1
|
Pikor D, Hurła M, Słowikowski B, Szymanowicz O, Poszwa J, Banaszek N, Drelichowska A, Jagodziński PP, Kozubski W, Dorszewska J. Calcium Ions in the Physiology and Pathology of the Central Nervous System. Int J Mol Sci 2024; 25:13133. [PMID: 39684844 DOI: 10.3390/ijms252313133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Calcium ions play a key role in the physiological processes of the central nervous system. The intracellular calcium signal, in nerve cells, is part of the neurotransmission mechanism. They are responsible for stabilizing membrane potential and controlling the excitability of neurons. Calcium ions are a universal second messenger that participates in depolarizing signal transduction and contributes to synaptic activity. These ions take an active part in the mechanisms related to memory and learning. As a result of depolarization of the plasma membrane or stimulation of receptors, there is an extracellular influx of calcium ions into the cytosol or mobilization of these cations inside the cell, which increases the concentration of these ions in neurons. The influx of calcium ions into neurons occurs via plasma membrane receptors and voltage-dependent ion channels. Calcium channels play a key role in the functioning of the nervous system, regulating, among others, neuronal depolarization and neurotransmitter release. Channelopathies are groups of diseases resulting from mutations in genes encoding ion channel subunits, observed including the pathophysiology of neurological diseases such as migraine. A disturbed ability of neurons to maintain an appropriate level of calcium ions is also observed in such neurodegenerative processes as Alzheimer's disease, Parkinson's disease, Huntington's disease, and epilepsy. This review focuses on the involvement of calcium ions in physiological and pathological processes of the central nervous system. We also consider the use of calcium ions as a target for pharmacotherapy in the future.
Collapse
Affiliation(s)
- Damian Pikor
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Mikołaj Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Joanna Poszwa
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Natalia Banaszek
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Alicja Drelichowska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
2
|
Sheeler C, Labrada E, Duvick L, Thompson LM, Zhang Y, Orr HT, Cvetanovic M. Expanded ATXN1 alters transcription and calcium signaling in SCA1 human motor neurons differentiated from induced pluripotent stem cells. Neurobiol Dis 2024; 201:106673. [PMID: 39307401 PMCID: PMC11514977 DOI: 10.1016/j.nbd.2024.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited and lethal neurodegenerative disease caused by the abnormal expansion of CAG repeats in the ATAXIN-1 (ATXN1) gene. Pathological studies identified dysfunction and loss of motor neurons (MNs) in the brain stem and spinal cord, which are thought to contribute to premature lethality by affecting the swallowing and breathing of SCA1 patients. However, the molecular and cellular mechanisms of MN pathogenesis remain unknown. To study SCA1 pathogenesis in human MNs, we differentiated induced pluripotent stem cells (iPSCs) derived from SCA1 patients and their unaffected siblings into MNs. We examined proliferation of progenitor cells, neurite outgrowth, spontaneous and glutamate-induced calcium activity of SCA1 MNs to investigate cellular mechanisms of pathogenesis. RNA sequencing was then used to identify transcriptional alterations in iPSC-derived MN progenitors (pMNs) and MNs which could underlie functional changes in SCA1 MNs. We found significantly decreased spontaneous and evoked calcium activity and identified dysregulation of genes regulating calcium signaling in SCA1 MNs. These results indicate that expanded ATXN1 causes dysfunctional calcium signaling in human MNs.
Collapse
Affiliation(s)
- Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, United States of America
| | - Emmanuel Labrada
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
| | - Lisa Duvick
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
| | - Leslie M Thompson
- Departments of Psychiatry and Human Behavior and Neurobiology and Behavior, University of California, Irvine, United States of America
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
| | - Harry T Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Department of Lab Pathology, University of Minnesota, Minneapolis, MN, United States of America
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
3
|
Ousingsawat J, Talbi K, Gómez-Martín H, Koy A, Fernández-Jaén A, Tekgül H, Serdaroğlu E, Schreiber R, Ortigoza-Escobar JD, Kunzelmann K. Broadening the clinical spectrum: molecular mechanisms and new phenotypes of ANO3-dystonia. Brain 2024; 147:1982-1995. [PMID: 38079528 DOI: 10.1093/brain/awad412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/02/2023] [Accepted: 11/18/2023] [Indexed: 06/04/2024] Open
Abstract
Anoctamin 3 (ANO3) belongs to a family of transmembrane proteins that form phospholipid scramblases and ion channels. A large number of ANO3 variants were identified as the cause of craniocervical dystonia, but the underlying pathogenic mechanisms remain obscure. It was suggested that ANO3 variants may dysregulate intracellular Ca2+ signalling, as variants in other Ca2+ regulating proteins like hippocalcin were also identified as a cause of dystonia. In this study, we conducted a comprehensive evaluation of the clinical, radiological and molecular characteristics of four individuals from four families who carried heterozygous variants in ANO3. The median age at follow-up was 6.6 years (ranging from 3.8 to 8.7 years). Three individuals presented with hypotonia and motor developmental delay. Two patients exhibited generalized progressive dystonia, while one patient presented with paroxysmal dystonia. Additionally, another patient exhibited early dyskinetic encephalopathy. One patient underwent bipallidal deep brain stimulation (DBS) and showed a mild but noteworthy response, while another patient is currently being considered for DBS treatment. Neuroimaging analysis of brain MRI studies did not reveal any specific abnormalities. The molecular spectrum included two novel ANO3 variants (V561L and S116L) and two previously reported ANO3 variants (A599D and S651N). As anoctamins are suggested to affect intracellular Ca2+ signals, we compared Ca2+ signalling and activation of ion channels in cells expressing wild-type ANO3 and cells expressing anoctamin variants. Novel V561L and S116L variants were compared with previously reported A599D and S651N variants and with wild-type ANO3 expressed in fibroblasts isolated from patients or when overexpressed in HEK293 cells. We identified ANO3 as a Ca2+-activated phospholipid scramblase that also conducts ions. Impaired Ca2+ signalling and compromised activation of Ca2+-dependent K+ channels were detected in cells expressing ANO3 variants. In the brain striatal cells of affected patients, impaired activation of KCa3.1 channels due to compromised Ca2+ signals may lead to depolarized membrane voltage and neuronal hyperexcitability and may also lead to reduced cellular viability, as shown in the present study. In conclusion, our study reveals the association between ANO3 variants and paroxysmal dystonia, representing the first reported link between these variants and this specific dystonic phenotype. We demonstrate that ANO3 functions as a Ca2+-activated phospholipid scramblase and ion channel; cells expressing ANO3 variants exhibit impaired Ca2+ signalling and compromised activation of Ca2+-dependent K+ channels. These findings provide a mechanism for the observed clinical manifestations and highlight the importance of ANO3 for neuronal excitability and cellular viability.
Collapse
Affiliation(s)
| | - Khaoula Talbi
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany
| | - Hilario Gómez-Martín
- Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitario de Salamanca, 37007 Castilla y Leon, Spain
| | - Anne Koy
- Centre for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Köln, Germany
- Department of Pediatrics, Faculty of Medicine and University, Hospital Cologne, University of Cologne, 50931 Köln, Germany
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology, Hospital Universitario Quirónsalud, 28223 Pozuelo de Alarcón, Madrid, Spain
- School of Medicine, Universidad Europea De Madrid, 28670 Villaviciosa de Odón, Madrid, Spain
| | - Hasan Tekgül
- Division of Pediatric Neurology, Ege Children's Hospital, Ege University Medical School, 35100 Bornova, Izmir, Turkey
| | - Esra Serdaroğlu
- Department of Pediatric Neurology, Gazi University, Emniyet, 06560 Yenimahalle, Ankara, Turkey
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany
| | - Juan Dario Ortigoza-Escobar
- U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, 08003 Barcelona, Spain
- Movement Disorders Unit, Pediatric Neurology Department, Institut de Recerca Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- European Reference Network for Rare Neurological Diseases (ERN-RND), 08950 Barcelona, Spain
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
4
|
Chakraborty P, Hasan G. ER-Ca 2+ stores and the regulation of store-operated Ca 2+ entry in neurons. J Physiol 2024; 602:1463-1474. [PMID: 36691983 DOI: 10.1113/jp283827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Key components of endoplasmic reticulum (ER) Ca2+ release and store-operated Ca2+ entry (SOCE) are likely expressed in all metazoan cells. Due to the complexity of canonical Ca2+ entry mechanisms in neurons, the functional significance of ER-Ca2+ release and SOCE has been difficult to identify and establish. In this review we present evidence of how these two related mechanisms of Ca2+ signalling impact multiple aspects of neuronal physiology and discuss their interaction with the better understood classes of ion channels that are gated by either voltage changes or extracellular ligands in neurons. Given how a small imbalance in Ca2+ homeostasis can have strongly detrimental effects on neurons, leading to cell death, it is essential that neuronal SOCE is carefully regulated. We go on to discuss some mechanisms of SOCE regulation that have been identified in Drosophila and mammalian neurons. These include specific splice variants of stromal interaction molecules, different classes of membrane-interacting proteins and an ER-Ca2+ channel. So far these appear distinct from the mechanisms of SOCE regulation identified in non-excitable cells. Finally, we touch upon the significance of these studies in the context of certain human neurodegenerative diseases.
