poor prognosis. Δ122p53 mediates its effects through the JAK-STAT and RhoA-ROCK signaling pathways. We propose that Δ133p53 isoforms have evolved as inflammatory signaling molecules to deal with the consequent tissue damage of p53 activation. However, if sustained expression of the isoforms occur, pathologies may result.
Collapse
|
22
|
Tenório JR, Santana T, Queiroz SIML, de Oliveira DHIP, Queiroz LMG. Apoptosis and cell cycle aberrations in epithelial odontogenic lesions: An evidence by the expression of p53, Bcl-2 and Bax. Med Oral Patol Oral Cir Bucal 2018; 23:e120-e125. [PMID: 29476674 PMCID: PMC5911354 DOI: 10.4317/medoral.22019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/23/2017] [Indexed: 01/27/2023] Open
Abstract
Background Ameloblastoma (AMB), odontogenic keratocyst (OKC) and adenomatoid odontogenic tumor (AOT) are epithelial odontogenic lesions with diverse biologic profiles. Defects in regulation of apoptosis and cell cycle may be involved in the development and progression of those lesions, therefore we aimed to investigate the expression of Bcl-2, Bax and p53 to better understand the possible role of these proteins in AMBs, OKCs and AOTs. Material and Methods The studied sample consisted of 20 AMBs, 20 OKCs and 20 AOTs. Immunohistochemistry technique was performed for the antibodies p53, Bcl-2 and Bax. Immunoreactivity was observed in the epithelial component and positive cells were counted in five fields (100x magnification). Statistical analysis was performed with Kruskal-Wallis and Spearman tests (p<0.05). Results All lesions exhibited staining for the three studied proteins. There was no statistically significant associations between the expression of proteins and the lesions, however we identified a positive correlation between the expression of p53 and Bcl-2 (r = 0.200) and a negative correlation between p53 and Bax expressions (r = -0.100). In addition, p53 and Bax were similarly expressed between AMBs and OKCs. Bcl-2 was similarly expressed in AMBs and AOTs. Conclusions Apoptosis regulatory proteins, as well as cell cycle proteins, are differently expressed in epithelial odontogenic lesions and their expression is possibly related to the biological behavior of AMB, OKC and AOT. Key words:Odontogenic tumors, apoptosis, apoptosis regulatory proteins, p53 tumor suppressor protein, immunohistochemistry.
Collapse
Affiliation(s)
- J-R Tenório
- Departamento de Odontologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, 1787, Lagoa Nova, CEP 59056-000 Natal, RN, Brasil,
| | | | | | | | | |
Collapse
|
23
|
Alaee M, Padda A, Mehrabani V, Churchill L, Pasdar M. The physical interaction of p53 and plakoglobin is necessary for their synergistic inhibition of migration and invasion. Oncotarget 2018; 7:26898-915. [PMID: 27058623 PMCID: PMC5042024 DOI: 10.18632/oncotarget.8616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/14/2016] [Indexed: 01/15/2023] Open
Abstract
Plakoglobin (PG) is a paralog of β-catenin with similar adhesive, but contrasting signalling functions. Although β-catenin has well-known oncogenic function, PG generally acts as a tumor/metastasis suppressor by mechanisms that are just beginning to be deciphered. Previously, we showed that PG interacted with wild type (WT) and a number of mutant p53s, and that its tumor/metastasis suppressor activity may be mediated, at least partially, by this interaction. Here, carcinoma cell lines deficient in both p53 and PG (H1299), or expressing mutant p53 in the absence of PG (SCC9), were transfected with expression constructs encoding WT and different fragments and deletions of p53 and PG, individually or in pairs. Transfectants were characterized for their in vitro growth, migratory and invasive properties and for mapping the interacting domain of p53 and PG. We showed that when coexpressed, p53-WT and PG-WT cooperated to decrease growth, and acted synergistically to significantly reduce cell migration and invasion. The DNA-binding domain of p53 and C-terminal domain of PG mediated p53/PG interaction, and furthermore, the C-terminus of PG played a central role in the inhibition of invasion in association with p53.
