1
|
Shugarts Devanapally NM, Sathya A, Yi AL, Chan WM, Marre JA, Jose AM. Intergenerational transport of double-stranded RNA in C. elegans can limit heritable epigenetic changes. eLife 2025; 13:RP99149. [PMID: 39902803 PMCID: PMC11793870 DOI: 10.7554/elife.99149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
RNAs in circulation carry sequence-specific regulatory information between cells in plant, animal, and host-pathogen systems. Such RNA can cross generational boundaries, as evidenced by somatic double-stranded RNA (dsRNA) in the nematode Caenorhabditis elegans silencing genes of matching sequence in progeny. Here we dissect the intergenerational path taken by dsRNA from parental circulation and discover that cytosolic import through the dsRNA importer SID-1 in the parental germline and/or developing progeny varies with developmental time and dsRNA substrates. Loss of SID-1 enhances initiation of heritable RNA silencing within the germline and causes changes in the expression of the sid-1-dependent gene sdg-1 that last for more than 100 generations after restoration of SID-1. The SDG-1 protein is enriched in perinuclear germ granules required for heritable RNA silencing but is expressed from a retrotransposon targeted by such silencing. This auto-inhibitory loop suggests how retrotransposons could persist by hosting genes that regulate their own silencing.
Collapse
Affiliation(s)
| | - Aishwarya Sathya
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Andrew L Yi
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Winnie M Chan
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Julia A Marre
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| |
Collapse
|
2
|
Baek HB, Das D, Chen SY, Li H, Arur S. ERK activation dynamics in maturing oocyte controls embryonic nuclear divisions in Caenorhabditis elegans. Cell Rep 2025; 44:115157. [PMID: 39792558 PMCID: PMC11874628 DOI: 10.1016/j.celrep.2024.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
ERK activity oscillates between sustained activation during oocyte formation and transient inactivation during oocyte maturation, fertilization, and early embryogenesis. Consequences of ectopic ERK activity upon oocyte maturation and in early embryogenesis are unknown. We show, in Caenorhabditis elegans, that ectopic ERK activity upon oocyte maturation (metaphase I oocytes) results in embryos with abnormalities in nuclear divisions leading to embryonic death. We uncover that ERK directly phosphorylates Polo-like kinase I (PLK-1), on Serine 404, to inhibit nuclear envelope breakdown (NEBD) in early embryogenesis. The RAS/ERK/PLK-1 pathway poisons zygotic NEBD and inhibits the merging of parental genomes, underlining the importance of turning off ERK prior to embryogenesis. Given the conserved nature of both ERK signaling to oocyte development and PLK1 to embryonic divisions, this work has implications for women undergoing in vitro fertilization (IVF) where ectopic ERK activation during superovulation through hormonal stimulation may diminish oocyte quality and influence zygotic development.
Collapse
Affiliation(s)
- Han Bit Baek
- Genetics and Epigenetics Program, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Genetics, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Debabrata Das
- Department of Genetics, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Shin-Yu Chen
- Department of Genetics, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hongyuan Li
- Department of Genetics, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Swathi Arur
- Genetics and Epigenetics Program, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Genetics, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
3
|
El Hankouri M, Nousch M, Poddar A, Müller-Reichert T, Fabig G. In situ quantification of ribosome number by electron tomography. J Microsc 2025. [PMID: 39812550 DOI: 10.1111/jmi.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Ribosomes, discovered in 1955 by George Palade, were initially described as small cytoplasmic particles preferentially associated with the endoplasmic reticulum (ER). Over the years, extensive research has focused on both the structure and function of ribosomes. However, a fundamental question - how many ribosomes are present within whole cells - has remained largely unaddressed. In this study, we developed a microscopic method to quantify the total number of ribosomes in hTERT-RPE-1 cells and in nematode cells from various tissues of Caenorhabditis elegans hermaphrodites. Using electron tomography of high-pressure frozen, freeze-substituted and resin-embedded samples, we determined that the ribosome number in hTERT-RPE-1 cells is in the same order of magnitude as biochemical measurements obtained via RNA capillary electrophoresis. As expected, control worms exhibited a higher number of ribosomes compared to RNA polymerase I A subunit (RPOA-1)-depleted worms in two out of three analysed tissue types. Our imaging-based approach complements established biochemical methods by enabling direct quantification of ribosome numbers in specific samples. This method offers a powerful tool for advancing our understanding of ribosome localisation and distribution in cells and tissues across diverse model systems.
Collapse
Affiliation(s)
- Mounir El Hankouri
- Faculty of Medicine Carl Gustav Carus, Experimental Center, Technische Universität Dresden, Dresden, Germany
- Cluster of Excellence, Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Marco Nousch
- Department of Developmental Genetics, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Aayush Poddar
- Faculty of Medicine Carl Gustav Carus, Experimental Center, Technische Universität Dresden, Dresden, Germany
| | - Thomas Müller-Reichert
- Faculty of Medicine Carl Gustav Carus, Experimental Center, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Core Facility Cellular Imaging, Technische Universität Dresden, Dresden, Germany
| | - Gunar Fabig
- Faculty of Medicine Carl Gustav Carus, Experimental Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
4
|
Wang B, Yin Z, Liu J, Tang C, Zhang Y, Wang L, Li H, Luo Y. Diquat Induces Cell Death and dopamine Neuron Loss via Reactive Oxygen Species Generation in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:152-162. [PMID: 39745087 PMCID: PMC11740995 DOI: 10.1021/acs.est.4c07783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025]
Abstract
Diquat (DQ), a contact herbicide extensively utilized in both agricultural and nonagricultural domains, exhibits a high correlation with neuronal disorders. Nevertheless, the toxicity and underlying mechanisms associated with exposure to environmental concentrations of DQ remain ambiguous. Here, we report dose-dependent cellular neurotoxicity of DQ in Caenorhabditis elegans. First, DQ significantly compromised the development and brood size of worms, shortened the lifespan, and caused epidermal abnormalities. An unbiased transcriptomic analysis disclosed several pathways related to cell death and peroxisome homeostasis underlying this organismal-level toxicity. Moreover, exposure of DQ to C. elegans led to a notable increase of embryonic cell death. Concurrently, DQ exposure specifically caused the loss of dopamine neurons but not two other types of neurons in adulthood, which is in accordance with DQ-induced muscle-related defects such as pharyngeal pumping, body bends, and head thrashes. Mechanistically, DQ exposure induces the generation of reactive oxygen species (ROS) and enhances glutathione-related ROS scavenging pathway. Protein levels and activities of mitochondrial electron transport chain complexes were specifically impaired in the DQ-treated worms. Collectively, this study suggests an ROS-mediated cell death pathway involving the neuronal and behavioral toxicity of DQ, which offers a novel mitochondria-related perspective to elucidate the general toxicity caused by a widely distributed herbicide, DQ, at near-environment concentrations.
Collapse
Affiliation(s)
- Bing Wang
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| | - Zibo Yin
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| | - Jusong Liu
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| | - Cheng Tang
- School
of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yunfei Zhang
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| | - Lanying Wang
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| | - Hanzeng Li
- School
of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanping Luo
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| |
Collapse
|
5
|
Tolkin T, Burnett J, Hubbard EJA. A role for organ level dynamics in morphogenesis of the C. elegans hermaphrodite distal tip cell. Development 2024; 151:dev203019. [PMID: 39382030 PMCID: PMC11488634 DOI: 10.1242/dev.203019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/15/2024] [Indexed: 10/10/2024]
Abstract
The morphology of cells in vivo can arise from a variety of mechanisms. In the Caenorhabditis elegans hermaphrodite gonad, the distal tip cell (DTC) elaborates into a complex plexus over a relatively short developmental time period, but the mechanisms underlying this change in cell morphology are not well defined. We correlated the time of DTC elaboration with the L4-to-adult molt, but ruled out a relevant heterochronic pathway as a cue for DTC elaboration. Instead, we found that the timing of gonad elongation and aspects of underlying germline flux influence DTC elaboration. We propose a 'hitch and tow' aspect of organ-level dynamics that contributes to cellular morphogenesis, whereby germline flux drags the flexible DTC cell cortex away from its stationary cell body. More broadly, we speculate that this mechanism may contribute to cell shape changes in other contexts with implications for development and disease.