Collapse
Affiliation(s)
- Pragnya Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- SASTRA University, Thanjavur, Tamil Nadu, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
5
|
Spisni E, Valerii MC, Massimino ML. Essential Oil Molecules Can Break the Loop of Oxidative Stress in Neurodegenerative Diseases. BIOLOGY 2023; 12:1504. [PMID: 38132330 PMCID: PMC10740714 DOI: 10.3390/biology12121504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Essential oils (EOs) are mixtures of volatile compounds, extracted from aromatic plants, with multiple activities including antioxidant and anti-inflammatory ones. EOs are complex mixtures easy to find on the market and with low costs. In this mini narrative review, we have collected the results of in vitro and in vivo studies, which tested these EOs on validated models of neurodegeneration and in particular of the two main neurodegenerative diseases (NDs) that afflict humans: Alzheimer's and Parkinson's. Since EO compositions can vary greatly, depending on the environmental conditions, plant cultivar, and extraction methods, we focused our attention to studies involving single EO molecules, and in particular those that have demonstrated the ability to cross the blood-brain barrier. These single EO molecules, alone or in defined mixtures, could be interesting new therapies to prevent or slow down oxidative and inflammatory processes which are common mechanisms that contribute to neuronal death in all NDs.
Collapse
Affiliation(s)
- Enzo Spisni
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- CIRI Life Sciences and Health Technologies, University of Bologna, 40126 Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- CIRI Life Sciences and Health Technologies, University of Bologna, 40126 Bologna, Italy
| | - Maria Lina Massimino
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padova, Italy
| |
Collapse
|
6
|
Johnson GA, Krishnamoorthy RR, Stankowska DL. Modulating mitochondrial calcium channels (TRPM2/MCU/NCX) as a therapeutic strategy for neurodegenerative disorders. Front Neurosci 2023; 17:1202167. [PMID: 37928737 PMCID: PMC10622973 DOI: 10.3389/fnins.2023.1202167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Efficient cellular communication is essential for the brain to regulate diverse functions like muscle contractions, memory formation and recall, decision-making, and task execution. This communication is facilitated by rapid signaling through electrical and chemical messengers, including voltage-gated ion channels and neurotransmitters. These messengers elicit broad responses by propagating action potentials and mediating synaptic transmission. Calcium influx and efflux are essential for releasing neurotransmitters and regulating synaptic transmission. Mitochondria, which are involved in oxidative phosphorylation, and the energy generation process, also interact with the endoplasmic reticulum to store and regulate cytoplasmic calcium levels. The number, morphology, and distribution of mitochondria in different cell types vary based on energy demands. Mitochondrial damage can cause excess reactive oxygen species (ROS) generation. Mitophagy is a selective process that targets and degrades damaged mitochondria via autophagosome-lysosome fusion. Defects in mitophagy can lead to a buildup of ROS and cell death. Numerous studies have attempted to characterize the relationship between mitochondrial dysfunction and calcium dysregulation in neurodegenerative diseases such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic lateral sclerosis, spinocerebellar ataxia, and aging. Interventional strategies to reduce mitochondrial damage and accumulation could serve as a therapeutic target, but further research is needed to unravel this potential. This review offers an overview of calcium signaling related to mitochondria in various neuronal cells. It critically examines recent findings, exploring the potential roles that mitochondrial dysfunction might play in multiple neurodegenerative diseases and aging. Furthermore, the review identifies existing gaps in knowledge to guide the direction of future research.
Collapse
Affiliation(s)
- Gretchen A. Johnson
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Raghu R. Krishnamoorthy
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
- Department of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Dorota L. Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
7
|
Egorova PA, Marinina KS, Bezprozvanny IB. Chronic suppression of STIM1-mediated calcium signaling in Purkinje cells rescues the cerebellar pathology in spinocerebellar ataxia type 2. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119466. [PMID: 36940741 DOI: 10.1016/j.bbamcr.2023.119466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Distorted neuronal calcium signaling has been reported in many neurodegenerative disorders, including different types of spinocerebellar ataxias (SCAs). Cerebellar Purkinje cells (PCs) are primarily affected in SCAs and the disturbances in the calcium homeostasis were observed in SCA PCs. Our previous results have revealed that 3,5-dihydroxyphenylglycine (DHPG) induced greater calcium responses in SCA2-58Q PC cultures than in wild type (WT) PC cultures. Here we observed that glutamate-induced calcium release in PCs cells bodies is significantly higher in SCA2-58Q PCs from acute cerebellar slices compared to WT PCs of the same age. Recent studies have demonstrated that the stromal interaction molecule 1 (STIM1) plays an important role in the regulation of the neuronal calcium signaling in cerebellar PCs in mice. The main function of STIM1 is to regulate store-operated calcium entry through the TRPC/Orai channels formation to refill the calcium stores in the ER when it is empty. Here we demonstrated that the chronic viral-mediated expression of the small interfering RNA (siRNA) targeting STIM1 specifically in cerebellar PCs alleviates the deranged calcium signaling in SCA2-58Q PCs, rescues the spine loss in these cerebellar neurons, and also improves the motor decline in SCA2-58Q mice. Thus, our preliminary results support the important role of the altered neuronal calcium signaling in SCA2 pathology and also suggest the STIM1-mediated signaling pathway as a potential therapeutic target for treatment of SCA2 patients.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ksenia S Marinina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Cvetanovic M, Gray M. Contribution of Glial Cells to Polyglutamine Diseases: Observations from Patients and Mouse Models. Neurotherapeutics 2023; 20:48-66. [PMID: 37020152 PMCID: PMC10119372 DOI: 10.1007/s13311-023-01357-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 04/07/2023] Open
Abstract
Neurodegenerative diseases are broadly characterized neuropathologically by the degeneration of vulnerable neuronal cell types in a specific brain region. The degeneration of specific cell types has informed on the various phenotypes/clinical presentations in someone suffering from these diseases. Prominent neurodegeneration of specific neurons is seen in polyglutamine expansion diseases including Huntington's disease (HD) and spinocerebellar ataxias (SCA). The clinical manifestations observed in these diseases could be as varied as the abnormalities in motor function observed in those who have Huntington's disease (HD) as demonstrated by a chorea with substantial degeneration of striatal medium spiny neurons (MSNs) or those with various forms of spinocerebellar ataxia (SCA) with an ataxic motor presentation primarily due to degeneration of cerebellar Purkinje cells. Due to the very significant nature of the degeneration of MSNs in HD and Purkinje cells in SCAs, much of the research has centered around understanding the cell autonomous mechanisms dysregulated in these neuronal cell types. However, an increasing number of studies have revealed that dysfunction in non-neuronal glial cell types contributes to the pathogenesis of these diseases. Here we explore these non-neuronal glial cell types with a focus on how each may contribute to the pathogenesis of HD and SCA and the tools used to evaluate glial cells in the context of these diseases. Understanding the regulation of supportive and harmful phenotypes of glia in disease could lead to development of novel glia-focused neurotherapeutics.
Collapse
Affiliation(s)
- Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, USA
| | - Michelle Gray
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Panvini AR, Gvritishvili A, Galvan H, Nashine S, Atilano SR, Kenney MC, Tombran-Tink J. Differential mitochondrial and cellular responses between H vs. J mtDNA haplogroup-containing human RPE transmitochondrial cybrid cells. Exp Eye Res 2022; 219:109013. [PMID: 35283109 PMCID: PMC9949352 DOI: 10.1016/j.exer.2022.109013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/08/2022] [Accepted: 02/23/2022] [Indexed: 02/02/2023]
Abstract
Mitochondrial dysfunction is associated with several retinal degenerative diseases including Age-related Macular Degeneration (AMD). Human mitochondrial DNA (mtDNA) haplogroups are inherited from a common ancestral clan and are defined by specific sets of genetic differences. The purpose of this study was to determine and compare the effects of mtDNA haplogroups H and J on transcriptome regulation and cellular resilience to oxidative stress in human RPE cytoplasmic hybrid (cybrid) cell lines in vitro. ARPE-19 cybrid cell lines containing mtDNA haplogroups H and J were created by fusing platelets obtained from normal individuals containing H and J haplogroups with mitochondria-deficient (Rho0) ARPE-19 cell lines. These cybrids were exposed to oxidative stress using 300 μM hydrogen peroxide (H2O2), following which mitochondrial structural dynamics was studied at varying time points using the mitochondrial markers - TOMM20 (Translocase of Outer Mitochondrial Membrane 20) and Mitotracker. To evaluate mitochondrial function, levels of ROS, ΔΨm and [Ca2+]m were measured using flow cytometry, and ATP levels were measured using luminescence. The H and J cybrid cell transcriptomes were compared using RNAseq to determine how changes in mtDNA regulate gene expression. Inflammatory and angiogenic markers were measured using Luminex assay to understand how these mtDNAs influenced cellular response to oxidative stress. Actin filaments' morphology was examined using confocal microscopy. Following exposure to H2O2 stress, the J cybrids showed increased mitochondrial swelling and perinuclear localization, disturbed fission and fusion, increased calcium uptake (p < 0.05), and higher secreted levels of TNF-α and VEGF (p < 0.001), compared to the H cybrids. Calcium uptake by J cybrids was reduced using an IP3R inhibitor. Thirteen genes involved in mitochondrial complex I and V function, fusion/fission events, cellular energy homeostasis, antioxidant defenses, and inflammatory responses, were significantly downregulated with log2 fold changes ranging between -1.5 and -5.1. Actin levels were also significantly reduced in stressed J cybrids (p ≤ 0.001) and disruption in actin filaments was observed. Thirty-eight genes involved in mitochondrial and cellular support functions, were upregulated with log2 fold changes of +1.5 to +5.9 in J cybrids compared to H cybrids. Our results demonstrate significant structural and functional differences between mtDNA haplogroups H vs. J -containing cybrid cells. Our study suggests that the J mtDNA haplogroup can alter the transcriptome to increase cellular susceptibility to stress and retinal degenerations.