Collapse
Affiliation(s)
- Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Amarjot Padda
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Vahedah Mehrabani
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Lucas Churchill
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| |
Collapse
|
24
|
Mello SS, Attardi LD. Deciphering p53 signaling in tumor suppression. Curr Opin Cell Biol 2017; 51:65-72. [PMID: 29195118 DOI: 10.1016/j.ceb.2017.11.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022]
Abstract
The p53 transcription factor is mutated in over half of human cancers, and p53-null mice are highly predisposed to cancer, highlighting p53s essential role in tumor suppression. Studies in mouse models have revealed that p53 cell cycle arrest and apoptosis responses to acute DNA damage signals are dispensable for tumor suppression, prompting a search for new mechanisms underlying p53-mediated cancer suppression. p53 responds to other types of stress signals and regulates a host other cellular processes, including maintenance of genomic stability, metabolism, stemness, non-apoptotic cell death, migration/invasion, and cell signaling, any or all of which could be fundamental for suppressing carcinogenesis. The ability of p53 to govern numerous transcriptional programs and cellular functions likely explains its potent tumor suppressor activity.
Collapse
Affiliation(s)
- Stephano S Mello
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Niwa-Kawakita M, Ferhi O, Soilihi H, Le Bras M, Lallemand-Breitenbach V, de Thé H. PML is a ROS sensor activating p53 upon oxidative stress. J Exp Med 2017; 214:3197-3206. [PMID: 28931625 PMCID: PMC5679165 DOI: 10.1084/jem.20160301] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/21/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022] Open
Abstract
Promyelocytic leukemia (PML) nuclear bodies modulate several processes, including senescence or apoptosis. Niwa-Kawakita et al. demonstrate that PML regulates reactive oxygen species (ROS) homeostasis in vivo by coupling ROS to p53 signaling to enforce basal ROS protection and mediate their acute toxicity. Promyelocytic leukemia (PML) nuclear bodies (NBs) recruit partner proteins, including p53 and its regulators, thereby controlling their abundance or function. Investigating arsenic sensitivity of acute promyelocytic leukemia, we proposed that PML oxidation promotes NB biogenesis. However, physiological links between PML and oxidative stress response in vivo remain unexplored. Here, we identify PML as a reactive oxygen species (ROS) sensor. Pml−/− cells accumulate ROS, whereas PML expression decreases ROS levels. Unexpectedly, Pml−/− embryos survive acute glutathione depletion. Moreover, Pml−/− animals are resistant to acetaminophen hepatotoxicity or fasting-induced steatosis. Molecularly, Pml−/− animals fail to properly activate oxidative stress–responsive p53 targets, whereas the NRF2 response is amplified and accelerated. Finally, in an oxidative stress–prone background, Pml−/− animals display a longevity phenotype, likely reflecting decreased basal p53 activation. Thus, similar to p53, PML exerts basal antioxidant properties but also drives oxidative stress–induced changes in cell survival/proliferation or metabolism in vivo. Through NB biogenesis, PML therefore couples ROS sensing to p53 responses, shedding a new light on the role of PML in senescence or stem cell biology.
Collapse
Affiliation(s)
- Michiko Niwa-Kawakita
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris, France.,Institut National de la Santé et de la Recherche Medicale (INSERM) UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7212, Paris, France
| | - Omar Ferhi
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris, France.,Institut National de la Santé et de la Recherche Medicale (INSERM) UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7212, Paris, France.,Collège de France, PSL Research University, Paris, France
| | - Hassane Soilihi
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris, France.,Institut National de la Santé et de la Recherche Medicale (INSERM) UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7212, Paris, France
| | - Morgane Le Bras
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris, France.,Institut National de la Santé et de la Recherche Medicale (INSERM) UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7212, Paris, France
| | - Valérie Lallemand-Breitenbach
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris, France.,Institut National de la Santé et de la Recherche Medicale (INSERM) UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7212, Paris, France.,Collège de France, PSL Research University, Paris, France
| | - Hugues de Thé
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris, France .,Institut National de la Santé et de la Recherche Medicale (INSERM) UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7212, Paris, France.,Service de Biochimie, Assistance Publique Hôpitaux de Paris, Hôpital St. Louis, Paris, France.,Collège de France, PSL Research University, Paris, France
| |
Collapse
|
26
|
