1
|
Wang W, Li X, Wang H, Huang C, Zhu L, Wang H, Zhang W. CircDIAPH1 Promotes Liver Metastasis and Development of Colorectal Cancer by Initiation of CEACAM6 Expression. Mol Carcinog 2025; 64:897-910. [PMID: 39987565 DOI: 10.1002/mc.23896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/25/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025]
Abstract
Liver metastasis is a critical factor influencing the 5-year survival rate in colorectal cancer (CRC). However, the biological function of most circRNAs in liver metastasis of CRC is still unknown. In this study, we identified differentially expressed circRNAs associated with liver metastasis (LM-DE-circRNAs). A total of 247 LM-DE-circRNAs were identified, and crucial signaling pathways, including the regulation of actin cytoskeleton, were significantly enriched, featuring six LM-DE-circRNAs. Notably, circDIAPH1 (hsa_circ_0074323), with the highest AUC value, emerged as a potential biomarker for CRC liver metastasis (CRLM). Functional assays following circDIAPH1 knockdown demonstrated induced apoptosis, suppressed proliferation, reduced metastasis, and invasion in CRC cell lines in vitro. The circDIAPH1 knockdown attenuated tumor growth in a cell-derived xenograft model. Furthermore, circDIAPH1 knockdown lessened the liver metastasis. Transcriptome profiling revealed that CEACAM6 was the most downregulated gene while circDIAPH1 was knocked down, and possesses high expression value in CRC. Most importantly, we found that circDIAPH1 recruited transcription factor FOXA1 to bind in the promoter region of CEACAM6 and initiated CEACAM6 expression. Additionally, the study identified the transcription factor BRD4 as a regulator of circDIAPH1 expression in CRC. In conclusion, this study reveals that circDIAPH1 recruits FOXA1 to initiate CEACAM6 expression, promoting liver metastasis and development of CRC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xu Li
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hantao Wang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Cheng Huang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Laicheng Zhu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hao Wang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
2
|
Ptashnik A, LaMassa N, Mambetalieva A, Schnall E, Bucaro M, Phillips GR. Ubiquitination of the protocadherin-γA3 variable cytoplasmic domain modulates cell-cell interaction. Front Cell Dev Biol 2023; 11:1261048. [PMID: 37791076 PMCID: PMC10544333 DOI: 10.3389/fcell.2023.1261048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
The family of ∼60 clustered protocadherins (Pcdhs) are cell adhesion molecules encoded by a genomic locus that regulates expression of distinct combinations of isoforms in individual neurons resulting in what is thought to be a neural surface "barcode" which mediates same-cell interactions of dendrites, as well as interactions with other cells in the environment. Pcdh mediated same-cell dendrite interactions were shown to result in avoidance while interactions between different cells through Pcdhs, such as between neurons and astrocytes, appear to be stable. The cell biological mechanism of the consequences of Pcdh based adhesion is not well understood although various signaling pathways have been recently uncovered. A still unidentified cytoplasmic regulatory mechanism might contribute to a "switch" between avoidance and adhesion. We have proposed that endocytosis and intracellular trafficking could be part of such a switch. Here we use "stub" constructs consisting of the proximal cytoplasmic domain (lacking the constant carboxy-terminal domain spliced to all Pcdh-γs) of one Pcdh, Pcdh-γA3, to study trafficking. We found that the stub construct traffics primarily to Rab7 positive endosomes very similarly to the full length molecule and deletion of a substantial portion of the carboxy-terminus of the stub eliminates this trafficking. The intact stub was found to be ubiquitinated while the deletion was not and this ubiquitination was found to be at non-lysine sites. Further deletion mapping of the residues required for ubiquitination identified potential serine phosphorylation sites, conserved among Pcdh-γAs, that can reduce ubiquitination when pseudophosphorylated and increase surface expression. These results suggest Pcdh-γA ubiquitination can influence surface expression which may modulate adhesive activity during neural development.