Collapse
Affiliation(s)
- Ana Rubin Panvini
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Anzor Gvritishvili
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Hannah Galvan
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA
| | - Shari R. Atilano
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA
| | - M. Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA
| | - Joyce Tombran-Tink
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA; Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
10
|
Grekhnev DA, Kaznacheyeva EV, Vigont VA. Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. Int J Mol Sci 2022; 23:624. [PMID: 35054808 PMCID: PMC8776084 DOI: 10.3390/ijms23020624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The development of cell reprogramming technologies became a breakthrough in the creation of new models of human diseases, including neurodegenerative pathologies. The iPSCs-based models allow for the studying of both hereditary and sporadic cases of pathologies and produce deep insight into the molecular mechanisms underlying neurodegeneration. The use of the cells most vulnerable to a particular pathology makes it possible to identify specific pathological mechanisms and greatly facilitates the task of selecting the most effective drugs. To date, a large number of studies on patient-specific models of neurodegenerative diseases has been accumulated. In this review, we focused on the alterations of such a ubiquitous and important intracellular regulatory pathway as calcium signaling. Here, we reviewed and analyzed the data obtained from iPSCs-based models of different neurodegenerative disorders that demonstrated aberrant calcium signaling.
Collapse
Affiliation(s)
| | | | - Vladimir A. Vigont
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (D.A.G.); (E.V.K.)
| |
Collapse
|
11
|
Tiscione SA, Casas M, Horvath JD, Lam V, Hino K, Ory DS, Santana LF, Simó S, Dixon RE, Dickson EJ. IP 3R-driven increases in mitochondrial Ca 2+ promote neuronal death in NPC disease. Proc Natl Acad Sci U S A 2021; 118:e2110629118. [PMID: 34580197 PMCID: PMC8501836 DOI: 10.1073/pnas.2110629118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2021] [Indexed: 01/05/2023] Open
Abstract
Ca2+ is the most ubiquitous second messenger in neurons whose spatial and temporal elevations are tightly controlled to initiate and orchestrate diverse intracellular signaling cascades. Numerous neuropathologies result from mutations or alterations in Ca2+ handling proteins; thus, elucidating molecular pathways that shape Ca2+ signaling is imperative. Here, we report that loss-of-function, knockout, or neurodegenerative disease-causing mutations in the lysosomal cholesterol transporter, Niemann-Pick Type C1 (NPC1), initiate a damaging signaling cascade that alters the expression and nanoscale distribution of IP3R type 1 (IP3R1) in endoplasmic reticulum membranes. These alterations detrimentally increase Gq-protein coupled receptor-stimulated Ca2+ release and spontaneous IP3R1 Ca2+ activity, leading to mitochondrial Ca2+ cytotoxicity. Mechanistically, we find that SREBP-dependent increases in Presenilin 1 (PS1) underlie functional and expressional changes in IP3R1. Accordingly, expression of PS1 mutants recapitulate, while PS1 knockout abrogates Ca2+ phenotypes. These data present a signaling axis that links the NPC1 lysosomal cholesterol transporter to the damaging redistribution and activity of IP3R1 that precipitates cell death in NPC1 disease and suggests that NPC1 is a nanostructural disease.
Collapse
Affiliation(s)
- Scott A Tiscione
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616
| | - Maria Casas
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616
| | - Jonathan D Horvath
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616
| | - Vincent Lam
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616
| | - Daniel S Ory
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616;
| |
Collapse
|
12
|
Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO, Whitworth AJ, Aschner M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: Limitations, and current and future perspectives. J Trace Elem Med Biol 2021; 67:126779. [PMID: 34034029 DOI: 10.1016/j.jtemb.2021.126779] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent cause of cognitive impairment and dementia worldwide. The pathobiology of the disease has been studied in the form of several hypotheses, ranging from oxidative stress, amyloid-beta (Aβ) aggregation, accumulation of tau forming neurofibrillary tangles (NFT) through metal dysregulation and homeostasis, dysfunction of the cholinergic system, and to inflammatory and autophagic mechanism. However, none of these hypotheses has led to confirmed diagnostics or approved cure for the disease. OBJECTIVE This review is aimed as a basic and an encyclopedic short course into metals in AD and discusses the advances in chelation strategies and developments adopted in the treatment of the disease. Since there is accumulating evidence of the role of both biometal dyshomeostasis (iron (Fe), copper (Cu), and zinc (Zn)) and metal-amyloid interactions that lead to the pathogenesis of AD, this review focuses on unraveling therapeutic chelation strategies that have been considered in the treatment of the disease, aiming to sequester free and protein-bound metal ions and reducing cerebral metal burden. Promising compounds possessing chemically modified moieties evolving as multi-target ligands used as anti-AD drug candidates are also covered. RESULTS AND CONCLUSION Several multidirectional and multifaceted studies on metal chelation therapeutics show the need for improved synthesis, screening, and analysis of compounds to be able to effectively present chelating anti-AD drugs. Most drug candidates studied have limitations in their physicochemical properties; some enhance redistribution of metal ions, while others indirectly activate signaling pathways in AD. The metal chelation process in vivo still needs to be established and the design of potential anti-AD compounds that bi-functionally sequester metal ions as well as inhibit the Aβ aggregation by competing with the metal ions and reducing metal-induced oxidative damage and neurotoxicity may signal a bright end in chelation-based therapeutics of AD.
Collapse
Affiliation(s)
- Kehinde D Fasae
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria.
| | - Tolulope R Faloye
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Atinuke Y Odunsi
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Bolaji O Oyetayo
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Joseph I Enya
- Department of Anatomy, University of Ilorin, Kwara State, Nigeria
| | - Joshua A Rotimi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
13
|
Borbolla-Jiménez FV, Del Prado-Audelo ML, Cisneros B, Caballero-Florán IH, Leyva-Gómez G, Magaña JJ. New Perspectives of Gene Therapy on Polyglutamine Spinocerebellar Ataxias: From Molecular Targets to Novel Nanovectors. Pharmaceutics 2021; 13:1018. [PMID: 34371710 PMCID: PMC8309146 DOI: 10.3390/pharmaceutics13071018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Seven of the most frequent spinocerebellar ataxias (SCAs) are caused by a pathological expansion of a cytosine, adenine and guanine (CAG) trinucleotide repeat located in exonic regions of unrelated genes, which in turn leads to the synthesis of polyglutamine (polyQ) proteins. PolyQ proteins are prone to aggregate and form intracellular inclusions, which alter diverse cellular pathways, including transcriptional regulation, protein clearance, calcium homeostasis and apoptosis, ultimately leading to neurodegeneration. At present, treatment for SCAs is limited to symptomatic intervention, and there is no therapeutic approach to prevent or reverse disease progression. This review provides a compilation of the experimental advances obtained in cell-based and animal models toward the development of gene therapy strategies against polyQ SCAs, providing a discussion of their potential application in clinical trials. In the second part, we describe the promising potential of nanotechnology developments to treat polyQ SCA diseases. We describe, in detail, how the design of nanoparticle (NP) systems with different physicochemical and functionalization characteristics has been approached, in order to determine their ability to evade the immune system response and to enhance brain delivery of molecular tools. In the final part of this review, the imminent application of NP-based strategies in clinical trials for the treatment of polyQ SCA diseases is discussed.
Collapse
Affiliation(s)
- Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
- Programa de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Luisa Del Prado-Audelo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México 14380, Mexico;
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Departamento de Farmacia, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México 14380, Mexico;
| |
Collapse
|
14
|
Vigont VA, Grekhnev DA, Lebedeva OS, Gusev KO, Volovikov EA, Skopin AY, Bogomazova AN, Shuvalova LD, Zubkova OA, Khomyakova EA, Glushankova LN, Klyushnikov SA, Illarioshkin SN, Lagarkova MA, Kaznacheyeva EV. STIM2 Mediates Excessive Store-Operated Calcium Entry in Patient-Specific iPSC-Derived Neurons Modeling a Juvenile Form of Huntington's Disease. Front Cell Dev Biol 2021; 9:625231. [PMID: 33604336 PMCID: PMC7884642 DOI: 10.3389/fcell.2021.625231] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is a severe autosomal-dominant neurodegenerative disorder caused by a mutation within a gene, encoding huntingtin protein. Here we have used the induced pluripotent stem cell technology to produce patient-specific terminally differentiated GABA-ergic medium spiny neurons modeling a juvenile form of HD (HD76). We have shown that calcium signaling is dramatically disturbed in HD76 neurons, specifically demonstrating higher levels of store-operated and voltage-gated calcium uptakes. However, comparing the HD76 neurons with the previously described low-repeat HD models, we have demonstrated that the severity of calcium signaling alterations does not depend on the length of the polyglutamine tract of the mutant huntingtin. Here we have also observed greater expression of huntingtin and an activator of store-operated calcium channels STIM2 in HD76 neurons. Since shRNA-mediated suppression of STIM2 decreased store-operated calcium uptake, we have speculated that high expression of STIM2 underlies the excessive entry through store-operated calcium channels in HD pathology. Moreover, a previously described potential anti-HD drug EVP4593 has been found to attenuate high levels of both huntingtin and STIM2 that may contribute to its neuroprotective effect. Our results are fully supportive in favor of the crucial role of calcium signaling deregulation in the HD pathogenesis and indicate that the cornerstone of excessive calcium uptake in HD-specific neurons is a calcium sensor and store-operated calcium channels activator STIM2, which should become a molecular target for medical treatment and novel neuroprotective drug development.