Flores IE, Sierra-Fonseca JA, Davalos O, Saenz LA, Castellanos MM, Zavala JK, Gosselink KL. Stress alters the expression of cancer-related genes in the prostate. BMC Cancer 2017; 17:621. [PMID: 28874141 PMCID: PMC5583991 DOI: 10.1186/s12885-017-3635-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/28/2017] [Indexed: 12/05/2022] Open
Abstract
Background Prostate cancer is a major contributor to mortality worldwide, and significant efforts are being undertaken to decipher specific cellular and molecular pathways underlying the disease. Chronic stress is known to suppress reproductive function and promote tumor progression in several cancer models, but our understanding of the mechanisms through which stress contributes to cancer development and progression is incomplete. We therefore examined the relationship between stress, modulation of the gonadotropin-releasing hormone (GnRH) system, and changes in the expression of cancer-related genes in the rat prostate. Methods Adult male rats were acutely or repeatedly exposed to restraint stress, and compared to unstressed controls and groups that were allowed 14 days of recovery from the stress. Prostate tissue was collected and frozen for gene expression analyses by PCR array before the rats were transcardially perfused; and brain tissues harvested and immunohistochemically stained for Fos to determine neuronal activation. Results Acute stress elevated Fos expression in the paraventricular nucleus of the hypothalamus (PVH), an effect that habituated with repeated stress exposure. Data from the PCR arrays showed that repeated stress significantly increases the transcript levels of several genes associated with cellular proliferation, including proto-oncogenes. Data from another array platform showed that both acute and repeated stress can induce significant changes in metastatic gene expression. The functional diversity of genes with altered expression, which includes transcription factors, growth factor receptors, apoptotic genes, and extracellular matrix components, suggests that stress is able to induce aberrant changes in pathways that are deregulated in prostate cancer. Conclusions Our findings further support the notion that stress can affect cancer outcomes, perhaps by interfering with neuroendocrine mechanisms involved in the control of reproduction. Electronic supplementary material The online version of this article (10.1186/s12885-017-3635-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ivan E Flores
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Jorge A Sierra-Fonseca
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Olinamyr Davalos
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Luis A Saenz
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Maria M Castellanos
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Jaidee K Zavala
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Kristin L Gosselink
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| |
Collapse
|
27
|
Cabrita MA, Bose R, Vanzyl EJ, Pastic A, Marcellus KA, Pan E, Hamill JD, McKay BC. The p53 protein induces stable miRNAs that have the potential to modify subsequent p53 responses. Gene 2017; 608:86-94. [DOI: 10.1016/j.gene.2017.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/07/2017] [Accepted: 01/19/2017] [Indexed: 12/19/2022]
|
28
|
Tessier S, Martin-Martin N, de Thé H, Carracedo A, Lallemand-Breitenbach V. Promyelocytic Leukemia Protein, a Protein at the Crossroad of Oxidative Stress and Metabolism. Antioxid Redox Signal 2017; 26:432-444. [PMID: 27758112 DOI: 10.1089/ars.2016.6898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Cellular metabolic activity impacts the production of reactive oxygen species (ROS), both positively through mitochondrial oxidative processes and negatively by promoting the production of reducing agents (including NADPH and reduced glutathione). A defined metabolic state in cancer cells is critical for cell growth and long-term self-renewal, and such state is intrinsically associated with redox balance. Promyelocytic leukemia protein (PML) regulates several biological processes, at least in part, through its ability to control the assembly of PML nuclear bodies (PML NBs). Recent Advances: PML is oxidation-prone, and oxidative stress promotes NB biogenesis. These nuclear subdomains recruit many nuclear proteins and regulate their SUMOylation and other post-translational modifications. Some of these cargos-such as p53, SIRT1, AKT, and mammalian target of rapamycin (mTOR)-are key regulators of cell fate. PML was also recently shown to regulate oxidation. CRITICAL ISSUES While it was long considered primarily as a tumor suppressor protein, PML-regulated metabolic switch uncovered that this protein could promote survival and/or stemness of some normal or cancer cells. In this study, we review the recent findings on this multifunctional protein. FUTURE DIRECTIONS Studying PML scaffolding functions as well as its fine role in the activation of p53 or fatty acid oxidation will bring new insights in how PML could bridge oxidative stress, senescence, cell death, and metabolism. Antioxid. Redox Signal. 26, 432-444.
