1
|
Pranter R, Feiner N. Spatiotemporal distribution of neural crest cells in the common wall lizard Podarcis muralis. Dev Dyn 2024. [PMID: 39560189 DOI: 10.1002/dvdy.758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 10/06/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Neural crest cells (NCCs) are migratory embryonic stem cells that give rise to a diverse set of cell types. Here we describe the dynamic distribution of NCCs in developing embryos of the common wall lizard Podarcis muralis inferred from 10 markers. Our aim is to provide insights into the NCC development of lacertid lizards and to infer evolutionary modifications by comparisons to other tetrapods. RESULTS NCC migration is ongoing at oviposition, following three streams in the head and multiple in the trunk. From 21ss, we observe expression patterns indicating the beginning of differentiation toward mesenchymal and neuronal fates. By 35ss, migration is restricted to caudal levels, and fully differentiated chromaffin cells are observed. CONCLUSIONS We find that some markers show patterns that differ from other tetrapods. For example, the antibody HNK-1 labels three NCC streams from the hindbrain while some comparable reptile studies describe four. However, the information emerging from all markers combined shows that the overall spatiotemporal distribution of NCCs in the common wall lizard is largely conserved with that of other tetrapods. Our study highlights the dynamic nature of seemingly canonical marker genes and provides the first description of spatiotemporal NCC dynamics in a lacertid lizard.
Collapse
Affiliation(s)
- Robin Pranter
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
2
|
Todorov LG, Oonuma K, Kusakabe TG, Levine MS, Lemaire LA. Neural crest lineage in the protovertebrate model Ciona. Nature 2024; 635:912-916. [PMID: 39443803 DOI: 10.1038/s41586-024-08111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Neural crest cells are multipotent progenitors that produce defining features of vertebrates such as the 'new head'1. Here we use the tunicate, Ciona, to explore the evolutionary origins of neural crest since this invertebrate chordate is among the closest living relatives of vertebrates2-4. Previous studies identified two potential neural crest cell types in Ciona, sensory pigment cells and bipolar tail neurons5,6. Recent findings suggest that bipolar tail neurons are homologous to cranial sensory ganglia rather than derivatives of neural crest7,8. Here we show that the pigment cell lineage also produces neural progenitor cells that form regions of the juvenile nervous system following metamorphosis. Neural progenitors are also a major derivative of neural crest in vertebrates, suggesting that the last common ancestor of tunicates and vertebrates contained a multipotent progenitor population at the neural plate border. It would therefore appear that a key property of neural crest, multipotentiality, preceded the emergence of vertebrates.
Collapse
Affiliation(s)
- Lauren G Todorov
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Kouhei Oonuma
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, Kobe, Japan
- Frontier Research Institute, Chubu University, Kasugai, Japan
| | - Takehiro G Kusakabe
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, Kobe, Japan.
| | - Michael S Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Laurence A Lemaire
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Biology, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
3
|
Schneider RA. Cellular, Molecular, and Genetic Mechanisms of Avian Beak Development and Evolution. Annu Rev Genet 2024; 58:433-454. [PMID: 39227135 PMCID: PMC11777486 DOI: 10.1146/annurev-genet-111523-101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Diverse research programs employing complementary strategies have been uncovering cellular, molecular, and genetic mechanisms essential to avian beak development and evolution. In reviewing these discoveries, I offer an interdisciplinary perspective on bird beaks that spans their derivation from jaws of dinosaurian reptiles, their anatomical and ecological diversification across major taxonomic groups, their common embryonic origins, their intrinsic patterning processes, and their structural integration. I describe how descriptive and experimental approaches, including gene expression and cell lineage analyses, tissue recombinations, surgical transplants, gain- and loss-of-function methods, geometric morphometrics, comparative genomics, and genome-wide association studies, have identified key constituent parts and putative genes regulating beak morphogenesis and evolution. I focus throughout on neural crest mesenchyme, which generates the beak skeleton and other components, and describe how these embryonic progenitor cells mediate species-specific pattern and link form and function as revealed by 20 years of research using chimeras between quail and duck embryos.