Collapse
Affiliation(s)
- Vladimir A. Vigont
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Dmitriy A. Grekhnev
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga S. Lebedeva
- Laboratory of Cell Biology, Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Konstantin O. Gusev
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Egor A. Volovikov
- Laboratory of Cell Biology, Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Anton Yu. Skopin
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexandra N. Bogomazova
- Laboratory of Cell Biology, Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Lilia D. Shuvalova
- Laboratory of Cell Biology, Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Olga A. Zubkova
- Laboratory of Cell Biology, Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Ekaterina A. Khomyakova
- Laboratory of Cell Biology, Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Lyubov N. Glushankova
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | - Maria A. Lagarkova
- Laboratory of Cell Biology, Department of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Elena V. Kaznacheyeva
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
15
|
Phang MWL, Lew SY, Chung I, Lim WKS, Lim LW, Wong KH. Therapeutic roles of natural remedies in combating hereditary ataxia: A systematic review. Chin Med 2021; 16:15. [PMID: 33509239 PMCID: PMC7841890 DOI: 10.1186/s13020-020-00414-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/17/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
Background Hereditary ataxia (HA) represents a group of genetically heterogeneous neurodegenerative diseases caused by dysfunction of the cerebellum or disruption of the connection between the cerebellum and other areas of the central nervous system. Phenotypic manifestation of HA includes unsteadiness of stance and gait, dysarthria, nystagmus, dysmetria and complaints of clumsiness. There are no specific treatments for HA. Management strategies provide supportive treatment to reduce symptoms. Objectives This systematic review aimed to identify, evaluate and summarise the published literature on the therapeutic roles of natural remedies in the treatment of HA to provide evidence for clinical practice. Methods A systematic literature search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Web of Science, PubMed and Science Direct Scopus were thoroughly searched for relevant published articles from June 2007 to July 2020. Results Ten pre-clinical and two clinical studies were eligible for inclusion in this systematic review. We identified the therapeutic roles of medicinal plants Brassica napus, Gardenia jasminoides, Gastrodia elata, Ginkgo biloba, Glycyrrhiza inflata, Paeonia lactiflora, Pueraria lobata and Rehmannia glutinosa; herbal formulations Shaoyao Gancao Tang and Zhengan Xifeng Tang; and medicinal mushroom Hericium erinaceus in the treatment of HA. In this review, we evaluated the mode of actions contributing to their therapeutic effects, including activation of the ubiquitin–proteasome system, activation of antioxidant pathways, maintenance of intracellular calcium homeostasis and regulation of chaperones. We also briefly highlighted the integral cellular signalling pathways responsible for orchestrating the mode of actions. Conclusion We reviewed the therapeutic roles of natural remedies in improving or halting the progression of HA, which warrant further study for applications into clinical practice.
Collapse
Affiliation(s)
- Michael Weng Lok Phang
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Sze Yuen Lew
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - William Kiong-Seng Lim
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kuching, Sarawak, 94300, Malaysia
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Kah Hui Wong
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
16
|
Trombetta-Lima M, Krabbendam IE, Dolga AM. Calcium-activated potassium channels: implications for aging and age-related neurodegeneration. Int J Biochem Cell Biol 2020; 123:105748. [PMID: 32353429 DOI: 10.1016/j.biocel.2020.105748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Population aging, as well as the handling of age-associated diseases, is a worldwide increasing concern. Among them, Alzheimer's disease stands out as the major cause of dementia culminating in full dependence on other people for basic functions. However, despite numerous efforts, in the last decades, there was no new approved therapeutic drug for the treatment of the disease. Calcium-activated potassium channels have emerged as a potential tool for neuronal protection by modulating intracellular calcium signaling. Their subcellular localization is determinant of their functional effects. When located on the plasma membrane of neuronal cells, they can modulate synaptic function, while their activation at the inner mitochondrial membrane has a neuroprotective potential via the attenuation of mitochondrial reactive oxygen species in conditions of oxidative stress. Here we review the dual role of these channels in the aging phenotype and Alzheimer's disease pathology and discuss their potential use as a therapeutic tool.
Collapse
Affiliation(s)
- Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands; Medical School, Neurology Department, University of São Paulo (USP), 01246903 São Paulo, Brazil
| | - Inge E Krabbendam
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
17
|
Britzolaki A, Saurine J, Klocke B, Pitychoutis PM. A Role for SERCA Pumps in the Neurobiology of Neuropsychiatric and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:131-161. [PMID: 31646509 DOI: 10.1007/978-3-030-12457-1_6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium (Ca2+) is a fundamental regulator of cell fate and intracellular Ca2+ homeostasis is crucial for proper function of the nerve cells. Given the complexity of neurons, a constellation of mechanisms finely tunes the intracellular Ca2+ signaling. We are focusing on the sarco/endoplasmic reticulum (SR/ER) calcium (Ca2+)-ATPase (SERCA) pump, an integral ER protein. SERCA's well established role is to preserve low cytosolic Ca2+ levels ([Ca2+]cyt), by pumping free Ca2+ ions into the ER lumen, utilizing ATP hydrolysis. The SERCA pumps are encoded by three distinct genes, SERCA1-3, resulting in 12 known protein isoforms, with tissue-dependent expression patterns. Despite the well-established structure and function of the SERCA pumps, their role in the central nervous system is not clear yet. Interestingly, SERCA-mediated Ca2+ dyshomeostasis has been associated with neuropathological conditions, such as bipolar disorder, schizophrenia, Parkinson's disease and Alzheimer's disease. We summarize here current evidence suggesting a role for SERCA in the neurobiology of neuropsychiatric and neurodegenerative disorders, thus highlighting the importance of this pump in brain physiology and pathophysiology.
Collapse
Affiliation(s)
- Aikaterini Britzolaki
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Joseph Saurine
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Benjamin Klocke
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA.
| |
Collapse
|
18
|
Nicotinamide Pathway-Dependent Sirt1 Activation Restores Calcium Homeostasis to Achieve Neuroprotection in Spinocerebellar Ataxia Type 7. Neuron 2019; 105:630-644.e9. [PMID: 31859031 DOI: 10.1016/j.neuron.2019.11.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/18/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
Sirtuin 1 (Sirt1) is a NAD+-dependent deacetylase capable of countering age-related neurodegeneration, but the basis of Sirt1 neuroprotection remains elusive. Spinocerebellar ataxia type 7 (SCA7) is an inherited CAG-polyglutamine repeat disorder. Transcriptome analysis of SCA7 mice revealed downregulation of calcium flux genes accompanied by abnormal calcium-dependent cerebellar membrane excitability. Transcription-factor binding-site analysis of downregulated genes yielded Sirt1 target sites, and we observed reduced Sirt1 activity in the SCA7 mouse cerebellum with NAD+ depletion. SCA7 patients displayed increased poly(ADP-ribose) in cerebellar neurons, supporting poly(ADP-ribose) polymerase-1 upregulation. We crossed Sirt1-overexpressing mice with SCA7 mice and noted rescue of neurodegeneration and calcium flux defects. NAD+ repletion via nicotinamide riboside ameliorated disease phenotypes in SCA7 mice and patient stem cell-derived neurons. Sirt1 thus achieves neuroprotection by promoting calcium regulation, and NAD+ dysregulation underlies Sirt1 dysfunction in SCA7, indicating that cerebellar ataxias exhibit altered calcium homeostasis because of metabolic dysregulation, suggesting shared therapy targets.
Collapse
|
19
|
Kuo SH, Louis ED, Faust PL, Handforth A, Chang SY, Avlar B, Lang EJ, Pan MK, Miterko LN, Brown AM, Sillitoe RV, Anderson CJ, Pulst SM, Gallagher MJ, Lyman KA, Chetkovich DM, Clark LN, Tio M, Tan EK, Elble RJ. Current Opinions and Consensus for Studying Tremor in Animal Models. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1036-1063. [PMID: 31124049 PMCID: PMC6872927 DOI: 10.1007/s12311-019-01037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 800 Howard Avenue, Ste Lower Level, New Haven, CT, 06519, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Billur Avlar
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Ming-Kai Pan
- Department of Medical Research and Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Kyle A Lyman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
20
|
Moreira GG, Cristóvão JS, Torres VM, Carapeto AP, Rodrigues MS, Landrieu I, Cordeiro C, Gomes CM. Zinc Binding to Tau Influences Aggregation Kinetics and Oligomer Distribution. Int J Mol Sci 2019; 20:ijms20235979. [PMID: 31783644 PMCID: PMC6928861 DOI: 10.3390/ijms20235979] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Metal ions are well known modulators of protein aggregation and are key players in Alzheimer’s Disease, being found to be associated to pathologic protein deposits in diseased brains. Therefore, understanding how metals influence amyloid aggregation is critical in establishing molecular mechanisms that underlie disease onset and progression. Here, we report data on the interaction of full-length human Tau protein with calcium and zinc ions, evidencing that Tau self-assembly is differently regulated, depending on the type of bound metal ion. We established that Tau binds 4 Zn2+ and 1 Ca2+ per monomer while using native mass spectrometry analysis, without inducing order or substantial conformational changes in the intrinsically disordered Tau, as determined by structural analysis using circular dichroism and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopies. However, Tau aggregation is found to proceed differently in the calcium- and -zinc bound forms. While the rate of aggregation, as determined from thioflavin-T (ThT) fluorescence kinetics, is highly increased in both cases, the reaction proceeds via different mechanisms, as evidenced by the absence of the lag phase in the reaction of zinc-bound Tau. Monitoring Tau aggregation using native mass spectrometry indeed evidenced a distinct distribution of Tau conformers along the reaction, as confirmed by dynamic light scattering analysis. We propose that such differences arise from zinc binding at distinct locations within the Tau sequence that prompt both the rapid formation of seeding oligomers through interactions at high affinity sites within the repeat domains, as well as amorphous aggregation, through low affinity interactions with residues elsewhere in the sequence, including at the fuzzy coat domain.