Collapse
Affiliation(s)
- Theadora Tolkin
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Burnett
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
6
|
Laranjeira AC, Berger S, Kohlbrenner T, Greter NR, Hajnal A. Nutritional vitamin B12 regulates RAS/MAPK-mediated cell fate decisions through one-carbon metabolism. Nat Commun 2024; 15:8178. [PMID: 39289374 PMCID: PMC11408588 DOI: 10.1038/s41467-024-52556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Vitamin B12 is an essential nutritional co-factor for the folate and methionine cycles, which together constitute one-carbon metabolism. Here, we show that dietary uptake of vitamin B12 modulates cell fate decisions controlled by the conserved RAS/MAPK signaling pathway in C. elegans. A bacterial diet rich in vitamin B12 increases vulval induction, germ cell apoptosis and oocyte differentiation. These effects are mediated by different one-carbon metabolites in a tissue-specific manner. Vitamin B12 enhances via the choline/phosphatidylcholine metabolism vulval induction by down-regulating fat biosynthesis genes and increasing H3K4 tri-methylation, which results in increased expression of RAS/MAPK target genes. Furthermore, the nucleoside metabolism and H3K4 tri-methylation positively regulate germ cell apoptosis and oocyte production. Using mammalian cells carrying different activated KRAS and BRAF alleles, we show that the effects of methionine on RAS/MAPK-regulated phenotype are conserved in mammals. Our findings suggest that the vitamin B12-dependent one-carbon metabolism is a limiting factor for diverse RAS/MAPK-induced cellular responses.
Collapse
Affiliation(s)
| | - Simon Berger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Tea Kohlbrenner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Nadja R Greter
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Yin X, Meng Y, Sun C, Zhao Y, Wang W, Zhao P, Wang M, Ren J, Yao J, Zhang L, Xia X. Investigation of anti-aging and anti-infection properties of Jingfang Granules using the Caenorhabditis elegans model. Biogerontology 2024; 25:433-445. [PMID: 37572203 DOI: 10.1007/s10522-023-10058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
Jingfang Granule (JFG), a traditional Chinese medicine, is frequently employed in clinical settings for the treatment of infectious diseases. Nevertheless, the anti-aging and anti-infection effects of JFG remain uncertain. In the present study, these effects were evaluated using the Caenorhabditis elegans (C. elegans) N2 as a model organism. The results demonstrated that JFG significantly increased the median lifespan of C. elegans by 31.2% at a dosage of 10 mg/mL, without any discernible adverse effects, such as alterations in the pharyngeal pumping rate or nematode motility. Moreover, JFG notably increased oviposition by 11.3%. Subsequent investigations revealed that JFG enhanced oxidative stress resistance in C. elegans by reducing reactive oxygen species levels and significantly improved survival rates in nematodes infected with Pseudomonas aeruginosa ATCC 9027. These findings suggest that JFG delays reproductive senescence in C. elegans and protects them from oxidative stress, thereby extending their lifespan. Additionally, JFG improves the survival of P. aeruginosa-infected nematodes. Consequently, JFG has potential as a candidate for the development of anti-aging and anti-infection functional medicines.
Collapse
Affiliation(s)
- Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Yiwei Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Chenghong Sun
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD, Linyi, 276005, China
| | - Yanqiu Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Weitao Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Mengmeng Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Jingli Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Jingchun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD, Linyi, 276005, China.
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China.
| |
Collapse
|
8
|
Trimmer KA, Zhao P, Seemann J, Chen SY, Mondal S, Ben-Yakar A, Arur S. Spatial single-cell sequencing of meiosis I arrested oocytes indicates acquisition of maternal transcripts from the soma. Cell Rep 2023; 42:112544. [PMID: 37227820 PMCID: PMC10592488 DOI: 10.1016/j.celrep.2023.112544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/08/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Maternal RNAs are stored from minutes to decades in oocytes throughout meiosis I arrest in a transcriptionally quiescent state. Recent reports, however, propose a role for nascent transcription in arrested oocytes. Whether arrested oocytes launch nascent transcription in response to environmental or hormonal signals while maintaining the meiosis I arrest remains undetermined. We test this by integrating single-cell RNA sequencing, RNA velocity, and RNA fluorescence in situ hybridization on C. elegans meiosis I arrested oocytes. We identify transcripts that increase as the arrested meiosis I oocyte ages, but rule out extracellular signaling through ERK MAPK and nascent transcription as a mechanism for this increase. We report transcript acquisition from neighboring somatic cells as a mechanism of transcript increase during meiosis I arrest. These analyses provide a deeper view at single-cell resolution of the RNA landscape of a meiosis I arrested oocyte and as it prepares for oocyte maturation and fertilization.
Collapse
Affiliation(s)
- Kenneth A Trimmer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peisen Zhao
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Jacob Seemann
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shin-Yu Chen
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sudip Mondal
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Adela Ben-Yakar
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712, USA; Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Swathi Arur
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Sun B, Kim H, Mello CC, Priess JR. The CERV protein of Cer1, a C. elegans LTR retrotransposon, is required for nuclear export of viral genomic RNA and can form giant nuclear rods. PLoS Genet 2023; 19:e1010804. [PMID: 37384599 PMCID: PMC10309623 DOI: 10.1371/journal.pgen.1010804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Retroviruses and closely related LTR retrotransposons export full-length, unspliced genomic RNA (gRNA) for packaging into virions and to serve as the mRNA encoding GAG and POL polyproteins. Because gRNA often includes splice acceptor and donor sequences used to splice viral mRNAs, retroelements must overcome host mechanisms that retain intron-containing RNAs in the nucleus. Here we examine gRNA expression in Cer1, an LTR retrotransposon in C. elegans which somehow avoids silencing and is highly expressed in germ cells. Newly exported Cer1 gRNA associates rapidly with the Cer1 GAG protein, which has structural similarity with retroviral GAG proteins. gRNA export requires CERV (C. elegans regulator of viral expression), a novel protein encoded by a spliced Cer1 mRNA. CERV phosphorylation at S214 is essential for gRNA export, and phosphorylated CERV colocalizes with nuclear gRNA at presumptive sites of transcription. By electron microscopy, tagged CERV proteins surround clusters of distinct, linear fibrils that likely represent gRNA molecules. Single fibrils, or groups of aligned fibrils, also localize near nuclear pores. During the C. elegans self-fertile period, when hermaphrodites fertilize oocytes with their own sperm, CERV concentrates in two nuclear foci that are coincident with gRNA. However, as hermaphrodites cease self-fertilization, and can only produce cross-progeny, CERV undergoes a remarkable transition to form giant nuclear rods or cylinders that can be up to 5 microns in length. We propose a novel mechanism of rod formation, in which stage-specific changes in the nucleolus induce CERV to localize to the nucleolar periphery in flattened streaks of protein and gRNA; these streaks then roll up into cylinders. The rods are a widespread feature of Cer1 in wild strains of C. elegans, but their function is not known and might be limited to cross-progeny. We speculate that the adaptive strategy Cer1 uses for the identical self-progeny of a host hermaphrodite might differ for heterozygous cross-progeny sired by males. For example, mating introduces male chromosomes which can have different, or no, Cer1 elements.