Collapse
Affiliation(s)
- Albert Ptashnik
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
- PhD Program in Biology, Subprogram in Neuroscience, CUNY Graduate Center, New York, NY, United States
| | - Nicole LaMassa
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
- PhD Program in Biology, Subprogram in Neuroscience, CUNY Graduate Center, New York, NY, United States
| | - Aliya Mambetalieva
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
| | - Emily Schnall
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
| | - Mike Bucaro
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
| | - Greg R. Phillips
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
- PhD Program in Biology, Subprogram in Neuroscience, CUNY Graduate Center, New York, NY, United States
- Center for Developmental Neuroscience, College of Staten Island, City University of New York, New York, NY, United States
| |
Collapse
|
3
|
Steffen DM, Hanes CM, Mah KM, Valiño Ramos P, Bosch PJ, Hinz DC, Radley JJ, Burgess RW, Garrett AM, Weiner JA. A Unique Role for Protocadherin γC3 in Promoting Dendrite Arborization through an Axin1-Dependent Mechanism. J Neurosci 2023; 43:918-935. [PMID: 36604170 PMCID: PMC9908324 DOI: 10.1523/jneurosci.0729-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/30/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
The establishment of a functional cerebral cortex depends on the proper execution of multiple developmental steps, culminating in dendritic and axonal outgrowth and the formation and maturation of synaptic connections. Dysregulation of these processes can result in improper neuronal connectivity, including that associated with various neurodevelopmental disorders. The γ-Protocadherins (γ-Pcdhs), a family of 22 distinct cell adhesion molecules that share a C-terminal cytoplasmic domain, are involved in multiple aspects of neurodevelopment including neuronal survival, dendrite arborization, and synapse development. The extent to which individual γ-Pcdh family members play unique versus common roles remains unclear. We demonstrated previously that the γ-Pcdh-C3 isoform (γC3), via its unique "variable" cytoplasmic domain (VCD), interacts in cultured cells with Axin1, a Wnt-pathway scaffold protein that regulates the differentiation and morphology of neurons. Here, we confirm that γC3 and Axin1 interact in the cortex in vivo and show that both male and female mice specifically lacking γC3 exhibit disrupted Axin1 localization to synaptic fractions, without obvious changes in dendritic spine density or morphology. However, both male and female γC3 knock-out mice exhibit severely decreased dendritic complexity of cortical pyramidal neurons that is not observed in mouse lines lacking several other γ-Pcdh isoforms. Combining knock-out with rescue constructs in cultured cortical neurons pooled from both male and female mice, we show that γC3 promotes dendritic arborization through an Axin1-dependent mechanism mediated through its VCD. Together, these data identify a novel mechanism through which γC3 uniquely regulates the formation of cortical circuitry.SIGNIFICANCE STATEMENT The complexity of a neuron's dendritic arbor is critical for its function. We showed previously that the γ-Protocadherin (γ-Pcdh) family of 22 cell adhesion molecules promotes arborization during development; it remained unclear whether individual family members played unique roles. Here, we show that one γ-Pcdh isoform, γC3, interacts in the brain with Axin1, a scaffolding protein known to influence dendrite development. A CRISPR/Cas9-generated mutant mouse line lacking γC3 (but not lines lacking other γ-Pcdhs) exhibits severely reduced dendritic complexity of cerebral cortex neurons. Using cultured γC3 knock-out neurons and a variety of rescue constructs, we confirm that the γC3 cytoplasmic domain promotes arborization through an Axin1-dependent mechanism. Thus, γ-Pcdh isoforms are not interchangeable, but rather can play unique neurodevelopmental roles.