Collapse
Affiliation(s)
- Guilherme G. Moreira
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal; (G.G.M.); (J.S.C.); (A.P.C.); (M.S.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal; (V.M.T.); (C.C.)
| | - Joana S. Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal; (G.G.M.); (J.S.C.); (A.P.C.); (M.S.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal; (V.M.T.); (C.C.)
| | - Vukosava M. Torres
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal; (V.M.T.); (C.C.)
- FTICR e Structural MS laboratory, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal
| | - Ana P. Carapeto
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal; (G.G.M.); (J.S.C.); (A.P.C.); (M.S.R.)
- Departamento de Física, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal
| | - Mário S. Rodrigues
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal; (G.G.M.); (J.S.C.); (A.P.C.); (M.S.R.)
- Departamento de Física, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal
| | - Isabelle Landrieu
- Unité de Glycobiologie Structurale et Fonctionnelle, Université Lille, Centre National de la Recherche Scientifique, UMR 8576, F-59000 Lille, France;
| | - Carlos Cordeiro
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal; (V.M.T.); (C.C.)
- FTICR e Structural MS laboratory, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal
| | - Cláudio M. Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal; (G.G.M.); (J.S.C.); (A.P.C.); (M.S.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade Lisboa, 1749-016 Lisbon, Portugal; (V.M.T.); (C.C.)
- Correspondence: ; Tel.: +351-217500971
| |
Collapse
|
21
|
Egorova PA, Bezprozvanny IB. Molecular Mechanisms and Therapeutics for Spinocerebellar Ataxia Type 2. Neurotherapeutics 2019; 16:1050-1073. [PMID: 31435879 PMCID: PMC6985344 DOI: 10.1007/s13311-019-00777-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The effective therapeutic treatment and the disease-modifying therapy for spinocerebellar ataxia type 2 (SCA2) (a progressive hereditary disease caused by an expansion of polyglutamine in the ataxin-2 protein) is not available yet. At present, only symptomatic treatment and methods of palliative care are prescribed to the patients. Many attempts were made to study the physiological, molecular, and biochemical changes in SCA2 patients and in a variety of the model systems to find new therapeutic targets for SCA2 treatment. A better understanding of the uncovered molecular mechanisms of the disease allowed the scientific community to develop strategies of potential therapy and helped to create some promising therapeutic approaches for SCA2 treatment. Recent progress in this field will be discussed in this review article.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, ND12.200, Dallas, Texas, 75390, USA.
| |
Collapse
|
22
|
In Vivo Analysis of the Climbing Fiber-Purkinje Cell Circuit in SCA2-58Q Transgenic Mouse Model. THE CEREBELLUM 2019; 17:590-600. [PMID: 29876801 DOI: 10.1007/s12311-018-0951-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebellar Purkinje cells (PCs) and cerebellar pathways are primarily affected in many autosomal dominant cerebellar ataxias. PCs generate complex spikes (CS) in vivo when activated by climbing fiber (CF) which rise from the inferior olive. In this study, we investigated the functional state of the CF-PC circuitry in the transgenic mouse model of spinocerebellar ataxia type 2 (SCA2), a polyglutamine neurodegenerative genetic disease. In our experiments, we used an extracellular single-unit recording method to compare the PC activity pattern and the CS shape in age-matched wild-type mice and SCA2-58Q transgenic mice. We discovered no alterations in the CS properties of PCs in aging SCA2 mice. To examine the integrity of the olivocerebellar pathway, we applied harmaline, an alkaloid that acts directly on the inferior olive neurons. The pharmacological stimulation of olivocerebellar circuit by harmaline uncovered disturbances in SCA2-58Q PC activity pattern and in the complex spike shape when compared with age-matched wild-type cells. The abnormalities in the CF-PC circuitry were aggravated with age. We propose that alterations in CF-PC circuitry represent one of potential causes of ataxic symptoms in SCA2 and in other SCAs.
Collapse
|
23
|
Shimobayashi E, Kapfhammer JP. Calcium Signaling, PKC Gamma, IP3R1 and CAR8 Link Spinocerebellar Ataxias and Purkinje Cell Dendritic Development. Curr Neuropharmacol 2018; 16:151-159. [PMID: 28554312 PMCID: PMC5883377 DOI: 10.2174/1570159x15666170529104000] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/16/2017] [Accepted: 05/25/2017] [Indexed: 01/05/2023] Open
Abstract
Background Spinocerebellar ataxias (SCAs) are a group of cerebellar diseases characterized by progressive ataxia and cerebellar atrophy. Several forms of SCAs are caused by missense mutations or deletions in genes related to calcium signaling in Purkinje cells. Among them, spinocerebellar ataxia type 14 (SCA14) is caused by missense mutations in PRKCG gene which encodes protein kinase C gamma (PKCγ). It is remarkable that in several cases in which SCA is caused by point mutations in an individual gene, the affected genes are involved in the PKCγ signaling pathway and calcium signaling which is not only crucial for proper Purkinje cell function but is also involved in the control of Purkinje cell dendritic development. In this review, we will focus on the PKCγ signaling related genes and calcium signaling related genes then discuss their role for both Purkinje cell dendritic development and cerebellar ataxia. Methods Research related to SCAs and Purkinje cell dendritic development is reviewed. Results PKCγ dysregulation causes abnormal Purkinje cell dendritic development and SCA14. Carbonic anhydrase related protein 8 (Car8) encoding CAR8 and Itpr1 encoding IP3R1were identified as upregulated genes in one of SCA14 mouse model. IP3R1, CAR8 and PKCγ proteins are strongly and specifically expressed in Purkinje cells. The common function among them is that they are involved in the regulation of calcium homeostasis in Purkinje cells and their dysfunction causes ataxia in mouse and human. Furthermore, disruption of intracellular calcium homeostasis caused by mutations in some calcium channels in Purkinje cells links to abnormal Purkinje cell dendritic development and the pathogenesis of several SCAs. Conclusion Once PKCγ signaling related genes and calcium signaling related genes are disturbed, the normal dendritic development of Purkinje cells is impaired as well as the integration of signals from other neurons, resulting in abnormal development, cerebellar dysfunction and eventually Purkinje cell loss.
Collapse
Affiliation(s)
- Etsuko Shimobayashi
- Anatomical Institute, Department of Biomedicine Basel, University of Basel, Pestalozzistrasse 20, CH-4056 Basel, Switzerland
| | - Josef P Kapfhammer
- Anatomical Institute, Department of Biomedicine Basel, University of Basel, Pestalozzistrasse 20, CH-4056 Basel, Switzerland
| |
Collapse
|
24
|
Wang X, Fei F, Qu J, Li C, Li Y, Zhang S. The role of septin 7 in physiology and pathological disease: A systematic review of current status. J Cell Mol Med 2018; 22:3298-3307. [PMID: 29602250 PMCID: PMC6010854 DOI: 10.1111/jcmm.13623] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
Septins are a conserved family of cytoskeletal GTPases present in different organisms, including yeast, drosophila, Caenorhabditis elegans and humans. In humans, septins are involved in various cellular processes, including exocytosis, apoptosis, leukemogenesis, carcinogenesis and neurodegeneration. Septin 7 is unique out of 13 human septins. Mammalian septin 6, septin 7, septin 2 and septin 9 coisolate together in complexes to form the core unit for the generation of the septin filaments. Physiological septin filaments are hetero-oligomeric complexes consisting of core septin hexamers and octamers. Furthermore, septin 7 plays a crucial role in cytokinesis and mitosis. Septin 7 is localized to the filopodia and branches of developing hippocampal neurons, and is the most abundant septin in the adult rat forebrain as well as a structural component of the human and mouse sperm annuli. Septin 7 is crucial to the spine morphogenesis and dendrite growth in neurons, and is also a structural constituent of the annulus in human and mouse sperm. It can suppress growth of some tumours such as glioma and papillary thyroid carcinoma. However, the molecular mechanisms of involvement of septin 7 in human disease, especially in the development of cancer, remain unclear. This review focuses on the structure, function and mechanism of septin 7 in vivo, and summarizes the role of septin 7 in cell proliferation, cytokinesis, nervous and reproductive systems, as well as the underlying molecular events linking septin 7 to various diseases, such as Alzheimer's disease, schizophrenia, neuropsychiatric systemic lupus erythematosus, tumour and so on.
Collapse
Affiliation(s)
- Xinlu Wang
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Fei Fei
- Department of PathologyTianjin Union Medical CenterTianjinChina
- Nankai University School of MedicineNankai UniversityTianjinChina
| | - Jie Qu
- Department of PathologyTianjin Union Medical CenterTianjinChina
- Nankai University School of MedicineNankai UniversityTianjinChina
| | - Chunyuan Li
- Department of PathologyTianjin Union Medical CenterTianjinChina
- Nankai University School of MedicineNankai UniversityTianjinChina
| | - Yuwei Li
- Department of Colorectal SurgeryTianjin Union Medical CenterTianjinChina
| | - Shiwu Zhang
- Department of PathologyTianjin Union Medical CenterTianjinChina
| |
Collapse
|
25
|
Ca 2+ signaling and spinocerebellar ataxia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1733-1744. [PMID: 29777722 DOI: 10.1016/j.bbamcr.2018.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 11/22/2022]
Abstract
Spinocerebellar ataxia (SCA) is a neural disorder, which is caused by degenerative changes in the cerebellum. SCA is primarily characterized by gait ataxia, and additional clinical features include nystagmus, dysarthria, tremors and cerebellar atrophy. Forty-four hereditary SCAs have been identified to date, along with >35 SCA-associated genes. Despite the great diversity and distinct functionalities of the SCA-related genes, accumulating evidence supports the occurrence of a common pathophysiological event among several hereditary SCAs. Altered calcium (Ca2+) homeostasis in the Purkinje cells (PCs) of the cerebellum has been proposed as a possible pathological SCA trigger. In support of this, signaling events that are initiated from or lead to aberrant Ca2+ release from the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1), which is highly expressed in cerebellar PCs, seem to be closely associated with the pathogenesis of several SCA types. In this review, we summarize the current research on pathological hereditary SCA events, which involve altered Ca2+ homeostasis in PCs, through IP3R1 signaling.