Collapse
Affiliation(s)
- Bing Sun
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester,United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Haram Kim
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Craig C. Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester,United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
10
|
Thomas L, Taleb Ismail B, Askjaer P, Seydoux G. Nucleoporin foci are stress-sensitive condensates dispensable for C. elegans nuclear pore assembly. EMBO J 2023:e112987. [PMID: 37254647 DOI: 10.15252/embj.2022112987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Nucleoporins (Nups) assemble nuclear pores that form the permeability barrier between nucleoplasm and cytoplasm. Nucleoporins also localize in cytoplasmic foci proposed to function as pore pre-assembly intermediates. Here, we characterize the composition and incidence of cytoplasmic Nup foci in an intact animal, C. elegans. We find that, in young non-stressed animals, Nup foci only appear in developing sperm, oocytes and embryos, tissues that express high levels of nucleoporins. The foci are condensates of highly cohesive FG repeat-containing nucleoporins (FG-Nups), which are maintained near their solubility limit in the cytoplasm by posttranslational modifications and chaperone activity. Only a minor fraction of FG-Nup molecules concentrate in Nup foci, which dissolve during M phase and are dispensable for nuclear pore assembly. Nucleoporin condensation is enhanced by stress and advancing age, and overexpression of a single FG-Nup in post-mitotic neurons is sufficient to induce ectopic condensation and organismal paralysis. We speculate that Nup foci are non-essential and potentially toxic condensates whose assembly is actively suppressed in healthy cells.
Collapse
Affiliation(s)
- Laura Thomas
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Basma Taleb Ismail
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Geraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Regulation of germline proteostasis by HSF1 and insulin/IGF-1 signaling. Biochem Soc Trans 2023; 51:501-512. [PMID: 36892215 DOI: 10.1042/bst20220616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Protein homeostasis (proteostasis) is essential for cellular function and organismal health and requires the concerted actions of protein synthesis, folding, transport, and turnover. In sexually reproducing organisms, the immortal germline lineage passes genetic information across generations. Accumulating evidence indicates the importance of proteome integrity for germ cells as genome stability. As gametogenesis involves very active protein synthesis and is highly energy-demanding, it has unique requirements for proteostasis regulation and is sensitive to stress and nutrient availability. The heat shock factor 1 (HSF1), a key transcriptional regulator of cellular response to cytosolic and nuclear protein misfolding has evolutionarily conserved roles in germline development. Similarly, insulin/insulin-like growth factor-1 (IGF-1) signaling, a major nutrient-sensing pathway, impacts many aspects of gametogenesis. Here, we focus on HSF1 and IIS to review insights into their roles in germline proteostasis and discuss the implications on gamete quality control during stress and aging.
Collapse
|
12
|
Functional Insights into Protein Kinase A (PKA) Signaling from C. elegans. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111878. [PMID: 36431013 PMCID: PMC9692727 DOI: 10.3390/life12111878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Protein kinase A (PKA), which regulates a diverse set of biological functions downstream of cyclic AMP (cAMP), is a tetramer consisting of two catalytic subunits (PKA-C) and two regulatory subunits (PKA-R). When cAMP binds the PKA-R subunits, the PKA-C subunits are released and interact with downstream effectors. In Caenorhabditis elegans (C. elegans), PKA-C and PKA-R are encoded by kin-1 and kin-2, respectively. This review focuses on the contributions of work in C. elegans to our understanding of the many roles of PKA, including contractility and oocyte maturation in the reproductive system, lipid metabolism, physiology, mitochondrial function and lifespan, and a wide variety of behaviors. C. elegans provides a powerful genetic platform for understanding how this kinase can regulate an astounding variety of physiological responses.
Collapse
|
13
|
Wei L, Yang X, Gao L, Liang Z, Yu H, Zhang N, Li Y. Comparison of miRNA landscapes between the human oocytes with or without arrested development. J Assist Reprod Genet 2022; 39:2227-2237. [PMID: 36129629 PMCID: PMC9596657 DOI: 10.1007/s10815-022-02614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE By exploring the role of miRNAs in human oocyte development, the study was conducted to investigate the epigenetic mechanism contributing to the arrest of oocyte development. METHODS In total, 140 oocytes from 22 patients were collected in the developmentally arrested oocyte (DAO) group, whereas 420 oocytes from 164 patients were harvested in the control group. The pooled RNA was extracted from all 20 oocytes to establish a RNA library. The total RNA of every ten oocytes was extracted for qPCR validation of miRNA candidates. Bioinformatic software was applied to explore the miRNA candidates and their target genes. RESULTS Generally, the expression levels of miRNAs altered slightly during normal oocyte development but changed dramatically in the DAOs. Among the top 10 differential miRNAs, let-7a-5p and let-7g-5p, which were abundantly expressed throughout the oocyte development stages, had the broadest biological impact on oogenesis. Validated by qRT-PCR, both miRNAs were profoundly suppressed in the DAOs. During normal oocyte development, the expression levels of let-7a-5p and let-7g-5p at the GV stage were significantly higher than at MI and MII stages. Bioinformatic analysis demonstrated that let-7a-5p and let-7g-5p might regulate oocyte development by targeting PI3K-Akt, P53, cell cycle, and FoxO signaling pathways. CONCLUSIONS There are dramatic differences in miRNA landscapes between the human oocytes with or without development arrest. In addition, the suppression of let-7a-5p and let-7g-5p might be associated with the occurrence of development arrest. The findings could provide therapeutic targets to correct the arrest of oocyte development in the future.
Collapse
Affiliation(s)
- Lina Wei
- Division of Histology and Embryology, International Joint Laboratory for Embryonic, Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Xi Yang
- Center for Reproductive Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Linzhi Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhongkun Liang
- Center for Reproductive Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hao Yu
- Department of Urology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ningfeng Zhang
- Center for Reproductive Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yi Li
- Center for Reproductive Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
14
|
Das D, Arur S. Regulation of oocyte maturation: Role of conserved ERK signaling. Mol Reprod Dev 2022; 89:353-374. [PMID: 35908193 PMCID: PMC9492652 DOI: 10.1002/mrd.23637] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
During oogenesis, oocytes arrest at meiotic prophase I to acquire competencies for resuming meiosis, fertilization, and early embryonic development. Following this arrested period, oocytes resume meiosis in response to species-specific hormones, a process known as oocyte maturation, that precedes ovulation and fertilization. Involvement of endocrine and autocrine/paracrine factors and signaling events during maintenance of prophase I arrest, and resumption of meiosis is an area of active research. Studies in vertebrate and invertebrate model organisms have delineated the molecular determinants and signaling pathways that regulate oocyte maturation. Cell cycle regulators, such as cyclin-dependent kinase (CDK1), polo-like kinase (PLK1), Wee1/Myt1 kinase, and the phosphatase CDC25 play conserved roles during meiotic resumption. Extracellular signal-regulated kinase (ERK), on the other hand, while activated during oocyte maturation in all species, regulates both species-specific, as well as conserved events among different organisms. In this review, we synthesize the general signaling mechanisms and focus on conserved and distinct functions of ERK signaling pathway during oocyte maturation in mammals, non-mammalian vertebrates, and invertebrates such as Drosophila and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Moya A, Tejedor D, Manetti M, Clavijo A, Pagano E, Munarriz E, Kronberg MF. Reproductive toxicity by exposure to low concentrations of pesticides in Caenorhabditis elegans. Toxicology 2022; 475:153229. [PMID: 35697162 DOI: 10.1016/j.tox.2022.153229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
In view of the recurrent applications of pesticides in agricultural producing countries, the increased presence of these substances in the environment raise a demand for the evaluation of adverse effects on non-target organisms. This study assesses the impact of exposure to five pesticides suspected of being endocrine disruptors (atrazine, 2,4-dichlorophenoxyacetic acid, mancozeb, chlorpyrifos and cypermethrin) on the reproductive development of the nematode Caenorhabditis elegans. To this end, nematodes in the L4 larval stage were exposed to different concentrations of pesticides for 24 h and the consequences on brood size, percentage of gravid nematodes, expression of reproductive-related genes and vitellogenin trafficking and endocytosis were measured. Moreover, 17β-estradiol was used as an estrogenic control for endocrine disrupting compounds throughout the work. The results showed that all the pesticides disturbed to some extent one or more of the evaluated endpoints. Remarkably, we found that atrazine, 2,4-dichlorophenoxyacetic acid and chlorpyrifos produced comparable responses to 17β-estradiol suggesting that these pesticides may have estrogen-like endocrine disrupting activity. Atrazine and 17β-estradiol, as well as 2,4-dichlorophenoxyacetic acid and chlorpyrifos to a lesser extent, decreased the brood size, affected vitellogenin trafficking and endocytosis, and changed the expression of several reproductive-related genes. Conversely, mancozeb and cypermethrin had the least impact on the evaluated endpoint. Cypermethrin affected the brood size at the highest concentration tested and mancozeb altered the distribution of vitellogenin only in approximately 10% of the population. However, both products overexpressed hus-1 and vit-2 genes, indicating that an induction of stress could interfere with the normal development of the nematode. In conclusion, our work proved that C. elegans is a useful biological model to identify the effects of estrogen-like endocrine disruptor compounds, and the sublethal endpoints proposed may serve as an important contribution on evaluating environmental pollutants.