Collapse
Affiliation(s)
- David M Steffen
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Camille M Hanes
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Paula Valiño Ramos
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Peter J Bosch
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Dalton C Hinz
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Jason J Radley
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | | | - Andrew M Garrett
- Department of Pharmacology and Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, Michigan 48202
| | - Joshua A Weiner
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
4
|
Hou S, Li G, Xu B, Dong H, Zhang S, Fu Y, Shi J, Li L, Fu J, Shi F, Meng Y, Jin Y. Trans-splicing facilitated by RNA pairing greatly expands sDscam isoform diversity but not homophilic binding specificity. SCIENCE ADVANCES 2022; 8:eabn9458. [PMID: 35857463 PMCID: PMC9258826 DOI: 10.1126/sciadv.abn9458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The Down syndrome cell adhesion molecule 1 (Dscam1) gene can generate tens of thousands of isoforms via alternative splicing, which is essential for nervous and immune functions. Chelicerates generate approximately 50 to 100 shortened Dscam (sDscam) isoforms by alternative promoters, similar to mammalian protocadherins. Here, we reveal that trans-splicing markedly increases the repository of sDscamβ isoforms in Tetranychus urticae. Unexpectedly, every variable exon cassette engages in trans-splicing with constant exons from another cluster. Moreover, we provide evidence that competing RNA pairing not only governs alternative cis-splicing but also facilitates trans-splicing. Trans-spliced sDscam isoforms mediate cell adhesion ability but exhibit the same homophilic binding specificity as their cis-spliced counterparts. Thus, we reveal a single sDscam locus that generates diverse adhesion molecules through cis- and trans-splicing coupled with alternative promoters. These findings expand understanding of the mechanism underlying molecular diversity and have implications for the molecular control of neuronal and/or immune specificity.
Collapse
Affiliation(s)
- Shouqing Hou
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Guo Li
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Haiyang Dong
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Shixin Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Ying Fu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Jilong Shi
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Lei Li
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Jiayan Fu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Feng Shi
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang ZJ310018, P. R. China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, P. R. China
| |
Collapse
|
5
|
Liu Y, Zhang Y, Du D, Gu X, Zhou S. PCDH17 is regulated by methylation of DNMT3B and affects the malignant biological behavior of HCC through EMT. Exp Cell Res 2022; 418:113245. [DOI: 10.1016/j.yexcr.2022.113245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/26/2022]
|
6
|
Goodman KM, Katsamba PS, Rubinstein R, Ahlsén G, Bahna F, Mannepalli S, Dan H, Sampogna RV, Shapiro L, Honig B. How clustered protocadherin binding specificity is tuned for neuronal self-/nonself-recognition. eLife 2022; 11:e72416. [PMID: 35253643 PMCID: PMC8901172 DOI: 10.7554/elife.72416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
The stochastic expression of fewer than 60 clustered protocadherin (cPcdh) isoforms provides diverse identities to individual vertebrate neurons and a molecular basis for self-/nonself-discrimination. cPcdhs form chains mediated by alternating cis and trans interactions between apposed membranes, which has been suggested to signal self-recognition. Such a mechanism requires that cPcdh cis dimers form promiscuously to generate diverse recognition units, and that trans interactions have precise specificity so that isoform mismatches terminate chain growth. However, the extent to which cPcdh interactions fulfill these requirements has not been definitively demonstrated. Here, we report biophysical experiments showing that cPcdh cis interactions are promiscuous, but with preferences favoring formation of heterologous cis dimers. Trans homophilic interactions are remarkably precise, with no evidence for heterophilic interactions between different isoforms. A new C-type cPcdh crystal structure and mutagenesis data help to explain these observations. Overall, the interaction characteristics we report for cPcdhs help explain their function in neuronal self-/nonself-discrimination.