Collapse
Affiliation(s)
- Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, USA;
| |
Collapse
|
4
|
Marconi A, Vernaz G, Karunaratna A, Ngochera MJ, Durbin R, Santos ME. Genetic and Developmental Divergence in the Neural Crest Program between Cichlid Fish Species. Mol Biol Evol 2024; 41:msae217. [PMID: 39412298 PMCID: PMC11558072 DOI: 10.1093/molbev/msae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic program in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to interspecific morphological differences, such as craniofacial structures and pigmentation. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared with teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes-particularly those controlled by sox10s-are involved in generating morphological diversification between species and lays the groundwork for further investigations into the mechanisms underpinning vertebrate NC diversification.
Collapse
Affiliation(s)
| | - Grégoire Vernaz
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Maxon J Ngochera
- Malawi Fisheries Department, Senga Bay Fisheries Research Center, P.O. Box 316, Salima, Malawi
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Ba H, Guo Q, Shang Y, Hu P, Ma C, Li J, Coates DE, Li C. Insights into the molecular characteristics of embryonic cranial neural crest cells and their derived mesenchymal cell pools. Commun Biol 2024; 7:1347. [PMID: 39424998 PMCID: PMC11489408 DOI: 10.1038/s42003-024-07056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Neural crest cells (NCCs) are central to vertebrate embryonic development, giving rise to diverse cell types with unique migratory and differentiation capacities. This study examines the molecular characteristics of cranial neural crest cell (CNCC)-derived mesenchymal cells, specifically those from teeth which in deer show continuous but limited growth, and antlers, which exhibit remarkable regenerative capabilities. Here, through single-cell RNA sequencing analysis, we uncover shared gene expression profiles between adult antlerogenic and dental mesenchymal cells, indicating common developmental pathways. We identify a striking resemblance in transcriptomic features between antlerogenic progenitor cells and dental pulp mesenchymal cells. Comparative analysis of CNCC-derived and non-CNCC-derived mesenchymal cell pools across species reveals core signature genes associated with CNCCs and their derivatives, delineating essential connections between CNCCs and CNCC-derived adult mesenchymal pools. Furthermore, whole-genome DNA methylation analysis unveils hypomethylation of CNCC derivate signature genes in regenerative antlerogenic periosteum, implying a role in maintaining multipotency. These findings offer crucial insights into the developmental biology and regenerative potential of CNCC-derived mesenchymal cells, laying a foundation for innovative therapeutic strategies in tissue regeneration.
Collapse
Affiliation(s)
- Hengxing Ba
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China.
| | - Qianqian Guo
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Yudong Shang
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Pengfei Hu
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Chao Ma
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Jiping Li
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Dawn Elizabeth Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Chunyi Li
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
6
|
Holtz N, Albertson RC. Variable Craniofacial Shape and Development among Multiple Cave-Adapted Populations of Astyanax mexicanus. Integr Org Biol 2024; 6:obae030. [PMID: 39234027 PMCID: PMC11372417 DOI: 10.1093/iob/obae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024] Open
Abstract
Astyanax mexicanus is a freshwater fish species with blind cave morphs and sighted surface morphs. Like other troglodytic species, independently evolved cave-dwelling A. mexicanus populations share several stereotypic phenotypes, including the expansion of certain sensory systems, as well as the loss of eyes and pigmentation. Here, we assess the extent to which there is also parallelism in craniofacial development across cave populations. Since multiple forces may be acting upon variation in the A. mexicanus system, including phylogenetic history, selection, and developmental constraint, several outcomes are possible. For example, eye regression may have triggered a conserved series of compensatory developmental events, in which case we would expect to observe highly similar craniofacial phenotypes across cave populations. Selection for cave-specific foraging may also lead to the evolution of a conserved craniofacial phenotype, especially in regions of the head directly associated with feeding. Alternatively, in the absence of a common axis of selection or strong developmental constraints, craniofacial shape may evolve under neutral processes such as gene flow, drift, and bottlenecking, in which case patterns of variation should reflect the evolutionary history of A. mexicanus. Our results found that cave-adapted populations do share certain anatomical features; however, they generally did not support the hypothesis of a conserved craniofacial phenotype across caves, as nearly every pairwise comparison was statistically significant, with greater effect sizes noted between more distantly related cave populations with little gene flow. A similar pattern was observed for developmental trajectories. We also found that morphological disparity was lower among all three cave populations versus surface fish, suggesting eye loss is not associated with increased variation, which would be consistent with a release of developmental constraint. Instead, this pattern reflects the relatively low genetic diversity within cave populations. Finally, magnitudes of craniofacial integration were found to be similar among all groups, meaning that coordinated development among anatomical units is robust to eye loss in A. mexicanus. We conclude that, in contrast to many conserved phenotypes across cave populations, global craniofacial shape is more variable, and patterns of shape variation are more in line with population structure than developmental architecture or selection.