Collapse
Affiliation(s)
- Aldana Moya
- Cátedra de Protección vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Tejedor
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Manetti
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Araceli Clavijo
- Instituto de Investigaciones en Energía no Convencional, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. Bolivia 5150, A4408FVY Ciudad de Salta, Argentina
| | - Eduardo Pagano
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Eliana Munarriz
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina.
| | - María Florencia Kronberg
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
16
|
Abstract
Decades of work using various model organisms have resulted in an exciting and emerging field of oocyte maturation. High levels of insulin and active mammalian target of rapamycin signals, indicative of a good nutritional environment, and hormones such as gonadotrophin, indicative of the growth of the organism, work together to control oocyte maturation to ensure that reproduction happens at the right timing under the right conditions. In the wild, animals often face serious challenges to maintain oocyte quiescence under long-term unfavorable conditions in the absence of mates or food. Failure to maintain oocyte quiescence will result in activation of oocytes at the wrong time and thus lead to exhaustion of the oocyte pool and sterility of the organism. In this review, we discuss the shared mechanisms in oocyte quiescence and awakening and a conserved role of noradrenergic signals in maintenance of the quiescent oocyte pool under unfavorable conditions in simple model organisms.
Collapse
Affiliation(s)
- Jeongho Kim
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Young-Jai You
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Banerjee RP, Srayko M. Sperm-specific glycogen synthase kinase 3 is required for sperm motility and the post-fertilization signal for female meiosis II in Caenorhabditis elegans. Development 2022; 149:275553. [DOI: 10.1242/dev.200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/12/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In most sexually reproducing animals, sperm entry provides the signal to initiate the final stages of female meiosis. In Caenorhabditis elegans, this signal is required for completion of female anaphase I and entry into meiosis II (MII). memi-1/2/3 (meiosis-to-mitosis) encode maternal components that facilitate this process; memi-1/2/3(RNAi) results in a skipped-MII phenotype. Previously, we used a gain-of-function mutation, memi-1(sb41), to identify genetic suppressors that represent candidates for the sperm-delivered signal. Herein, we characterize two suppressors of memi-1(sb41): gskl-1 and gskl-2. Both genes encode functionally redundant sperm glycogen synthase kinase, type 3 (GSK3) protein kinases. Loss of both genes causes defects in male spermatogenesis, sperm pseudopod treadmilling and paternal-effect embryonic lethality. The two kinases locate within the pseudopod of activated sperm, suggesting that they directly or indirectly regulate the sperm cytoskeletal polymer major sperm protein (MSP). The GSK3 genes genetically interact with another memi-1(sb41) suppressor, gsp-4, which encodes a sperm-specific PP1 phosphatase, previously proposed to regulate MSP dynamics. Moreover, gskl-2 gsp-4; gskl-1 triple mutants often skip female MII, similar to memi-1/2/3(RNAi). The GSK3 kinases and PP1 phosphatases perform similar sperm-related functions and work together for post-fertilization functions in the oocyte that involve MEMI.
Collapse
Affiliation(s)
| | - Martin Srayko
- University of Alberta Department of Biological Sciences , , Edmonton, AB T6G 2E9 , Canada
| |
Collapse
|
18
|
Spike CA, Tsukamoto T, Greenstein D. Ubiquitin ligases and a processive proteasome facilitate protein clearance during the oocyte-to-embryo transition in Caenorhabditis elegans. Genetics 2022; 221:iyac051. [PMID: 35377419 PMCID: PMC9071522 DOI: 10.1093/genetics/iyac051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin-mediated degradation of oocyte translational regulatory proteins is a conserved feature of the oocyte-to-embryo transition. In the nematode Caenorhabditis elegans, multiple translational regulatory proteins, including the TRIM-NHL RNA-binding protein LIN-41/Trim71 and the Pumilio-family RNA-binding proteins PUF-3 and PUF-11, are degraded during the oocyte-to-embryo transition. Degradation of each protein requires activation of the M-phase cyclin-dependent kinase CDK-1, is largely complete by the end of the first meiotic division and does not require the anaphase-promoting complex. However, only LIN-41 degradation requires the F-box protein SEL-10/FBW7/Cdc4p, the substrate recognition subunit of an SCF-type E3 ubiquitin ligase. This finding suggests that PUF-3 and PUF-11, which localize to LIN-41-containing ribonucleoprotein particles, are independently degraded through the action of other factors and that the oocyte ribonucleoprotein particles are disassembled in a concerted fashion during the oocyte-to-embryo transition. We develop and test the hypothesis that PUF-3 and PUF-11 are targeted for degradation by the proteasome-associated HECT-type ubiquitin ligase ETC-1/UBE3C/Hul5, which is broadly expressed in C. elegans. We find that several GFP-tagged fusion proteins that are degraded during the oocyte-to-embryo transition, including fusions with PUF-3, PUF-11, LIN-41, IFY-1/Securin, and CYB-1/Cyclin B, are incompletely degraded when ETC-1 function is compromised. However, it is the fused GFP moiety that appears to be the critical determinant of this proteolysis defect. These findings are consistent with a conserved role for ETC-1 in promoting proteasome processivity and suggest that proteasomal processivity is an important element of the oocyte-to-embryo transition during which many key oocyte regulatory proteins are rapidly targeted for degradation.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tatsuya Tsukamoto
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Somers HM, Fuqua JH, Bonnet FX, Rollins JA. Quantification of tissue-specific protein translation in whole C. elegans using O-propargyl-puromycin labeling and fluorescence microscopy. CELL REPORTS METHODS 2022; 2:100203. [PMID: 35497499 PMCID: PMC9046455 DOI: 10.1016/j.crmeth.2022.100203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/01/2021] [Accepted: 03/29/2022] [Indexed: 01/23/2023]
Abstract
The regulation of gene expression via protein translation is critical for growth, development, and stress response. While puromycin-based techniques have been used to quantify protein translation in C. elegans, they have been limited to using lysate from whole worms. To achieve tissue-specific quantification of ribosome activity in intact C. elegans, we report the application of O-propargyl-puromycin in a cuticle defective mutant followed by conjugation of an azide fluorophore for detection using fluorescent confocal microscopy. We apply this technique to quantify translation in response to heat shock, cycloheximide, or knockdown of translation factors. Furthermore, we demonstrate that O-propargyl-puromycin can be used to quantify translation between tissues or within a tissue like the germline. This technique is expected to have a broad range of applications in determining how protein translation is altered in different tissues in response to stress or gene knockdowns or with age.