Collapse
Affiliation(s)
- Kerry Marie Goodman
- Zuckerman Mind, Brain and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Phinikoula S Katsamba
- Zuckerman Mind, Brain and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Rotem Rubinstein
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv UniversityTel AvivIsrael
- Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Göran Ahlsén
- Zuckerman Mind, Brain and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Fabiana Bahna
- Zuckerman Mind, Brain and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Seetha Mannepalli
- Zuckerman Mind, Brain and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Hanbin Dan
- Department of Medicine, Division of Nephrology, Columbia UniversityNew YorkUnited States
| | - Rosemary V Sampogna
- Department of Medicine, Division of Nephrology, Columbia UniversityNew YorkUnited States
| | - Lawrence Shapiro
- Zuckerman Mind, Brain and Behavior Institute, Columbia UniversityNew YorkUnited States
- Department of Biochemistry and Molecular Biophysics, Columbia UniversityNew YorkUnited States
| | - Barry Honig
- Zuckerman Mind, Brain and Behavior Institute, Columbia UniversityNew YorkUnited States
- Department of Medicine, Division of Nephrology, Columbia UniversityNew YorkUnited States
- Department of Biochemistry and Molecular Biophysics, Columbia UniversityNew YorkUnited States
- Department of Systems Biology, Columbia UniversityNew YorkUnited States
| |
Collapse
|
7
|
LaMassa N, Sverdlov H, Mambetalieva A, Shapiro S, Bucaro M, Fernandez-Monreal M, Phillips GR. Gamma-protocadherin localization at the synapse is associated with parameters of synaptic maturation. J Comp Neurol 2021; 529:2407-2417. [PMID: 33381867 DOI: 10.1002/cne.25102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 11/07/2022]
Abstract
Clustered protocadherins (Pcdhs) are a family of ~60 cadherin-like proteins (divided into subclasses α, β, and γ) that regulate dendrite morphology and neural connectivity. Their expression is controlled through epigenetic regulation at a gene cluster encoding the molecules. During neural development, Pcdhs mediate dendrite self-avoidance in some neuronal types through an uncharacterized anti-adhesive mechanism. Pcdhs are also important for dendritic complexity in cortical neurons likely through a pro-adhesive mechanism. Pcdhs have also been postulated to participate in synaptogenesis and connectivity. Some synaptic defects were noted in knockout animals, including synaptic number and physiology, but the role of these molecules in synaptic development is not understood. The effect of Pcdh knockout on dendritic patterning may present a confound to studying synaptogenesis. We showed previously that Pcdh-γs are highly enriched in intracellular compartments in dendrites and spines with localization at only a few synaptic clefts. To gain insight into how Pcdh-γs might affect synapses, we compared synapses that harbored Pcdh-γs versus those that did not for parameters of synaptic maturation including pre- and postsynaptic size, postsynaptic perforations, and spine morphology by light microscopy in cultured hippocampal neurons and by serial section immuno-electron microscopy in hippocampal CA1. In mature neurons, synapses immunopositive for Pcdh-γs were larger in diameter with more frequent perforations. Analysis of spines in cultured neurons revealed that mushroom spines were more frequently immunopositive for Pcdh-γs at their tips than thin spines. These results suggest that Pcdh-γ function at the synapse may be related to promotion of synaptic maturation and stabilization.
Collapse
Affiliation(s)
- Nicole LaMassa
- Program in Biology, Neuroscience Subprogram, CUNY Graduate Center, New York, New York, USA.,Department of Biology, College of Staten Island, CUNY, New York, New York, USA
| | - Hanna Sverdlov
- Department of Biology, College of Staten Island, CUNY, New York, New York, USA
| | - Aliya Mambetalieva
- Department of Biology, College of Staten Island, CUNY, New York, New York, USA
| | - Stacy Shapiro
- Department of Biology, College of Staten Island, CUNY, New York, New York, USA
| | - Michael Bucaro
- Department of Biology, College of Staten Island, CUNY, New York, New York, USA
| | - Monica Fernandez-Monreal
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, F-33000 Bordeaux, France
| | - Greg R Phillips
- Program in Biology, Neuroscience Subprogram, CUNY Graduate Center, New York, New York, USA.,Department of Biology, College of Staten Island, CUNY, New York, New York, USA.,Center for Developmental Neuroscience, College of Staten Island, CUNY, New York, New York, USA
| |
Collapse
|
8
|
Gabbert L, Dilling C, Meybohm P, Burek M. Deletion of Protocadherin Gamma C3 Induces Phenotypic and Functional Changes in Brain Microvascular Endothelial Cells In Vitro. Front Pharmacol 2020; 11:590144. [PMID: 33390965 PMCID: PMC7774295 DOI: 10.3389/fphar.2020.590144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/09/2020] [Indexed: 01/25/2023] Open
Abstract
Inflammation of the central nervous system (CNS) is associated with diseases such as multiple sclerosis, stroke and neurodegenerative diseases. Compromised integrity of the blood-brain barrier (BBB) and increased migration of immune cells into the CNS are the main characteristics of brain inflammation. Clustered protocadherins (Pcdhs) belong to a large family of cadherin-related molecules. Pcdhs are highly expressed in the CNS in neurons, astrocytes, pericytes and epithelial cells of the choroid plexus and, as we have recently demonstrated, in brain microvascular endothelial cells (BMECs). Knockout of a member of the Pcdh subfamily, PcdhgC3, resulted in significant changes in the barrier integrity of BMECs. Here we characterized the endothelial PcdhgC3 knockout (KO) cells using paracellular permeability measurements, proliferation assay, wound healing assay, inhibition of signaling pathways, oxygen/glucose deprivation (OGD) and a pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) treatment. PcdhgC3 KO showed an increased paracellular permeability, a faster proliferation rate, an altered expression of efflux pumps, transporters, cellular receptors, signaling and inflammatory molecules. Serum starvation led to significantly higher phosphorylation of extracellular signal-regulated kinases (Erk) in KO cells, while no changes in phosphorylated Akt kinase levels were found. PcdhgC3 KO cells migrated faster in the wound healing assay and this migration was significantly inhibited by respective inhibitors of the MAPK-, β-catenin/Wnt-, mTOR- signaling pathways (SL327, XAV939, or Torin 2). PcdhgC3 KO cells responded stronger to OGD and TNFα by significantly higher induction of interleukin 6 mRNA than wild type cells. These results suggest that PcdhgC3 is involved in the regulation of major signaling pathways and the inflammatory response of BMECs.