Collapse
Affiliation(s)
- N Holtz
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - R C Albertson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Brandon AA, Michael C, Carmona Baez A, Moore EC, Ciccotto PJ, Roberts NB, Roberts RB, Powder KE. Distinct genetic origins of eumelanin levels and barring patterns in cichlid fishes. PLoS One 2024; 19:e0306614. [PMID: 38976656 PMCID: PMC11230561 DOI: 10.1371/journal.pone.0306614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Pigment patterns are incredibly diverse across vertebrates and are shaped by multiple selective pressures from predator avoidance to mate choice. A common pattern across fishes, but for which we know little about the underlying mechanisms, is repeated melanic vertical bars. To understand the genetic factors that modify the level or pattern of vertical barring, we generated a genetic cross of 322 F2 hybrids between two cichlid species with distinct barring patterns, Aulonocara koningsi and Metriaclima mbenjii. We identify 48 significant quantitative trait loci that underlie a series of seven phenotypes related to the relative pigmentation intensity, and four traits related to patterning of the vertical bars. We find that genomic regions that generate variation in the level of eumelanin produced are largely independent of those that control the spacing of vertical bars. Candidate genes within these intervals include novel genes and those newly-associated with vertical bars, which could affect melanophore survival, fate decisions, pigment biosynthesis, and pigment distribution. Together, this work provides insights into the regulation of pigment diversity, with direct implications for an animal's fitness and the speciation process.
Collapse
Affiliation(s)
- A. Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Cassia Michael
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Aldo Carmona Baez
- Department of Biological Sciences, Genetics and Genomics Academy, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Emily C. Moore
- Department of Biological Sciences, Genetics and Genomics Academy, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Patrick J. Ciccotto
- Department of Biology, Warren Wilson College, Swannanoa, North Carolina, United States of America
| | - Natalie B. Roberts
- Department of Biological Sciences, Genetics and Genomics Academy, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Reade B. Roberts
- Department of Biological Sciences, Genetics and Genomics Academy, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kara E. Powder
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
8
|
Marconi A, Vernaz G, Karunaratna A, Ngochera MJ, Durbin R, Santos ME. Genetic and developmental divergence in the neural crest programme between cichlid fish species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578004. [PMID: 38352436 PMCID: PMC10862805 DOI: 10.1101/2024.01.30.578004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic programme in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to inter-specific morphological differences. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared to the teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes - particularly those controlled by sox10s - might be involved in generating morphological diversification between species and lays the groundwork for further investigations into mechanisms underpinning vertebrate NC diversification.
Collapse
Affiliation(s)
| | | | | | - Maxon J. Ngochera
- Senga Bay Fisheries Research Center, Malawi Fisheries Department, P.O. Box 316, Salima, Malawi
| | - Richard Durbin
- Department of Genetics, University of Cambridge, United Kingdom
| | | |
Collapse
|
9
|
Nguyen TT, Mitchell JM, Kiel MD, Kenny CP, Li H, Jones KL, Cornell RA, Williams TJ, Nichols JT, Van Otterloo E. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway. Development 2024; 151:dev202095. [PMID: 38063857 PMCID: PMC10820886 DOI: 10.1242/dev.202095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underlies facial shape variation, yet how those networks in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest, even during the late migratory phase, results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both TFAP2 family members dysregulates numerous midface GRN components involved in midface morphogenesis, patterning and differentiation. Notably, Alx1, Alx3 and Alx4 (ALX) transcript levels are reduced, whereas ChIP-seq analyses suggest TFAP2 family members directly and positively regulate ALX gene expression. Tfap2a, Tfap2b and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish implies conservation of this regulatory axis across vertebrates. Consistent with this notion, tfap2a zebrafish mutants present with abnormal alx3 expression patterns, Tfap2a binds ALX loci and tfap2a-alx3 genetic interactions are observed. Together, these data demonstrate TFAP2 paralogs regulate vertebrate midfacial development in part by activating expression of ALX transcription factor genes.