Collapse
Affiliation(s)
- Hannah M. Somers
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME 04609, USA
| | - Jeremy H. Fuqua
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME 04609, USA
| | - Frédéric X.A. Bonnet
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME 04609, USA
| | - Jarod A. Rollins
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME 04609, USA
| |
Collapse
|
20
|
Mendoza AD, Sue A, Antipova O, Vogt S, Woodruff TK, Wignall SM, O’Halloran TV. Dynamic zinc fluxes regulate meiotic progression in Caenorhabditis elegans†. Biol Reprod 2022; 107:406-418. [PMID: 35466369 PMCID: PMC9902257 DOI: 10.1093/biolre/ioac064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/14/2021] [Accepted: 03/20/2022] [Indexed: 11/14/2022] Open
Abstract
Zinc influx and efflux events are essential for meiotic progression in oocytes of several mammalian and amphibian species, but it is less clear whether this evolutionary conservation of zinc signals is also important in late-stage germline development in invertebrates. Using quantitative, single cell elemental mapping methods, we find that Caenorhabditis elegans oocytes undergo significant stage-dependent fluctuations in total zinc content, rising by over sevenfold from Prophase I through the beginning of mitotic divisions in the embryo. Live imaging of the rapid cell cycle progression in C. elegans enables us to follow changes in labile zinc pools across meiosis and mitosis in single embryo. We find a dynamic increase in labile zinc prior to fertilization that then decreases from Anaphase II through pronuclear fusion and relocalizes to the eggshell. Disruption of these zinc fluxes blocks extrusion of the second polar body, leading to a range of mitotic defects. We conclude that spatial temporal zinc fluxes are necessary for meiotic progression in C. elegans and are a conserved feature of germ cell development in a broad cross section of metazoa.
Collapse
Affiliation(s)
- Adelita D Mendoza
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA,The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Aaron Sue
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA,The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Olga Antipova
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Teresa K Woodruff
- Correspondence: Department of Chemistry and Department of Microbiology and Molecular Genetics, Michigan State University, Interdisciplinary Science and Technology Building Room 3022, 766 Service Rd., East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: ; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Interdisplinary Science and Technology Building Room 3006, 766 Service Rd. East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: and Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208. E-mail:
| | - Sarah M Wignall
- Correspondence: Department of Chemistry and Department of Microbiology and Molecular Genetics, Michigan State University, Interdisciplinary Science and Technology Building Room 3022, 766 Service Rd., East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: ; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Interdisplinary Science and Technology Building Room 3006, 766 Service Rd. East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: and Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208. E-mail:
| | - Thomas V O’Halloran
- Correspondence: Department of Chemistry and Department of Microbiology and Molecular Genetics, Michigan State University, Interdisciplinary Science and Technology Building Room 3022, 766 Service Rd., East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: ; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Interdisplinary Science and Technology Building Room 3006, 766 Service Rd. East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: and Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208. E-mail:
| |
Collapse
|
21
|
Cao Z, Fung CW, Mak HY. A Flexible Network of Lipid Droplet Associated Proteins Support Embryonic Integrity of C. elegans. Front Cell Dev Biol 2022; 10:856474. [PMID: 35445028 PMCID: PMC9015696 DOI: 10.3389/fcell.2022.856474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to coordinating the storage and mobilization of neutral fat, lipid droplets (LDs) are conserved organelles that can accommodate additional cargos in order to support animal development. However, it is unclear if each type of cargo is matched with a specific subset of LDs. Here, we report that SEIP-1/seipin defines a subset of oocyte LDs that are required for proper eggshell formation in C. elegans. Using a photoconvertible fluorescent protein-based imaging assay, we found that SEIP-1 positive LDs were selectively depleted after fertilization, coincident of the formation of a lipid-rich permeability barrier of the eggshell. Loss of SEIP-1 function caused impenetrant embryonic arrest, which could be worsened by FAT-3/fatty acyl-CoA desaturase deficiency or suppressed by PLIN-1/Perilipin deficiency. The embryonic development of seip-1; plin-1 mutant in turn depended on the recruitment of RAB-18/Rab18 to LDs, which was not observed in wild type embryos. We propose that SEIP-1 dependent and independent mechanisms act in parallel to ensure the packaging and export of lipid-rich permeability barrier constituents, which involve LDs. The identity of these LDs, as defined by their associated proteins, exhibits unexpected plasticity that ultimately ensures the survival of embryos ex utero.
Collapse
Affiliation(s)
- Zhe Cao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chun Wing Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
22
|
Kubota Y, Ota N, Takatsuka H, Unno T, Onami S, Sugimoto A, Ito M. The
PAF1
complex cell‐autonomously promotes oogenesis in
Caenorhabditis elegans. Genes Cells 2022; 27:409-420. [PMID: 35430776 PMCID: PMC9321568 DOI: 10.1111/gtc.12938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/19/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
The RNA polymerase II‐associated factor 1 complex (PAF1C) is a protein complex that consists of LEO1, RTF1, PAF1, CDC73, and CTR9, and has been shown to be involved in RNA polymerase II‐mediated transcriptional and chromatin regulation. Although it has been shown to regulate a variety of biological processes, the precise role of the PAF1C during germ line development has not been clarified. In this study, we found that reduction in the function of the PAF1C components, LEO‐1, RTFO‐1, PAFO‐1, CDC‐73, and CTR‐9, in Caenorhabditis elegans affects oogenesis. Defects in oogenesis were also confirmed using an oocyte maturation marker, OMA‐1::GFP. While four to five OMA‐1::GFP‐positive oocytes were observed in wild‐type animals, their numbers were significantly decreased in pafo‐1 mutant and leo‐1(RNAi), pafo‐1(RNAi), and cdc‐73(RNAi) animals. Expression of a functional PAFO‐1::mCherry transgene in the germline significantly rescued the oogenesis‐defective phenotype of the pafo‐1 mutants, suggesting that expression of the PAF1C in germ cells is required for oogenesis. Notably, overexpression of OMA‐1::GFP partially rescued the oogenesis defect in the pafo‐1 mutants. Based on our findings, we propose that the PAF1C promotes oogenesis in a cell‐autonomous manner by positively regulating the expression of genes involved in oocyte maturation.