Collapse
|
26
|
Egorova PA, Bezprozvanny IB. Inositol 1,4,5-trisphosphate receptors and neurodegenerative disorders. FEBS J 2018; 285:3547-3565. [PMID: 29253316 DOI: 10.1111/febs.14366] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3 R) is an intracellular ion channel that mediates the release of calcium ions from the endoplasmic reticulum. It plays a role in basic biological functions, such as cell division, differentiation, fertilization and cell death, and is involved in developmental processes including learning, memory and behavior. Deregulation of neuronal calcium signaling results in disturbance of cell homeostasis, synaptic loss and dysfunction, eventually leading to cell death. Three IP3 R subtypes have been identified in mammalian cells and the predominant isoform in neurons is IP3 R type 1. Dysfunction of IP3 R type 1 may play a role in the pathogenesis of certain neurodegenerative diseases as enhanced activity of the IP3 R was observed in models of Huntington's disease, spinocerebellar ataxias and Alzheimer's disease. These results suggest that IP3 R-mediated signaling is a potential target for treatment of these disorders. In this review we discuss the structure, functions and regulation of the IP3 R in healthy neurons and in conditions of neurodegeneration.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St Petersburg, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St Petersburg, Russia.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
27
|
Wang Z. Experimental and Clinical Strategies for Treating Spinocerebellar Ataxia Type 3. Neuroscience 2017; 371:138-154. [PMID: 29229556 DOI: 10.1016/j.neuroscience.2017.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/02/2023]
Abstract
Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease (MJD), is an autosomal dominant neurodegenerative disorder caused by the expansion of a polyglutamine (polyQ) tract in the ataxin-3 protein. To date, there is no effective therapy available to prevent progression of this disease. However, clinical strategies for alleviating various symptoms are imperative to promote a better quality of life for SCA3/MJD patients. Furthermore, experimental therapeutic strategies, including gene silencing or mutant protein clearance, mutant polyQ protein modification, stabilizing the native protein conformation, rescue of cellular dysfunction and neuromodulation to slow the progression of SCA3/MJD, have been developed. In this study, based on the current knowledge, I detail the clinical and experimental therapeutic strategies for treating SCA3/MJD, paying particular attention to drug discovery.
Collapse
Affiliation(s)
- Zijian Wang
- Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi 710065, China.
| |
Collapse
|
28
|
Sáez-Orellana F, Fuentes-Fuentes MC, Godoy PA, Silva-Grecchi T, Panes JD, Guzmán L, Yévenes GE, Gavilán J, Egan TM, Aguayo LG, Fuentealba J. P2X receptor overexpression induced by soluble oligomers of amyloid beta peptide potentiates synaptic failure and neuronal dyshomeostasis in cellular models of Alzheimer's disease. Neuropharmacology 2017; 128:366-378. [PMID: 29079292 DOI: 10.1016/j.neuropharm.2017.10.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/13/2017] [Accepted: 10/21/2017] [Indexed: 12/17/2022]
Abstract
The most common cause of dementia is Alzheimer's disease. The etiology of the disease is unknown, although considerable evidence suggests a critical role for the soluble oligomers of amyloid beta peptide (Aβ). Because Aβ increases the expression of purinergic receptors (P2XRs) in vitro and in vivo, we studied the functional correlation between long-term exposure to Aβ and the ability of P2XRs to modulate network synaptic tone. We used electrophysiological recordings and Ca2+ microfluorimetry to assess the effects of chronic exposure (24 h) to Aβ oligomers (0.5 μM) together with known inhibitors of P2XRs, such as PPADS and apyrase on synaptic function. Changes in the expression of P2XR were quantified using RT-qPCR. We observed changes in the expression of P2X1R, P2X7R and an increase in P2X2R; and also in protein levels in PC12 cells (143%) and hippocampal neurons (120%) with Aβ. In parallel, the reduction on the frequency and amplitude of mEPSCs (72% and 35%, respectively) were prevented by P2XR inhibition using a low PPADS concentration. Additionally, the current amplitude and intracellular Ca2+ signals evoked by extracellular ATP were increased (70% and 75%, respectively), suggesting an over activation of purinergic neurotransmission in cells pre-treated with Aβ. Taken together, our findings suggest that Aβ disrupts the main components of synaptic transmission at both pre- and post-synaptic sites, and induces changes in the expression of key P2XRs, especially P2X2R; changing the neuromodulator function of the purinergic tone that could involve the P2X2R as a key factor for cytotoxic mechanisms. These results identify novel targets for the treatment of dementia and other diseases characterized by increased purinergic transmission.
Collapse
Affiliation(s)
- Francisco Sáez-Orellana
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - María C Fuentes-Fuentes
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Pamela A Godoy
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Tiare Silva-Grecchi
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Jessica D Panes
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Leonardo Guzmán
- Molecular Neurobiology Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E Yévenes
- Neuropharmacology Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Javiera Gavilán
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Terrance M Egan
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Luis G Aguayo
- Neuropharmacology Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
29
|
Hu YS, Xin J, Hu Y, Zhang L, Wang J. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach. Alzheimers Res Ther 2017; 9:29. [PMID: 28446202 PMCID: PMC5406904 DOI: 10.1186/s13195-017-0252-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/01/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. METHOD In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. RESULTS We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. CONCLUSION By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.
Collapse
Affiliation(s)
- Yan-Shi Hu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070 China
| | - Juncai Xin
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070 China
| | - Ying Hu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070 China
| | - Lei Zhang
- School of Computer Science and Technology, Tianjin University, Tianjin, 300072 China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070 China
| |
Collapse
|
30
|
Kolobkova Y, Vigont V, Shalygin A, Kaznacheyeva E. Huntington's Disease: Calcium Dyshomeostasis and Pathology Models. Acta Naturae 2017; 9:34-46. [PMID: 28740725 PMCID: PMC5508999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 11/08/2022] Open
Abstract
Huntington's disease (HD) is a severe inherited neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and mental impairment. At the molecular level, HD is caused by a mutation in the first exon of the gene encoding the huntingtin protein. The mutation results in an expanded polyglutamine tract at the N-terminus of the huntingtin protein, causing the neurodegenerative pathology. Calcium dyshomeostasis is believed to be one of the main causes of the disease, which underlies the great interest in the problem among experts in molecular physiology. Recent studies have focused on the development of animal and insect HD models, as well as patient-specific induced pluripotent stem cells (HD-iPSCs), to simulate the disease's progression. Despite a sesquicentennial history of HD studies, the issues of diagnosis and manifestation of the disease have remained topical. The present review addresses these issues.
Collapse
Affiliation(s)
- Y.A. Kolobkova
- Institute of cytology of the Russian Academy of Sciences, Tikhoretsky ave. 4.,Saint-Petersburg, 194064 , Russia
| | - V.A. Vigont
- Institute of cytology of the Russian Academy of Sciences, Tikhoretsky ave. 4.,Saint-Petersburg, 194064 , Russia
| | - A.V. Shalygin
- Institute of cytology of the Russian Academy of Sciences, Tikhoretsky ave. 4.,Saint-Petersburg, 194064 , Russia
| | - E.V. Kaznacheyeva
- Institute of cytology of the Russian Academy of Sciences, Tikhoretsky ave. 4.,Saint-Petersburg, 194064 , Russia
| |
Collapse
|
31
|
Monjas L, Arce MP, León R, Egea J, Pérez C, Villarroya M, López MG, Gil C, Conde S, Rodríguez-Franco MI. Enzymatic and solid-phase synthesis of new donepezil-based L- and d -glutamic acid derivatives and their pharmacological evaluation in models related to Alzheimer's disease and cerebral ischemia. Eur J Med Chem 2017; 130:60-72. [DOI: 10.1016/j.ejmech.2017.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/09/2017] [Accepted: 02/12/2017] [Indexed: 12/25/2022]
|
32
|
Dynamic Nature of presenilin1/γ-Secretase: Implication for Alzheimer's Disease Pathogenesis. Mol Neurobiol 2017; 55:2275-2284. [PMID: 28332150 DOI: 10.1007/s12035-017-0487-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/12/2017] [Indexed: 12/27/2022]
Abstract
Presenilin 1 (PS1) is a catalytic component of the γ-secretase complex, responsible for the intramembraneous cleavage of more than 90 type I transmembrane proteins, including Alzheimer's disease (AD)-related amyloid precursor protein (APP). The γ-secretase-mediated cleavage of the APP C-terminal membrane stub leads to the production of various amyloid β (Aβ) species. The assembly of Aβ into neurotoxic oligomers, which causes synaptic dysfunction and neurodegeneration, is influenced by the relative ratio of the longer (Aβ42/43) to shorter Aβ (Aβ40) peptides. The ratio of Aβ42 to Aβ40 depends on the conformation and activity of the PS1/γ-secretase enzymatic complex. The latter exists in a dynamic equilibrium of the so called "closed" and "open" conformational states, as determined by the Förster resonance energy transfer (FRET)-based PS1 conformation assay. Here we review several factors that can allosterically influence conformational status of the enzyme, and hence the production of Aβ peptides. These include genetic variations in PS1, APP and other γ-secretase components, environmental stressors implicated in AD pathogenesis and pharmacological agents. Since "closed" PS1 conformation is the common outcome of many AD-related insults, the novel assays monitoring PS1 conformation in live/intact cells in vivo and in vitro might be utilized for diagnostic purposes and for validation of the potential therapeutic approaches.