Collapse
Affiliation(s)
- Timothy T. Nguyen
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Jennyfer M. Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michaela D. Kiel
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Colin P. Kenny
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L. Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Robert A. Cornell
- Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA 98195, USA
| | - Trevor J. Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Wu Y, Zhu Y, Zhang X, Feng J, Xia H, Zhang Y, Li J. Associated congenital heart disease with Hirschsprung's disease: a retrospective cohort study on 2,174 children. Front Cardiovasc Med 2023; 10:1215473. [PMID: 37636298 PMCID: PMC10450952 DOI: 10.3389/fcvm.2023.1215473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Objective To examine the incidence and phenotypes of congenital heart disease (CHD) in a large cohort of patients with Hirschsprung's disease (HSCR). Study design Retrospective data review of children with HSCR between 2003 and 2020 was conducted at the Provincial Key Laboratory for Structural Birth Defects in Guangzhou, Guangdong, China. HSCR was confirmed by pathological diagnosis. CHD was defined as a gross structural abnormality of the heart or intrathoracic great vessels that is of functional significance. Results A total of 2,174 HSCR patients (84.7% males) were studied and 306 of them underwent echocardiography. Overall, 27 children (1.2%) had associated CHD. Among them, CHDs mostly presented as atrial and ventricular septal defects (n = 5 and 12 respectively) and patent ductus arteriosus (n = 4). Three patients (1.4‰) presented as a severe CHD including complete atrioventricular canal, congenitally corrected transposition of the great arteries and double-outlet of right ventricle. Among 14 patients carrying a chromosomal abnormality, CHD was detected in 4 infants (28.6%), all being mild forms of septal defects. Conclusions Some new and severe types of CHD were found in patients with HSCR. Patients with syndromic features had higher incidence of CHD.
Collapse
Affiliation(s)
- Yujian Wu
- Department of Pediatric Cardiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yun Zhu
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xu Zhang
- Department of Pediatric Cardiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinqing Feng
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Clinical Physiology Laboratory, Research Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huimin Xia
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jia Li
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Clinical Physiology Laboratory, Research Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Bowsher J, Jockusch EL, Nagy L. Editorial. Semin Cell Dev Biol 2023; 145:1-2. [PMID: 36702721 DOI: 10.1016/j.semcdb.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Julia Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Elizabeth L Jockusch
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Lisa Nagy
- Molecular and Cellular Biology, University of Arizona, Tucson, Arizona USA.
| |
Collapse
|
12
|
Xing L, Wang L, Liu S, Sun L, Wessel GM, Yang H. Single-Cell Transcriptome and Pigment Biochemistry Analysis Reveals the Potential for the High Nutritional and Medicinal Value of Purple Sea Cucumbers. Int J Mol Sci 2023; 24:12213. [PMID: 37569587 PMCID: PMC10419132 DOI: 10.3390/ijms241512213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The sea cucumber Apostichopus japonicus has important nutritional and medicinal value. Unfortunately, we know little of the source of active chemicals in this animal, but the plentiful pigments of these animals are thought to function in intriguing ways for translation into clinical and food chemistry usage. Here, we found key cell groups with the gene activity predicted for the color morphology of sea cucumber body using single-cell RNA-seq. We refer to these cell populations as melanocytes and quinocytes, which are responsible for the synthesis of melanin and quinone pigments, respectively. We integrated analysis of pigment biochemistry with the transcript profiles to illuminate the molecular mechanisms regulating distinct pigment formation in echinoderms. In concert with the correlated pigment analysis from each color morph, this study expands our understanding of medically important pigment production, as well as the genetic mechanisms for color morphs, and provides deep datasets for exploring advancements in the fields of bioactives and nutraceuticals.