Collapse
Affiliation(s)
- Yukihiro Kubota
- Department of Bioinformatics College of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Natsumi Ota
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Hisashi Takatsuka
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Takuma Unno
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| | - Shuichi Onami
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
- RIKEN Center for Biosystems Dynamics Research 2‐2‐3, Minatojima‐minamimachi, Chuo‐ku Kobe Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dinamics Graduate School of Life Sciences, Tohoku University 2‐1‐1 Katahira Sendai Miyagi Japan
| | - Masahiro Ito
- Department of Bioinformatics College of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
- Advanced Life Sciences Program Graduate School of Life Sciences, Ritsumeikan University 1‐1‐1 Nojihigashi Kusatsu Shiga Japan
| |
Collapse
|
23
|
Cell cycle involvement in cancer therapy; WEE1 kinase, a potential target as therapeutic strategy. Mutat Res 2022; 824:111776. [PMID: 35247630 DOI: 10.1016/j.mrfmmm.2022.111776] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
Mitosis is the process of cell division and is regulated by checkpoints in the cell cycle. G1-S, S, and G2-M are the three main checkpoints that prevent initiation of the next phase of the cell cycle phase until previous phase has completed. DNA damage leads to activation of the G2-M checkpoint, which can trigger a downstream DNA damage response (DDR) pathway to induce cell cycle arrest while the damage is repaired. If the DNA damage cannot be repaired, the replication stress response (RSR) pathway finally leads to cell death by apoptosis, in this case called mitotic catastrophe. Many cancer treatments (chemotherapy and radiotherapy) cause DNA damages based on SSBs (single strand breaks) or DSBs (double strand breaks), which cause cell death through mitotic catastrophe. However, damaged cells can activate WEE1 kinase (as a part of the DDR and RSR pathways), which prevents apoptosis and cell death by inducing cell cycle arrest at G2 phase. Therefore, inhibition of WEE1 kinase could sensitize cancer cells to chemotherapeutic drugs. This review focuses on the role of WEE1 kinase (as a biological macromolecule which has a molecular mass of 96 kDa) in the cell cycle, and its interactions with other regulatory pathways. In addition, we discuss the potential of WEE1 inhibition as a new therapeutic approach in the treatment of various cancers, such as melanoma, breast cancer, pancreatic cancer, cervical cancer, etc.
Collapse
|
24
|
Deciphering Differential Life Stage Radioinduced Reproductive Decline in Caenorhabditis elegans through Lipid Analysis. Int J Mol Sci 2021; 22:ijms221910277. [PMID: 34638618 PMCID: PMC8508812 DOI: 10.3390/ijms221910277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
Wildlife is chronically exposed to various sources of ionizing radiations, both environmental or anthropic, due to nuclear energy use, which can induce several defects in organisms. In invertebrates, reproduction, which directly impacts population dynamics, has been found to be the most radiosensitive endpoint. Understanding the underlying molecular pathways inducing this reproduction decrease can help in predicting the effects at larger scales (i.e., population). In this study, we used a life stage dependent approach in order to better understand the molecular determinants of reproduction decrease in the roundworm C. elegans. Worms were chronically exposed to 50 mGy·h−1 external gamma ionizing radiations throughout different developmental periods (namely embryogenesis, gametogenesis, and full development). Then, in addition to reproduction parameters, we performed a wide analysis of lipids (different class and fatty acid via FAMES), which are both important signaling molecules for reproduction and molecular targets of oxidative stress. Our results showed that reproductive defects are life stage dependent, that lipids are differently misregulated according to the considered exposure (e.g., upon embryogenesis and full development) and do not fully explain radiation induced reproductive defects. Finally, our results enable us to propose a conceptual model of lipid signaling after radiation stress in which both the soma and the germline participate.
Collapse
|
25
|
Scharf A, Pohl F, Egan BM, Kocsisova Z, Kornfeld K. Reproductive Aging in Caenorhabditis elegans: From Molecules to Ecology. Front Cell Dev Biol 2021; 9:718522. [PMID: 34604218 PMCID: PMC8481778 DOI: 10.3389/fcell.2021.718522] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Aging animals display a broad range of progressive degenerative changes, and one of the most fascinating is the decline of female reproductive function. In the model organism Caenorhabditis elegans, hermaphrodites reach a peak of progeny production on day 2 of adulthood and then display a rapid decline; progeny production typically ends by day 8 of adulthood. Since animals typically survive until day 15 of adulthood, there is a substantial post reproductive lifespan. Here we review the molecular and cellular changes that occur during reproductive aging, including reductions in stem cell number and activity, slowing meiotic progression, diminished Notch signaling, and deterioration of germ line and oocyte morphology. Several interventions have been identified that delay reproductive aging, including mutations, drugs and environmental factors such as temperature. The detailed description of reproductive aging coupled with interventions that delay this process have made C. elegans a leading model system to understand the mechanisms that drive reproductive aging. While reproductive aging has dramatic consequences for individual fertility, it also has consequences for the ecology of the population. Population dynamics are driven by birth and death, and reproductive aging is one important factor that influences birth rate. A variety of theories have been advanced to explain why reproductive aging occurs and how it has been sculpted during evolution. Here we summarize these theories and discuss the utility of C. elegans for testing mechanistic and evolutionary models of reproductive aging.
Collapse
Affiliation(s)
- Andrea Scharf
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Franziska Pohl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian M. Egan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Zuzana Kocsisova
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
26
|
Gandhi J, Crosio G, Fernandez AG. Dynein and MEL-28 contribute in parallel to oogenic maturity in C. elegans. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000421. [PMID: 34337353 PMCID: PMC8319736 DOI: 10.17912/micropub.biology.000421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/06/2022]
Abstract
dhc-1(or283ts); mel-28(t1684) double mutants have a severely reduced brood size compared to the wild-type and compared to each single mutant. To determine if this low-fecundity phenotype is associated with oocyte maturity defects, we used markers to assess the maturity of oocytes in the proximal gonad. We studied phosphorylated histone H3, a marker normally associated with mature oocytes, and DAO-5, a nucleolar marker normally associated with immature oocytes. We found that in the double mutants, the oocyte occupying the -1 position frequently retains DAO-5 and fails to accumulate phosphorylated histone H3. This suggests that the simultaneous disruption of dynein and MEL-28 can lead to failure of the oocyte maturity program.
Collapse
Affiliation(s)
- Jay Gandhi
- Department of Biology, Fairfield University, 1073 N. Benson Rd., Fairfield, CT USA
| | - Giulia Crosio
- Department of Biology, Fairfield University, 1073 N. Benson Rd., Fairfield, CT USA
| | - Anita G. Fernandez
- Department of Biology, Fairfield University, 1073 N. Benson Rd., Fairfield, CT USA,
Correspondence to: Anita G. Fernandez ()
| |
Collapse
|
27
|
Tolkin T, Hubbard EJA. Germline Stem and Progenitor Cell Aging in C. elegans. Front Cell Dev Biol 2021; 9:699671. [PMID: 34307379 PMCID: PMC8297657 DOI: 10.3389/fcell.2021.699671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Like many animals and humans, reproduction in the nematode C. elegans declines with age. This decline is the cumulative result of age-related changes in several steps of germline function, many of which are highly accessible for experimental investigation in this short-lived model organism. Here we review recent work showing that a very early and major contributing step to reproductive decline is the depletion of the germline stem and progenitor cell pool. Since many cellular and molecular aspects of stem cell biology and aging are conserved across animals, understanding mechanisms of age-related decline of germline stem and progenitor cells in C. elegans has broad implications for aging stem cells, germline stem cells, and reproductive aging.
Collapse
Affiliation(s)
- Theadora Tolkin
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY, United States
| | - E Jane Albert Hubbard
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
28
|
Samaddar M, Goudeau J, Sanchez M, Hall DH, Bohnert KA, Ingaramo M, Kenyon C. A genetic screen identifies new steps in oocyte maturation that enhance proteostasis in the immortal germ lineage. eLife 2021; 10:e62653. [PMID: 33848238 PMCID: PMC8043744 DOI: 10.7554/elife.62653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Somatic cells age and die, but the germ-cell lineage is immortal. In Caenorhabditis elegans, germline immortality involves proteostasis renewal at the beginning of each new generation, when oocyte maturation signals from sperm trigger the clearance of carbonylated proteins and protein aggregates. Here, we explore the cell biology of this proteostasis renewal in the context of a whole-genome RNAi screen. Oocyte maturation signals are known to trigger protein-aggregate removal via lysosome acidification. Our findings suggest that lysosomes are acidified as a consequence of changes in endoplasmic reticulum activity that permit assembly of the lysosomal V-ATPase, which in turn allows lysosomes to clear the aggregates via microautophagy. We define two functions for mitochondria, both of which appear to be independent of ATP generation. Many genes from the screen also regulate lysosome acidification and age-dependent protein aggregation in the soma, suggesting a fundamental mechanistic link between proteostasis renewal in the germline and somatic longevity.