Collapse
|
33
|
Quinlan S, Kenny A, Medina M, Engel T, Jimenez-Mateos EM. MicroRNAs in Neurodegenerative Diseases. MIRNAS IN AGING AND CANCER 2017; 334:309-343. [DOI: 10.1016/bs.ircmb.2017.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Alves-Cruzeiro JMDC, Mendonça L, Pereira de Almeida L, Nóbrega C. Motor Dysfunctions and Neuropathology in Mouse Models of Spinocerebellar Ataxia Type 2: A Comprehensive Review. Front Neurosci 2016; 10:572. [PMID: 28018166 PMCID: PMC5156697 DOI: 10.3389/fnins.2016.00572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant ataxia caused by an expansion of CAG repeats in the exon 1 of the gene ATXN2, conferring a gain of toxic function that triggers the appearance of the disease phenotype. SCA2 is characterized by several symptoms including progressive gait ataxia and dysarthria, slow saccadic eye movements, sleep disturbances, cognitive impairments, and psychological dysfunctions such as insomnia and depression, among others. The available treatments rely on palliative care, which mitigate some of the major symptoms but ultimately fail to block the disease progression. This persistent lack of effective therapies led to the development of several models in yeast, C. elegans, D. melanogaster, and mice to serve as platforms for testing new therapeutic strategies and to accelerate the research on the complex disease mechanisms. In this work, we review 4 transgenic and 1 knock-in mouse that exhibit a SCA2-related phenotype and discuss their usefulness in addressing different scientific problems. The knock-in mice are extremely faithful to the human disease, with late onset of symptoms and physiological levels of mutant ataxin-2, while the other transgenic possess robust and well-characterized motor impairments and neuropathological features. Furthermore, a new BAC model of SCA2 shows promise to study the recently explored role of non-coding RNAs as a major pathogenic mechanism in this devastating disorder. Focusing on specific aspects of the behavior and neuropathology, as well as technical aspects, we provide a highly practical description and comparison of all the models with the purpose of creating a useful resource for SCA2 researchers worldwide.
Collapse
Affiliation(s)
| | - Liliana Mendonça
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
| | - Clévio Nóbrega
- Department of Biomedical Sciences and Medicine and Center for Biomedical Research, University of Algarve Faro, Portugal
| |
Collapse
|
35
|
Deb BK, Hasan G. Regulation of Store-Operated Ca 2+ Entry by Septins. Front Cell Dev Biol 2016; 4:142. [PMID: 28018901 PMCID: PMC5156677 DOI: 10.3389/fcell.2016.00142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/02/2016] [Indexed: 01/10/2023] Open
Abstract
The mechanism of store-operated Ca2+ entry (SOCE) brings extracellular Ca2+ into cells after depletion of intracellular Ca2+ stores. Regulation of Ca2+ homeostasis by SOCE helps control various intracellular signaling functions in both non-excitable and excitable cells. Whereas essential components of the SOCE pathway are well characterized, molecular mechanisms underlying regulation of this pathway need investigation. A class of proteins recently demonstrated as regulating SOCE is septins. These are filament-forming GTPases that assemble into higher order structures. One of their most studied cellular functions is as a molecular scaffold that creates diffusion barriers in membranes for a variety of cellular processes. Septins regulate SOCE in mammalian non-excitable cells and in Drosophila neurons. However, the molecular mechanism of SOCE-regulation by septins and the contribution of different subgroups of septins to SOCE-regulation remain to be understood. The regulation of SOCE is relevant in multiple cellular contexts as well as in diseases, such as the Severe Combined Immunodeficiency (SCID) syndrome and neurodegenerative syndromes like Alzheimer's, Spino-Cerebellar Ataxias and Parkinson's. Moreover, Drosophila neurons, where loss of SOCE leads to flight deficits, are a possible cellular template for understanding the molecular basis of neuronal deficits associated with loss of either the Inositol-1,4,5-trisphosphate receptor (IP3R1), a key activator of neuronal SOCE or the Endoplasmic reticulum resident Ca2+ sensor STIM1 (Stromal Interaction Molecule) in mouse. This perspective summarizes our current understanding of septins as regulators of SOCE and discusses the implications for mammalian neuronal function.
Collapse
Affiliation(s)
- Bipan K Deb
- National Centre for Biological Sciences, Tata Institute of Fundamental Research Bangalore, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research Bangalore, India
| |
Collapse
|
36
|
Almaguer-Mederos LE, Almaguer-Gotay D, Aguilera-Rodríguez R, González-Zaldívar Y, Cuello-Almarales D, Laffita-Mesa J, Vázquez-Mojena Y, Zayas-Feria P, Rodríguez-Labrada R, Velázquez-Pérez L, MacLeod P. Association of glutathione S-transferase omega polymorphism and spinocerebellar ataxia type 2. J Neurol Sci 2016; 372:324-328. [PMID: 28017238 DOI: 10.1016/j.jns.2016.11.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Spinocerebellar ataxia type 2 is a neurodegenerative disorder caused by a CAG repeat expansion in ATXN2 gene. There is high clinical variability among affected patients suggesting the occurring of modifier genes influencing the clinical phenotype. OBJECTIVE The objective is to assess the association of GSTO1 rs4925 and GSTO2 rs2297235 SNPs on the clinical phenotype in SCA2 patients. METHODS A case-control study was performed in a sample of 120 SCA2 Cuban patients and 100 healthy subjects. Age at onset, 60° Maximal Saccade Velocity and SARA score were used as clinical markers. GSTO1 rs4925 and GSTO2 rs2297235 SNPs were determined by PCR/RFLP. RESULTS Distribution of the GSTO1 alleles and genotypes was nearly equal between the control group and SCA2 patients. GSTO1 genotypes were not associated to clinical markers in SCA2 patients. Distribution of the GSTO2 "G" allele and "AG" genotype differed significantly between SCA2 patients and controls. Symptomatic SCA2 individuals had a 2.29-fold higher chance of carrying at least one "G" allele at GSTO2 rs2297235 than controls (OR=2.29, 95% CI: 1.29-4.04). GSTO2 genotypes were significantly associated to age at onset (p=0.037) but not to 60° Maximal Saccade Velocity or SARA score in SCA2 patients. CONCLUSION The GSTO1 rs4925 polymorphism is not associated to SCA2. Meanwhile, the GSTO2 rs2297235 "AG" genotype is associated to SCA2 but failed to show any association with clinical markers, with the exception of a potential association with the age at disease onset.
Collapse
Affiliation(s)
- Luis E Almaguer-Mederos
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba.
| | - Dennis Almaguer-Gotay
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Raúl Aguilera-Rodríguez
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | | | - Dany Cuello-Almarales
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - José Laffita-Mesa
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Yaimé Vázquez-Mojena
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Pedro Zayas-Feria
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | | | - Luis Velázquez-Pérez
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Patrick MacLeod
- Division of Medical Genetics, Department of Pathology, Laboratory Medicine and Medical Genetics, Victoria General Hospital, Canada
| |
Collapse
|
37
|
Wanitchakool P, Ousingsawat J, Sirianant L, Cabrita I, Faria D, Schreiber R, Kunzelmann K. Cellular defects by deletion of ANO10 are due to deregulated local calcium signaling. Cell Signal 2016; 30:41-49. [PMID: 27838374 DOI: 10.1016/j.cellsig.2016.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
Abstract
TMEM16K (ANO10) belongs to a family of ion channels and phospholipid scramblases. Mutations in ANO10 cause neurological and immunological defects, and abrogated ion transport. Here we show that Ano10 knockout in epithelial cells leads to defective ion transport, attenuated volume regulation and deranged Ca2+ signaling. Intestinal epithelial cells from Ano10 null mice are reduced in size and demonstrate an almost abolished spontaneous and TNFα-induced apoptosis. Similar defects were found in mouse peritoneal Ano10 null macrophages and in human THP1 macrophages with reduced ANO10 expression. A cell cycle dependent colocalization of Ano10 with acetylated tubulin, centrioles, and a submembranous tubulin containing compartment was observed in Fisher rat thyroid cells. Axs, the Drosophila ortholog of ANO10 is known for its role in mitotic spindle formation and association with the endoplasmic reticulum and Ca2+ signaling. We therefore propose that mutations in ANO10 cause cellular defects and genetic disorders through deranged local Ca2+ signaling.