Collapse
Affiliation(s)
- Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (L.X.); (S.L.); (H.Y.)
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Wang
- Department of Biology, Duke University, Durham, NC 27708, USA;
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (L.X.); (S.L.); (H.Y.)
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (L.X.); (S.L.); (H.Y.)
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (L.X.); (S.L.); (H.Y.)
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Goswami A, Noirault E, Coombs EJ, Clavel J, Fabre AC, Halliday TJD, Churchill M, Curtis A, Watanabe A, Simmons NB, Beatty BL, Geisler JH, Fox DL, Felice RN. Developmental origin underlies evolutionary rate variation across the placental skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220083. [PMID: 37183904 PMCID: PMC10184245 DOI: 10.1098/rstb.2022.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The placental skull has evolved into myriad forms, from longirostrine whales to globular primates, and with a diverse array of appendages from antlers to tusks. This disparity has recently been studied from the perspective of the whole skull, but the skull is composed of numerous elements that have distinct developmental origins and varied functions. Here, we assess the evolution of the skull's major skeletal elements, decomposed into 17 individual regions. Using a high-dimensional morphometric approach for a dataset of 322 living and extinct eutherians (placental mammals and their stem relatives), we quantify patterns of variation and estimate phylogenetic, allometric and ecological signal across the skull. We further compare rates of evolution across ecological categories and ordinal-level clades and reconstruct rates of evolution along lineages and through time to assess whether developmental origin or function discriminate the evolutionary trajectories of individual cranial elements. Our results demonstrate distinct macroevolutionary patterns across cranial elements that reflect the ecological adaptations of major clades. Elements derived from neural crest show the fastest rates of evolution, but ecological signal is equally pronounced in bones derived from neural crest and paraxial mesoderm, suggesting that developmental origin may influence evolutionary tempo, but not capacity for specialisation. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Anjali Goswami
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Eve Noirault
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Ellen J Coombs
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Julien Clavel
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69622 Villeurbanne, France
| | - Anne-Claire Fabre
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Naturhistorisches Museum Bern, 3005 Bern, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Thomas J D Halliday
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Morgan Churchill
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA
| | - Abigail Curtis
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Akinobu Watanabe
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Brian L Beatty
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Jonathan H Geisler
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - David L Fox
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryan N Felice
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
14
|
Brandon AA, Michael C, Carmona Baez A, Moore EC, Ciccotto PJ, Roberts NB, Roberts RB, Powder KE. Distinct genetic origins of eumelanin intensity and barring patterns in cichlid fishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547430. [PMID: 37461734 PMCID: PMC10349982 DOI: 10.1101/2023.07.02.547430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Pigment patterns are incredibly diverse across vertebrates and are shaped by multiple selective pressures from predator avoidance to mate choice. A common pattern across fishes, but for which we know little about the underlying mechanisms, is repeated melanic vertical bars. In order to understand genetic factors that modify the level or pattern of vertical barring, we generated a genetic cross of 322 F2 hybrids between two cichlid species with distinct barring patterns, Aulonocara koningsi and Metriaclima mbenjii. We identify 48 significant quantitative trait loci that underlie a series of seven phenotypes related to the relative pigmentation intensity, and four traits related to patterning of the vertical bars. We find that genomic regions that generate variation in the level of eumelanin produced are largely independent of those that control the spacing of vertical bars. Candidate genes within these intervals include novel genes and those newly-associated with vertical bars, which could affect melanophore survival, fate decisions, pigment biosynthesis, and pigment distribution. Together, this work provides insights into the regulation of pigment diversity, with direct implications for an animal's fitness and the speciation process.