Collapse
Affiliation(s)
| | - Jérôme Goudeau
- Calico Life Sciences LLCSouth San FranciscoUnited States
| | - Melissa Sanchez
- Department of Molecular and Cellular Biology, University of California, BerkeleyBerkeleyUnited States
| | - David H Hall
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineNew YorkUnited States
| | - K Adam Bohnert
- Calico Life Sciences LLCSouth San FranciscoUnited States
| | - Maria Ingaramo
- Calico Life Sciences LLCSouth San FranciscoUnited States
| | - Cynthia Kenyon
- Calico Life Sciences LLCSouth San FranciscoUnited States
| |
Collapse
|
29
|
Bline AP, Le Goff A, Allard P. What Is Lost in the Weismann Barrier? J Dev Biol 2020; 8:E35. [PMID: 33339122 PMCID: PMC7768413 DOI: 10.3390/jdb8040035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
The Weismann barrier has long been regarded as a basic tenet of biology. However, upon close examination of its historical origins and August Weismann's own writings, questions arise as to whether such a status is warranted. As scientific research has advanced, the persistence of the concept of the barrier has left us with the same dichotomies Weismann contended with over 100 years ago: germ or soma, gene or environment, hard or soft inheritance. These dichotomies distract from the more important questions we need to address going forward. In this review, we will examine the theories that have shaped Weismann's thinking, how the concept of the Weismann barrier emerged, and the limitations that it carries. We will contrast the principles underlying the barrier with recent and less recent findings in developmental biology and transgenerational epigenetic inheritance that have profoundly eroded the oppositional view of germline vs. soma. Discarding the barrier allows us to examine the interactive processes and their response to environmental context that generate germ cells in the first place, determine the entirety of what is inherited through them, and set the trajectory for the health status of the progeny they bear.
Collapse
Affiliation(s)
- Abigail P. Bline
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Anne Le Goff
- UCLA EpiCenter on Epigenetics, Reproduction & Society, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Institute for Society & Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick Allard
- Molecular Toxicology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA;
- UCLA EpiCenter on Epigenetics, Reproduction & Society, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Institute for Society & Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Identification of New Regulators of the Oocyte-to-Embryo Transition in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:2989-2998. [PMID: 32690584 PMCID: PMC7466974 DOI: 10.1534/g3.120.401415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
At the oocyte-to-embryo transition the highly differentiated oocyte arrested in meiosis becomes a totipotent embryo capable of embryogenesis. Oocyte maturation (release of the prophase I primary arrest) and egg activation (release from the secondary meiotic arrest and the trigger for the oocyte-to-embryo transition) serve as prerequisites for this transition, both events being controlled posttranscriptionally. Recently, we obtained a comprehensive list of proteins whose levels are developmentally regulated during these events via a high-throughput quantitative proteomic analysis of Drosophila melanogaster oocyte maturation and egg activation. We conducted a targeted screen for potential novel regulators of the oocyte-to-embryo transition, selecting 53 candidates from these proteins. We reduced the function of each candidate gene using transposable element insertion alleles and RNAi, and screened for defects in oocyte maturation or early embryogenesis. Deletion of the aquaporin gene CG7777 did not affect female fertility. However, we identified CG5003 and nebu (CG10960) as new regulators of the transition from oocyte to embryo. Mutations in CG5003, which encodes an F-box protein associated with SCF-proteasome degradation function, cause a decrease in female fertility and early embryonic arrest. Mutations in nebu, encoding a putative glucose transporter, result in defects during the early embryonic divisions, as well as a developmental delay and arrest. nebu mutants also exhibit a defect in glycogen accumulation during late oogenesis. Our findings highlight potential previously unknown roles for the ubiquitin protein degradation pathway and sugar transport across membranes during this time, and paint a broader picture of the underlying requirements of the oocyte-to-embryo transition.
Collapse
|
31
|
Slos D, Yushin VV, Claeys M, Ivanova ES, Kosaka H, Bert W. Structure, development, and evolutive patterns of spermatozoa in rhabditid nematodes (Nematoda: Rhabditida). J Morphol 2020; 281:1411-1435. [PMID: 32845531 DOI: 10.1002/jmor.21255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 11/07/2022]
Abstract
Spermatogenesis of five rhabditid nematodes was studied using transmission electron microscopy and is described herein. Structure and development of nematode sperm in all available representatives of the extensive order Rhabditida have been analysed and the main characteristics of each infraorder are discussed. The ancestral sperm of the order Rhabditida was reconstructed using maximum likelihood and Bayesian methods based on 44 ultrastructural sperm characters. The hypothetical ancestral spermatogenesis of the order Rhabditida agrees with the previously suggested "rhabditid" pattern and appears to be conserved throughout the order Rhabditida. Despite the enormous variation of rhabditid nematodes, few groups deviate from the ancestral pattern. This conserved pattern can be informative within the phylum Nematoda at order level, but poses limitations when used in taxonomic and phylogenetic analysis within Rhabditida.
Collapse
Affiliation(s)
- Dieter Slos
- Nematology Research Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Vladimir V Yushin
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Myriam Claeys
- Nematology Research Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Elena S Ivanova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Hajime Kosaka
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Jessus C, Munro C, Houliston E. Managing the Oocyte Meiotic Arrest-Lessons from Frogs and Jellyfish. Cells 2020; 9:E1150. [PMID: 32392797 PMCID: PMC7290932 DOI: 10.3390/cells9051150] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
During oocyte development, meiosis arrests in prophase of the first division for a remarkably prolonged period firstly during oocyte growth, and then when awaiting the appropriate hormonal signals for egg release. This prophase arrest is finally unlocked when locally produced maturation initiation hormones (MIHs) trigger entry into M-phase. Here, we assess the current knowledge of the successive cellular and molecular mechanisms responsible for keeping meiotic progression on hold. We focus on two model organisms, the amphibian Xenopus laevis, and the hydrozoan jellyfish Clytia hemisphaerica. Conserved mechanisms govern the initial meiotic programme of the oocyte prior to oocyte growth and also, much later, the onset of mitotic divisions, via activation of two key kinase systems: Cdk1-Cyclin B/Gwl (MPF) for M-phase activation and Mos-MAPkinase to orchestrate polar body formation and cytostatic (CSF) arrest. In contrast, maintenance of the prophase state of the fully-grown oocyte is assured by highly specific mechanisms, reflecting enormous variation between species in MIHs, MIH receptors and their immediate downstream signalling response. Convergence of multiple signalling pathway components to promote MPF activation in some oocytes, including Xenopus, is likely a heritage of the complex evolutionary history of spawning regulation, but also helps ensure a robust and reliable mechanism for gamete production.