Collapse
Affiliation(s)
- Lydia Gabbert
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Christina Dilling
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Patrick Meybohm
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Miralles CP, Taylor MJ, Bear J, Fekete CD, George S, Li Y, Bonhomme B, Chiou TT, De Blas AL. Expression of protocadherin-γC4 protein in the rat brain. J Comp Neurol 2019; 528:840-864. [PMID: 31609469 DOI: 10.1002/cne.24783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022]
Abstract
It has been proposed that the combinatorial expression of γ-protocadherins (Pcdh-γs) and other clustered protocadherins (Pcdhs) provides a code of molecular identity and individuality to neurons, which plays a major role in the establishment of specific synaptic connectivity and formation of neuronal circuits. Particular attention has been directed to the Pcdh-γ family, for which experimental evidence derived from Pcdh-γ-deficient mice shows that they are involved in dendrite self-avoidance, synapse development, dendritic arborization, spine maturation, and prevention of apoptosis of some neurons. Moreover, a triple-mutant mouse deficient in the three C-type members of the Pcdh-γ family (Pcdh-γC3, Pcdh-γC4, and Pcdh-γC5) shows a phenotype similar to the mouse deficient in whole Pcdh-γ family, indicating that the latter is largely due to the absence of C-type Pcdh-γs. The role of each individual C-type Pcdh-γ is not known. We have developed a specific antibody to Pcdh-γC4 to reveal the expression of this protein in the rat brain. The results show that although Pcdh-γC4 is expressed at higher levels in the embryo and earlier postnatal weeks, it is also expressed in the adult rat brain. Pcdh-γC4 is expressed in both neurons and astrocytes. In the adult brain, the regional distribution of Pcdh-γC4 immunoreactivity is similar to that of Pcdh-γC4 mRNA, being highest in the olfactory bulb, dentate gyrus, and cerebellum. Pcdh-γC4 forms puncta that are frequently apposed to glutamatergic and GABAergic synapses. They are also frequently associated with neuron-astrocyte contacts. The results provide new insights into the cell recognition function of Pcdh-γC4 in neurons and astrocytes.