Collapse
Affiliation(s)
- Sarah Tessier
- 1 Collège de France , Paris, France .,2 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie , Paris, France .,3 CNRS UMR 7212 , Paris France .,4 Université Paris Diderot-Sorbonne Paris Cité , Paris, France
| | | | - Hugues de Thé
- 1 Collège de France , Paris, France .,2 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie , Paris, France .,3 CNRS UMR 7212 , Paris France .,4 Université Paris Diderot-Sorbonne Paris Cité , Paris, France .,6 AP-HP, Service de Biochimie, Hôpital St. Louis , Paris, France
| | - Arkaitz Carracedo
- 5 CIC bioGUNE , Bizkaia Technology Part, Derio, Spain .,7 IKERBASQUE , Basque Foundation for Science, Bilbao, Spain .,8 Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU) , Bilbao, Spain
| | - Valérie Lallemand-Breitenbach
- 1 Collège de France , Paris, France .,2 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie , Paris, France .,3 CNRS UMR 7212 , Paris France .,4 Université Paris Diderot-Sorbonne Paris Cité , Paris, France
| |
Collapse
|
29
|
So V, Jalan D, Lemaire M, Topham MK, Hatch GM, Epand RM. Diacylglycerol kinase epsilon suppresses expression of p53 and glycerol kinase in mouse embryo fibroblasts. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1993-1999. [PMID: 27713003 DOI: 10.1016/j.bbalip.2016.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 01/24/2023]
Abstract
The incorporation of glycerol into lipid was measured using SV40 transformed mouse embryo fibroblasts (MEFs) from either wild-type (WT) mice or from mice in which the epsilon isoform of diacylglycerol kinase (DGKε) was knocked out (DGKε-/-). We present an explanation for our finding that DGKε-/- MEFs exhibited greater uptake of 3H-glycerol into the cell and a greater incorporation into lipids compared with their WT counterparts, with no change in the relative amounts of various lipids between the DGKε-/- and WT MEFs. Glycerol kinase is more highly expressed in the DGKε-/- cells than in their WT counterparts. In addition, the activity of glycerol kinase is greater in the DGKε-/- cells than in their WT counterparts. Other substrates that enter the cell independent of glycerol kinase, such as pyruvate or acetate, are incorporated into lipid to the same extent between DGKε-/- and WT cell lines. We also show that expression of p53, a transcription factor that increases the synthesis of glycerol kinase, is increased in DGKε-/- MEFs in comparison to WT cells. We conclude that the increased incorporation of glycerol into lipids in DGKε-/- cells is a consequence of up-regulation of glycerol kinase and not a result of an increase in the rate of lipid synthesis. Furthermore, increased expression of the pro-survival gene, p53, in cells knocked out for DGKε suggests that cells over-expressing DGKε would have a greater propensity to become tumorigenic.
Collapse
Affiliation(s)
- Vincent So
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Divyanshi Jalan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Mathieu Lemaire
- Nephrology Division & Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Institute of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Matthew K Topham
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, Center for Research and Treatment of Atherosclerosis, DREAM Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
30
|
Zhong Y, Macgregor-Das A, Saunders T, Whittle MC, Makohon-Moore A, Kohutek ZA, Poling J, Herbst BT, Javier BM, Cope L, Leach SD, Hingorani SR, Iacobuzio-Donahue CA. Mutant p53 Together with TGFβ Signaling Influence Organ-Specific Hematogenous Colonization Patterns of Pancreatic Cancer. Clin Cancer Res 2016; 23:1607-1620. [PMID: 27637888 DOI: 10.1158/1078-0432.ccr-15-1615] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 12/24/2022]
Abstract
Purpose: TP53 and the TGFβ pathway are major mediators of pancreatic cancer metastasis. The mechanisms by which they cause hematogenous metastasis have not been fully explored.Experimental Design:KPC (LSL-KRASG12D/+;LSL-Trp53R172H/+; Ptf1aCre/+) mice were generated, and the frequency and morphology of organ-specific hematogenous metastases compared with that seen in KPTC and KTC littermates (Tgfbr2+/-). Key findings were validated in primary cells from each genotype and samples of human pancreatic cancer liver metastases.Results: The frequency of hematogenous metastasis in KPTC mice was significantly lower than for KPC mice (41% vs. 68%, P < 0.05), largely due to a reduction in liver metastases. No differences were found between KPC and KPTC lung metastases, whereas liver metastases in KPTC mice showed a profound extravasation deficiency characterized by sinusoidal growth and lack of desmoplastic stroma. Analogous findings were confirmed in liver samples from patients indicating their clinical relevance. Portal vein colonization as a direct mode of access to the liver was observed in both mice and humans. Secretome analyses of KPC cells revealed an abundance of secreted prometastatic mediators including Col6A1 and Lcn2 that promoted early steps of metastatic colonization. These mediators were overexpressed in primary tumors but not metastases, suggesting that the ability to colonize is, in part, developed within the primary site, a phenomenon we refer to as the "Cinderella effect."Conclusions: These findings establish a novel paradigm for understanding pancreatic cancer metastasis and the observed clinical latencies of liver versus lung metastases specifically. Clin Cancer Res; 23(6); 1607-20. ©2016 AACR.