Collapse
Affiliation(s)
- Catherine Jessus
- Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Catriona Munro
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
- Inserm, Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, 75005 Paris, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
| |
Collapse
|
33
|
Hubbard EJA, Schedl T. Biology of the Caenorhabditis elegans Germline Stem Cell System. Genetics 2019; 213:1145-1188. [PMID: 31796552 PMCID: PMC6893382 DOI: 10.1534/genetics.119.300238] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cell systems regulate tissue development and maintenance. The germline stem cell system is essential for animal reproduction, controlling both the timing and number of progeny through its influence on gamete production. In this review, we first draw general comparisons to stem cell systems in other organisms, and then present our current understanding of the germline stem cell system in Caenorhabditis elegans In contrast to stereotypic somatic development and cell number stasis of adult somatic cells in C. elegans, the germline stem cell system has a variable division pattern, and the system differs between larval development, early adult peak reproduction and age-related decline. We discuss the cell and developmental biology of the stem cell system and the Notch regulated genetic network that controls the key decision between the stem cell fate and meiotic development, as it occurs under optimal laboratory conditions in adult and larval stages. We then discuss alterations of the stem cell system in response to environmental perturbations and aging. A recurring distinction is between processes that control stem cell fate and those that control cell cycle regulation. C. elegans is a powerful model for understanding germline stem cells and stem cell biology.
Collapse
Affiliation(s)
- E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York 10016
| | - Tim Schedl
- and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
34
|
Effects of 2,3',4,4'5-pentachlorobiphenyl exposure during pregnancy on epigenetic imprinting and maturation of offspring's oocytes in mice. Arch Toxicol 2019; 93:2575-2592. [PMID: 31388691 DOI: 10.1007/s00204-019-02529-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
Polychlorinated biphenyls (PCBs) are a class of organic pollutants that have been widely found in the environment. The chemical 2,3',4,4'5-pentachlorobiphenyl (PCB118) is an important dioxin-like PCB compound with strong toxicity. PCB118 can accumulate in adipose tissue, serum and milk in mammals, and it is highly enriched in the follicular fluid. In this study, pregnant mice were exposed to 0, 20 and 100 μg/kg/day of PCB118 during pregnancy at the fetal primordial germ cell migration stage. The methylation patterns of the imprinted genes H19, Snrpn, Peg3 and Igf2r as well as the expression levels of Dnmt1, 3a, 3b and 3l, Uhrf1, Tet2 and Tet3 in fully grown germinal vesicle oocytes were measured in offspring. The rates of in vitro maturation, in vitro fertilization, oocyte spindle and chromosomal abnormalities were also calculated. The results showed that prenatal exposure to PCB118 altered the DNA methylation status of differentially methylated regions in some imprinted genes, and the expression levels of Dnmt1, 3a, and 3l, Uhrf1 and Tet3 were also changed. In addition, PCB118 disturbed the maturation process of progeny mouse oocytes in a dose-dependent manner. Therefore, attention should be paid to the potential impacts of PCB118-contaminated dietary intake during pregnancy on the offspring's reproductive health.
Collapse
|
35
|
Spike CA, Huelgas-Morales G, Tsukamoto T, Greenstein D. Multiple Mechanisms Inactivate the LIN-41 RNA-Binding Protein To Ensure a Robust Oocyte-to-Embryo Transition in Caenorhabditis elegans. Genetics 2018; 210:1011-1037. [PMID: 30206186 PMCID: PMC6218228 DOI: 10.1534/genetics.118.301421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022] Open
Abstract
In the nematode Caenorhabditis elegans, the conserved LIN-41 RNA-binding protein is a translational repressor that coordinately controls oocyte growth and meiotic maturation. LIN-41 exerts these effects, at least in part, by preventing the premature activation of the cyclin-dependent kinase CDK-1 Here we investigate the mechanism by which LIN-41 is rapidly eliminated upon the onset of meiotic maturation. Elimination of LIN-41 requires the activities of CDK-1 and multiple SCF (Skp1, Cul1, and F-box protein)-type E3 ubiquitin ligase subunits, including the conserved substrate adaptor protein SEL-10/Fbw7/Cdc4, suggesting that LIN-41 is a target of ubiquitin-mediated protein degradation. Within the LIN-41 protein, two nonoverlapping regions, Deg-A and Deg-B, are individually necessary for LIN-41 degradation; both contain several potential phosphodegron sequences, and at least one of these sequences is required for LIN-41 degradation. Finally, Deg-A and Deg-B are sufficient, in combination, to mediate SEL-10-dependent degradation when transplanted into a different oocyte protein. Although LIN-41 is a potent inhibitor of protein translation and M phase entry, the failure to eliminate LIN-41 from early embryos does not result in the continued translational repression of LIN-41 oocyte messenger RNA targets. Based on these observations, we propose a model for the elimination of LIN-41 by the SEL-10 E3 ubiquitin ligase and suggest that LIN-41 is inactivated before it is degraded. Furthermore, we provide evidence that another RNA-binding protein, the GLD-1 tumor suppressor, is regulated similarly. Redundant mechanisms to extinguish translational repression by RNA-binding proteins may both control and provide robustness to irreversible developmental transitions, including meiotic maturation and the oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gabriela Huelgas-Morales
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Tatsuya Tsukamoto
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
36
|
Yang LL, Cui YX, Ma JY, Ge ZJ, Shen W, Yin S. Tributyltin oxide exposure impairs mouse oocyte maturation and its possible mechanisms. J Cell Biochem 2018; 120:715-726. [PMID: 30191590 DOI: 10.1002/jcb.27429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/12/2018] [Indexed: 11/07/2022]
Abstract
Tributyltin oxide (TBTO) has been widely used as marine antifouling composition, preservative, biocide, and a stabilizer in plastic industry. Previous studies have indicated that TBTO can cause immunotoxicity as an environmental pollutant. However, little is known about its reproductive toxicity, especially on female oocyte maturation and the underlying mechanisms. In this study, mouse oocytes were cultured with different concentrations of TBTO in vitro, and several crucial events during meiotic maturation were evaluated. We found that the first polar body extrusion rate was significantly reduced, which reflected the disruption of meiotic maturation. The rate of abnormal spindle organization increased significantly, accompanied with a higher rate of chromosome misalignment. In addition, TBTO treatment increased reactive oxygen species generation markedly, which also accelerated the early-stage apoptosis. Moreover, heterogeneous mitochondrial distribution, mitochondrial dysfunction, and higher rate of aneuploidy were detected, which consequently disrupted in vitro fertilization. In conclusion, our results indicated that TBTO exposure could impair mouse oocyte maturation by affecting spindle organization, chromosome alignment, mitochondria functions, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Lei-Lei Yang
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Ying-Xue Cui
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jun-Yu Ma
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhao-Jia Ge
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
37
|
Bioinformat-Eggs: An Educational Primer for Use with "LIN-41 and OMA Ribonucleoprotein Complexes Mediate a Translational Repression-to-Activation Switch Controlling Oocyte Meiotic Maturation and the Oocyte-to-Embryo Transition in Caenorhabditis elegans". Genetics 2018; 209:675-683. [PMID: 29967060 DOI: 10.1534/genetics.118.301139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 11/18/2022] Open
Abstract
High-throughput sequencing and bioinformatic techniques have enhanced classical genetic analysis and are essential methods for geneticists. Tsukamoto and colleagues use numerous genomic and bioinformatics methods to explore the role of ribonucleoprotein complexes in regulating oocyte meiotic maturation, which is the transition between diakinesis and metaphase of meiosis I. This primer provides guidance for both educators and students as they read "LIN-41 and OMA Ribonucleoprotein Complexes Mediate a Translational Repression-to-Activation Switch Controlling Oocyte Meiotic Maturation and the Oocyte-to-Embryo Transition in Caenorhabditis elegans" The primer provides background information on the utility of the C. elegans germ line as a model for meiotic regulation, and further describes methods of bioinformatic analysis used to study translational and post-translational gene regulation. Additionally, the primer provides discussion questions and an active learning exercise designed to enhance student learning of critical genetic concepts.
Collapse
|
38
|
Affiliation(s)
- Scott Robertson
- Dept. of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, United States.
| | - Rueyling Lin
- Dept. of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, United States.
| |
Collapse
|