Collapse
Affiliation(s)
- Celia P Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael J Taylor
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - John Bear
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Christopher D Fekete
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Shanu George
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Yanfang Li
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Bevan Bonhomme
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Tzu-Ting Chiou
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
11
|
Fletcher PA, Smiljanic K, Maso Prévide R, Iben JR, Li T, Rokic MB, Sherman A, Coon SL, Stojilkovic SS. Cell Type- and Sex-Dependent Transcriptome Profiles of Rat Anterior Pituitary Cells. Front Endocrinol (Lausanne) 2019; 10:623. [PMID: 31620083 PMCID: PMC6760010 DOI: 10.3389/fendo.2019.00623] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023] Open
Abstract
Understanding the physiology and pathology of an organ composed of a variety of cell populations depends critically on genome-wide information on each cell type. Here, we report single-cell transcriptome profiling of over 6,800 freshly dispersed anterior pituitary cells from postpubertal male and female rats. Six pituitary-specific cell types were identified based on known marker genes and characterized: folliculostellate cells and hormone-producing corticotrophs, gonadotrophs, thyrotrophs, somatotrophs, and lactotrophs. Also identified were endothelial and blood cells from the pituitary capillary network. The expression of numerous developmental and neuroendocrine marker genes in both folliculostellate and hormone-producing cells supports that they have a common origin. For several genes, the validity of transcriptome analysis was confirmed by qRT-PCR and single cell immunocytochemistry. Folliculostellate cells exhibit impressive transcriptome diversity, indicating their major roles in production of endogenous ligands and detoxification enzymes, and organization of extracellular matrix. Transcriptome profiles of hormone-producing cells also indicate contributions toward those functions, while also clearly demonstrating their endocrine function. This survey highlights many novel genetic markers contributing to pituitary cell type identity, sexual dimorphism, and function, and points to relationships between hormone-producing and folliculostellate cells.
Collapse
Affiliation(s)
- Patrick A. Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kosara Smiljanic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Rafael Maso Prévide
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - James R. Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tianwei Li
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Milos B. Rokic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Steven L. Coon
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
12
|
Mountoufaris G, Canzio D, Nwakeze CL, Chen WV, Maniatis T. Writing, Reading, and Translating the Clustered Protocadherin Cell Surface Recognition Code for Neural Circuit Assembly. Annu Rev Cell Dev Biol 2019; 34:471-493. [PMID: 30296392 DOI: 10.1146/annurev-cellbio-100616-060701] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of neurites of individual neurons to distinguish between themselves and neurites from other neurons and to avoid self (self-avoidance) plays a key role in neural circuit assembly in both invertebrates and vertebrates. Similarly, when individual neurons of the same type project into receptive fields of the brain, they must avoid each other to maximize target coverage (tiling). Counterintuitively, these processes are driven by highly specific homophilic interactions between cell surface proteins that lead to neurite repulsion rather than adhesion. Among these proteins in vertebrates are the clustered protocadherins (Pcdhs), and key to their function is the generation of enormous cell surface structural diversity. Here we review recent advances in understanding how a Pcdh cell surface code is generated by stochastic promoter choice; how this code is amplified and read by homophilic interactions between Pcdh complexes at the surface of neurons; and, finally, how the Pcdh code is translated to cellular function, which mediates self-avoidance and tiling and thus plays a central role in the development of complex neural circuits. Not surprisingly, Pcdh mutations that diminish homophilic interactions lead to wiring defects and abnormal behavior in mice, and sequence variants in the Pcdh gene cluster are associated with autism spectrum disorders in family-based genetic studies in humans.
Collapse
Affiliation(s)
- George Mountoufaris
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical School, and Zuckerman Institute, Columbia University, New York, NY 10027, USA; .,Current address: Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Daniele Canzio
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical School, and Zuckerman Institute, Columbia University, New York, NY 10027, USA;
| | - Chiamaka L Nwakeze
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical School, and Zuckerman Institute, Columbia University, New York, NY 10027, USA;
| | - Weisheng V Chen
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical School, and Zuckerman Institute, Columbia University, New York, NY 10027, USA; .,Current address: Leveragen, Inc., Cambridge, Massachusetts 02139, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical School, and Zuckerman Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
13
|
Mah KM, Weiner JA. Regulation of Wnt signaling by protocadherins. Semin Cell Dev Biol 2017; 69:158-171. [PMID: 28774578 PMCID: PMC5586504 DOI: 10.1016/j.semcdb.2017.07.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/23/2022]
Abstract
The ∼70 protocadherins comprise the largest group within the cadherin superfamily. Their diversity, the complexity of the mechanisms through which their genes are regulated, and their many critical functions in nervous system development have engendered a growing interest in elucidating the intracellular signaling pathways through which they act. Recently, multiple protocadherins across several subfamilies have been implicated as modulators of Wnt signaling pathways, and through this as potential tumor suppressors. Here, we review the extant data on the regulation by protocadherins of Wnt signaling pathways and components, and highlight some key unanswered questions that could shape future research.
Collapse
Affiliation(s)
- Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA; Department of Psychiatry, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|