Collapse
Affiliation(s)
- Yi Zhong
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anne Macgregor-Das
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Graduate Program in Pathobiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Tyler Saunders
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Martin C Whittle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alvin Makohon-Moore
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Graduate Program in Pathobiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Zachary A Kohutek
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin Poling
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Brian T Herbst
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Breanna M Javier
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leslie Cope
- Department of Oncology Biostatistics, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Steven D Leach
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sunil R Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Christine A Iacobuzio-Donahue
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
31
|
Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS One 2016; 11:e0154323. [PMID: 27144941 PMCID: PMC4856367 DOI: 10.1371/journal.pone.0154323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
Aberrant expression of cadherins and catenins plays pivotal roles in ovarian cancer development and progression. Plakoglobin (PG, γ-catenin) is a paralog of β-catenin with dual adhesive and signaling functions. While β-catenin has known oncogenic function, PG generally acts as a tumor/metastasis suppressor. We recently showed that PG interacted with p53 and that its growth/metastasis inhibitory function may be mediated by this interaction. Very little is known about the role of PG in ovarian cancer. Here, we investigated the in vitro tumor/metastasis suppressor effects of PG in ovarian cancer cell lines with mutant p53 expression and different cadherin profiles. We showed that the N-cadherin expressing and E-cadherin and PG deficient ES-2 cells were highly migratory and invasive, whereas OV-90 cells that express E-cadherin, PG and very little/no N-cadherin were not. Exogenous expression of PG or E-cadherin or N-cadherin knockdown in ES-2 cells (ES-2-E-cad, ES-2-PG and ES-2-shN-cad) significantly reduced their migration and invasion. Also, PG expression or N-cadherin knockdown significantly decreased ES-2 cells growth. Furthermore, PG interacted with both cadherins and with wild type and mutant p53 in normal ovarian and ES-2-PG cell lines, respectively.
Collapse
Affiliation(s)
- Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Ghazal Danesh
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
- * E-mail:
| |
Collapse
|
32
|
Stracquadanio G, Wang X, Wallace M, Grawenda AM, Zhang P, Hewitt J, Zeron-Medina J, Castro-Giner F, Tomlinson IP, Goding CR, Cygan KJ, Fairbrother WG, Thomas LF, Sætrom P, Gemignani F, Landi S, Schuster-Boeckler B, Bell DA, Bond GL. The importance of p53 pathway genetics in inherited and somatic cancer genomes. Nat Rev Cancer 2016; 16:251-65. [PMID: 27009395 PMCID: PMC6854702 DOI: 10.1038/nrc.2016.15] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decades of research have shown that mutations in the p53 stress response pathway affect the incidence of diverse cancers more than mutations in other pathways. However, most evidence is limited to somatic mutations and rare inherited mutations. Using newly abundant genomic data, we demonstrate that commonly inherited genetic variants in the p53 pathway also affect the incidence of a broad range of cancers more than variants in other pathways. The cancer-associated single nucleotide polymorphisms (SNPs) of the p53 pathway have strikingly similar genetic characteristics to well-studied p53 pathway cancer-causing somatic mutations. Our results enable insights into p53-mediated tumour suppression in humans and into p53 pathway-based cancer surveillance and treatment strategies.