Collapse
Affiliation(s)
- Podchanart Wanitchakool
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Lalida Sirianant
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Inês Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Diana Faria
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
38
|
Deb BK, Pathak T, Hasan G. Store-independent modulation of Ca(2+) entry through Orai by Septin 7. Nat Commun 2016; 7:11751. [PMID: 27225060 PMCID: PMC4894974 DOI: 10.1038/ncomms11751] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/26/2016] [Indexed: 01/07/2023] Open
Abstract
Orai channels are required for store-operated Ca2+ entry (SOCE) in multiple cell types. Septins are a class of GTP-binding proteins that function as diffusion barriers in cells. Here we show that Septin 7 acts as a ‘molecular brake’ on activation of Orai channels in Drosophila neurons. Lowering Septin 7 levels results in dOrai-mediated Ca2+ entry and higher cytosolic Ca2+ in resting neurons. This Ca2+ entry is independent of depletion of endoplasmic reticulum Ca2+ stores and Ca2+ release through the inositol-1,4,5-trisphosphate receptor. Importantly, store-independent Ca2+ entry through Orai compensates for reduced SOCE in the Drosophila flight circuit. Moreover, overexpression of Septin 7 reduces both SOCE and flight duration, supporting its role as a negative regulator of Orai channel function in vivo. Septin 7 levels in neurons can, therefore, alter neural circuit function by modulating Orai function and Ca2+ homeostasis. Orai channels are well known to mediate store-operated calcium entry. Here authors show that in neurons of the Drosophila flight circuit, Septin 7 acts as a negative regulator of Orai channels, surprisingly, by modulating store-independent calcium entry through Orai.
Collapse
Affiliation(s)
- Bipan Kumar Deb
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Trayambak Pathak
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India.,Manipal University, Manipal, Karnataka 576104, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| |
Collapse
|
39
|
Lim D, Bertoli A, Sorgato M, Moccia F. Generation and usage of aequorin lentiviral vectors for Ca2+ measurement in sub-cellular compartments of hard-to-transfect cells. Cell Calcium 2016; 59:228-39. [DOI: 10.1016/j.ceca.2016.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/01/2016] [Indexed: 12/18/2022]
|
40
|
Egorova PA, Zakharova OA, Vlasova OL, Bezprozvanny IB. In vivo analysis of cerebellar Purkinje cell activity in SCA2 transgenic mouse model. J Neurophysiol 2016; 115:2840-51. [PMID: 26984424 DOI: 10.1152/jn.00913.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/15/2016] [Indexed: 12/31/2022] Open
Abstract
Cerebellar Purkinje cells (PCs) are primarily affected in many spinocerebellar ataxias (SCA). In this study we investigated functional activity of PCs in transgenic mouse model of SCA2, a polyglutamine neurodegenerative hereditary disorder. In our studies we used extracellular single-unit recording method to compare spontaneous activity of PCs in age-matched wild-type mice and SCA2-58Q transgenic mice. We discovered that the fraction of PCs with bursting and an irregular pattern of spontaneous activity dramatically increases in aged SCA2-58Q mice compared with wild-type littermates. Small-conductance calcium-activated potassium (SK) channels play an important role in determining firing rate of PCs. Indeed, we demonstrated that intraperitoneal (IP) injection of SK channel inhibitor NS8593 induces an irregular pattern of PC activity in wild-type mice. Furthermore, we demonstrated that IP injection of SK channel-positive modulator chlorzoxazone (CHZ) decreases spontaneous firing rate of cerebellar PCs. Finally, we have shown that IP injections with CHZ normalize firing activity of cerebellar PCs from aging SCA2-58Q mice. We propose that alterations in PC firing patterns is one of potential causes of ataxic symptoms in SCA2 and in other SCAs and that positive modulators of SK channels can be used to normalize activity of PCs and alleviate ataxic phenotype in patients with SCA.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; and
| | - Olga A Zakharova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; and
| | - Olga L Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; and
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
41
|
Metals and Neuronal Metal Binding Proteins Implicated in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9812178. [PMID: 26881049 PMCID: PMC4736980 DOI: 10.1155/2016/9812178] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent age-related dementia affecting millions of people worldwide. Its main pathological hallmark feature is the formation of insoluble protein deposits of amyloid-β and hyperphosphorylated tau protein into extracellular plaques and intracellular neurofibrillary tangles, respectively. Many of the mechanistic details of this process remain unknown, but a well-established consequence of protein aggregation is synapse dysfunction and neuronal loss in the AD brain. Different pathways including mitochondrial dysfunction, oxidative stress, inflammation, and metal metabolism have been suggested to be implicated in this process. In particular, a body of evidence suggests that neuronal metal ions such as copper, zinc, and iron play important roles in brain function in health and disease states and altered homeostasis and distribution as a common feature across different neurodegenerative diseases and aging. In this focused review, we overview neuronal proteins that are involved in AD and whose metal binding properties may underlie important biochemical and regulatory processes occurring in the brain during the AD pathophysiological process.
Collapse
|
42
|
Fà M, Zhang H, Staniszewski A, Saeed F, Shen LW, Schiefer IT, Siklos MI, Tapadar S, Litosh VA, Libien J, Petukhov PA, Teich AF, Thatcher GR, Arancio O. Novel Selective Calpain 1 Inhibitors as Potential Therapeutics in Alzheimer's Disease. J Alzheimers Dis 2016; 49:707-21. [PMID: 26484927 PMCID: PMC8962836 DOI: 10.3233/jad-150618] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease, one of the most important brain pathologies associated with neurodegenerative processes, is related to overactivation of calpain-mediated proteolysis. Previous data showed a compelling efficacy of calpain inhibition against abnormal synaptic plasticity and memory produced by the excess of amyloid-β, a distinctive marker of the disease. Moreover, a beneficial effect of calpain inhibitors in Alzheimer's disease is predictable by the occurrence of calpain hyperactivation leading to impairment of memory-related pathways following abnormal calcium influxes that might ensue independently of amyloid-β elevation. However, molecules currently available as effective calpain inhibitors lack adequate selectivity. This work is aimed at characterizing the efficacy of a novel class of epoxide-based inhibitors, synthesized to display improved selectivity and potency towards calpain 1 compared to the prototype epoxide-based generic calpain inhibitor E64. Both functional and preliminary toxicological investigations proved the efficacy, potency, and safety of the novel and selective calpain inhibitors NYC438 and NYC488 as possible therapeutics against the disease.
Collapse
Affiliation(s)
- Mauro Fà
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Hong Zhang
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Agnieszka Staniszewski
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Faisal Saeed
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Li W. Shen
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Isaac T. Schiefer
- Department of Medicinal and Biological Chemistry, University of Ohio at Toledo, Frederic and Mary Wolfe Center, Toledo, OH, USA
| | - Marton I. Siklos
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Subhasish Tapadar
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Vladislav A. Litosh
- Department of Chemistry, McMicken College of Arts & Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Jenny Libien
- Department of Pathology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Pavel A. Petukhov
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Andrew F. Teich
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Gregory R.J. Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
43
|
Szlachcic WJ, Switonski PM, Kurkowiak M, Wiatr K, Figiel M. Mouse polyQ database: a new online resource for research using mouse models of neurodegenerative diseases. Mol Brain 2015; 8:69. [PMID: 26515641 PMCID: PMC4625465 DOI: 10.1186/s13041-015-0160-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/19/2015] [Indexed: 01/15/2023] Open
Abstract
Background The polyglutamine (polyQ) family of disorders comprises 9 genetic diseases, including several types of ataxia and Huntington disease. Approximately two decades of investigation and the creation of more than 130 mouse models of polyQ disorders have revealed many similarities between these diseases. The disorders share common mutation types, neurological characteristics and certain aspects of pathogenesis, including morphological and physiological neuronal alterations. All of the diseases still remain incurable. Description The large volume of information collected as a result of the investigation of polyQ models currently represents a great potential for searching, comparing and translating pathogenesis and therapeutic information between diseases. Therefore, we generated a public database comprising the polyQ mouse models, phenotypes and therapeutic interventions tested in vivo. The database is available at http://conyza.man.poznan.pl/. Conclusion The use of the database in the field of polyQ diseases may accelerate research on these and other neurodegenerative diseases and provide new perspectives for future investigation.
Collapse
Affiliation(s)
- Wojciech J Szlachcic
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland.
| | - Pawel M Switonski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland.
| | - Małgorzata Kurkowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland.
| | - Kalina Wiatr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland.
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland.
| |
Collapse
|
44
|
Editorial: Molecular neuroprotection. Semin Cell Dev Biol 2015; 40:105. [PMID: 25976597 DOI: 10.1016/j.semcdb.2015.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Grasso M, Piscopo P, Crestini A, Confaloni A, Denti MA. Circulating microRNAs in Neurodegenerative Diseases. EXPERIENTIA SUPPLEMENTUM (2012) 2015; 106:151-169. [PMID: 26608203 DOI: 10.1007/978-3-0348-0955-9_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are caused by a combination of events that impair normal neuronal function. Although they are considered different disorders, there are overlapping features among them from the clinical, pathological, and genetic points of view. Synaptic dysfunction and loss, neurite retraction, and the appearance of other abnormalities such as axonal transport defects normally precede the neuronal loss that is a relatively late event. The diagnosis of many neurodegenerative diseases is mainly based on patient's cognitive function analysis, and the development of diagnostic methods is complicated by the brain's capacity to compensate for neuronal loss over a long period of time. This results in the late clinical manifestation of symptoms, a time when successful treatment is no longer feasible. Thus, a noninvasive diagnostic method based on early events detection is particularly important. In the last years, some biomarkers expressed in human body fluids have been proposed. microRNAs (miRNAs), with their high stability, tissue- or cell type-specific expression, lower cost, and shorter time in the assay development, could constitute a good tool to obtain an early disease diagnosis for a wide number of human pathologies, including neurodegenerative diseases. The possibilities and challenges of using these small RNA molecules as a signature for neurodegenerative disorders is a highly promising approach for developing minimally invasive screening tests and to identify new therapeutic targets.
Collapse
Affiliation(s)
- Margherita Grasso
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Paola Piscopo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Alessio Crestini
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Annamaria Confaloni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Michela A Denti
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy. .,Neuroscience Institute, National Research Council (CNR), Padova, Italy.
| |
Collapse
|