Collapse
Affiliation(s)
- Giovanni Stracquadanio
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Xuting Wang
- Environmental Genomics Group, Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Marsha Wallace
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Anna M. Grawenda
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Ping Zhang
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Juliet Hewitt
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Jorge Zeron-Medina
- Vall d’Hebron University Hospital, Oncology Department, Passeig de la Vall D’Hebron 119, 08035 Barcelona, Spain
| | - Francesc Castro-Giner
- Molecular and Population Genetics Laboratory, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Ian P. Tomlinson
- Molecular and Population Genetics Laboratory, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Kamil J. Cygan
- Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - William G. Fairbrother
- Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Laurent F. Thomas
- Department of Cancer Research and Molecular Medicine, Norwegian, University of Science and Technology, NO-7491 Trondheim, Norway
| | - Pål Sætrom
- Department of Computer and Information Science, Norwegian, University of Science and Technology, NO-7491 Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, Norwegian, University of Science and Technology, NO-7491 Trondheim, Norway
| | - Frederica Gemignani
- Genetics- Department of Biology, University of Pisa, Via Derna, 1, 56126 Pisa - Italy
| | - Stefano Landi
- Genetics- Department of Biology, University of Pisa, Via Derna, 1, 56126 Pisa - Italy
| | - Benjamin Schuster-Boeckler
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Douglas A. Bell
- Environmental Genomics Group, Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
- Corresponding authors: . The Ludwig Institute for Cancer Research, The Nuffield Department of Clinical Medicine, The University of Oxford, Oxford, The United Kingdom. . Environmental Genomics Group, Genomic Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, MD C3-03, NIEHS, PO Box 12233, Research Triangle Park, NC 27709, The United States of America
| | - Gareth L. Bond
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
- Corresponding authors: . The Ludwig Institute for Cancer Research, The Nuffield Department of Clinical Medicine, The University of Oxford, Oxford, The United Kingdom. . Environmental Genomics Group, Genomic Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, MD C3-03, NIEHS, PO Box 12233, Research Triangle Park, NC 27709, The United States of America
| |
Collapse
|
33
|
Thayer KM, Beyer GA. Energetic Landscape of MDM2-p53 Interactions by Computational Mutagenesis of the MDM2-p53 Interaction. PLoS One 2016; 11:e0147806. [PMID: 26992014 PMCID: PMC4798270 DOI: 10.1371/journal.pone.0147806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin ligase MDM2, a principle regulator of the tumor suppressor p53, plays an integral role in regulating cellular levels of p53 and thus a prominent role in current cancer research. Computational analysis used MUMBO to rotamerize the MDM2-p53 crystal structure 1YCR to obtain an exhaustive search of point mutations, resulting in the calculation of the ΔΔG comprehensive energy landscape for the p53-bound regulator. The results herein have revealed a set of residues R65-E69 on MDM2 proximal to the p53 hydrophobic binding pocket that exhibited an energetic profile deviating significantly from similar residues elsewhere in the protein. In light of the continued search for novel competitive inhibitors for MDM2, we discuss possible implications of our findings on the drug discovery field.
Collapse
Affiliation(s)
- Kelly M. Thayer
- Department of Chemistry, 124 Raymond Avenue, Poughkeepsie, New York 12604, United States of America
- Wesleyan University, Hall Atwater Laboratories, Middletown, Connecticut 06459, United States of America
- * E-mail:
| | - George A. Beyer
- Biochemistry Program, Vassar College, 124 Raymond Avenue, Poughkeepsie, New York 12604, United States of America
| |
Collapse
|
34
|
The association between codon72 polymorphism of p53 gene and the risk of endometrial cancer: an updating meta-analysis. Arch Gynecol Obstet 2016; 294:353-9. [DOI: 10.1007/s00404-015-4005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
|
35
|
Abstract
p53 has been studied intensively as a major tumour suppressor that detects oncogenic events in cancer cells and eliminates them through senescence (a permanent non-proliferative state) or apoptosis. Consistent with this role, p53 activity is compromised in a high proportion of all cancer types, either through mutation of the TP53 gene (encoding p53) or changes in the status of p53 modulators. p53 has additional roles, which may overlap with its tumour-suppressive capacity, in processes including the DNA damage response, metabolism, aging, stem cell differentiation and fertility. Moreover, many mutant p53 proteins, termed 'gain-of-function' (GOF), acquire new activities that help drive cancer aggression. p53 is regulated mainly through protein turnover and operates within a negative-feedback loop with its transcriptional target, MDM2 (murine double minute 2), an E3 ubiquitin ligase which mediates the ubiquitylation and proteasomal degradation of p53. Induction of p53 is achieved largely through uncoupling the p53-MDM2 interaction, leading to elevated p53 levels. Various stress stimuli acting on p53 (such as hyperproliferation and DNA damage) use different, but overlapping, mechanisms to achieve this. Additionally, p53 activity is regulated through critical context-specific or fine-tuning events, mediated primarily through post-translational mechanisms, particularly multi-site phosphorylation and acetylation. In the present review, I broadly examine these events, highlighting their regulatory contributions, their ability to integrate signals from cellular events towards providing most appropriate response to stress conditions and their importance for tumour suppression. These are fascinating aspects of molecular oncology that hold the key to understanding the molecular pathology of cancer and the routes by which it may be tackled therapeutically.
Collapse
|
36
|
Affiliation(s)
- Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Scott W Lowe
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
37
|
Reed SM, Quelle DE. p53 Acetylation: Regulation and Consequences. Cancers (Basel) 2014; 7:30-69. [PMID: 25545885 PMCID: PMC4381250 DOI: 10.3390/cancers7010030] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.
Collapse
Affiliation(s)
- Sara M Reed
- Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Dawn E Quelle
- Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
38
|
Reed SM, Hagen J, Muniz VP, Rosean TR, Borcherding N, Sciegienka S, Goeken JA, Naumann PW, Zhang W, Tompkins VS, Janz S, Meyerholz DK, Quelle DE. NIAM-deficient mice are predisposed to the development of proliferative lesions including B-cell lymphomas. PLoS One 2014; 9:e112126. [PMID: 25393878 PMCID: PMC4231569 DOI: 10.1371/journal.pone.0112126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/12/2014] [Indexed: 01/10/2023] Open
Abstract
Nuclear Interactor of ARF and Mdm2 (NIAM, gene designation Tbrg1) is a largely unstudied inhibitor of cell proliferation that helps maintain chromosomal stability. It is a novel activator of the ARF-Mdm2-Tip60-p53 tumor suppressor pathway as well as other undefined pathways important for genome maintenance. To examine its predicted role as a tumor suppressor, we generated NIAM mutant (NIAMm/m) mice homozygous for a β-galactosidase expressing gene-trap cassette in the endogenous gene. The mutant mice expressed significantly lower levels of NIAM protein in tissues compared to wild-type animals. Fifty percent of aged NIAM deficient mice (14 to 21 months) developed proliferative lesions, including a uterine hemangioma, pulmonary papillary adenoma, and a Harderian gland adenoma. No age-matched wild-type or NIAM+/m heterozygous animals developed lesions. In the spleen, NIAMm/m mice had prominent white pulp expansion which correlated with enhanced increased reactive lymphoid hyperplasia and evidence of systemic inflammation. Notably, 17% of NIAM mutant mice had splenic white pulp features indicating early B-cell lymphoma. This correlated with selective expansion of marginal zone B cells in the spleens of younger, tumor-free NIAM-deficient mice. Unexpectedly, basal p53 expression and activity was largely unaffected by NIAM loss in isolated splenic B cells. In sum, NIAM down-regulation in vivo results in a significant predisposition to developing benign tumors or early stage cancers. These mice represent an outstanding platform for dissecting NIAM's role in tumorigenesis and various anti-cancer pathways, including p53 signaling.
Collapse
Affiliation(s)
- Sara M. Reed
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States of America
| | - Jussara Hagen
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Viviane P. Muniz
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, Iowa, United States of America
| | - Timothy R. Rosean
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Nick Borcherding
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Sebastian Sciegienka
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - J. Adam Goeken
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Paul W. Naumann
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Weizhou Zhang
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Van S. Tompkins
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Siegfried Janz
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - David K. Meyerholz
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Dawn E. Quelle
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States of America
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
39
|
Howell VM. Mice and men working together for over 100 years in the fight against cancer. Semin Cell Dev Biol 2014; 27:52-3. [PMID: 24704434 DOI: 10.1016/j.semcdb.2014.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Viive M Howell
- University of Sydney, Kolling Institute of Medical Research, Bill Walsh Translational Cancer Research Laboratory, Level 8, Kolling Building, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| |
Collapse
|