Collapse
Affiliation(s)
- A. Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Cassia Michael
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Aldo Carmona Baez
- Department of Biological Sciences, and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Emily C. Moore
- Department of Biological Sciences, and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | | - Natalie B. Roberts
- Department of Biological Sciences, and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Reade B. Roberts
- Department of Biological Sciences, and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Kara E. Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
15
|
Nguyen TT, Mitchell JM, Kiel MD, Jones KL, Williams TJ, Nichols JT, Van Otterloo E. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545376. [PMID: 37398373 PMCID: PMC10312788 DOI: 10.1101/2023.06.16.545376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underly facial shape variation, yet how those in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest even during the late migratory phase results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both Tfap2 members dysregulated numerous midface GRN components involved in midface fusion, patterning, and differentiation. Notably, Alx1/3/4 (Alx) transcript levels are reduced, while ChIP-seq analyses suggest TFAP2 directly and positively regulates Alx gene expression. TFAP2 and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish further implies conservation of this regulatory axis across vertebrates. Consistent with this notion, tfap2a mutant zebrafish present abnormal alx3 expression patterns, and the two genes display a genetic interaction in this species. Together, these data demonstrate a critical role for TFAP2 in regulating vertebrate midfacial development in part through ALX transcription factor gene expression.
Collapse
Affiliation(s)
- Timothy T Nguyen
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
| | - Jennyfer M Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michaela D Kiel
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Trevor J Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James T Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
- Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
16
|
Gleeson BT, Wilson LAB. Shared reproductive disruption, not neural crest or tameness, explains the domestication syndrome. Proc Biol Sci 2023; 290:20222464. [PMID: 36946116 PMCID: PMC10031412 DOI: 10.1098/rspb.2022.2464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Altered neural crest cell (NCC) behaviour is an increasingly cited explanation for the domestication syndrome in animals. However, recent authors have questioned this explanation, while others cast doubt on whether domestication syndrome even exists. Here, we review published literature concerning this syndrome and the NCC hypothesis, together with recent critiques of both. We synthesize these contributions and propose a novel interpretation, arguing shared trait changes under ancient domestication resulted primarily from shared disruption of wild reproductive regimes. We detail four primary selective pathways for 'reproductive disruption' under domestication and contrast these succinct and demonstrable mechanisms with cryptic genetic associations posited by the NCC hypothesis. In support of our perspective, we illustrate numerous important ways in which NCCs contribute to vertebrate reproductive phenotypes, and argue it is not surprising that features derived from these cells would be coincidentally altered under major selective regime changes, as occur in domestication. We then illustrate several pertinent examples of Darwin's 'unconscious selection' in action, and compare applied selection and phenotypic responses in each case. Lastly, we explore the ramifications of reproductive disruption for wider evolutionary discourse, including links to wild 'self-domestication' and 'island effect', and discuss outstanding questions.
Collapse
Affiliation(s)
- Ben Thomas Gleeson
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Laura A. B. Wilson
- School of Archaeology and Anthropology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| |
Collapse
|
17
|
Marconi A, Yang CZ, McKay S, Santos ME. Morphological and temporal variation in early embryogenesis contributes to species divergence in Malawi cichlid fishes. Evol Dev 2023; 25:170-193. [PMID: 36748313 PMCID: PMC10909517 DOI: 10.1111/ede.12429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/18/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023]
Abstract
The cichlid fishes comprise the largest extant vertebrate family and are the quintessential example of rapid "explosive" adaptive radiations and phenotypic diversification. Despite low genetic divergence, East African cichlids harbor a spectacular intra- and interspecific morphological diversity, including the hyper-variable, neural crest (NC)-derived traits such as coloration and craniofacial skeleton. Although the genetic and developmental basis of these phenotypes has been investigated, understanding of when, and specifically how early, in ontogeny species-specific differences emerge, remains limited. Since adult traits often originate during embryonic development, the processes of embryogenesis could serve as a potential source of species-specific variation. Consequently, we designed a staging system by which we compare the features of embryogenesis between three Malawi cichlid species-Astatotilapia calliptera, Tropheops sp. 'mauve' and Rhamphochromis sp. "chilingali"-representing a wide spectrum of variation in pigmentation and craniofacial morphologies. Our results showed fundamental differences in multiple aspects of embryogenesis that could underlie interspecific divergence in adult adaptive traits. First, we identified variation in the somite number and signatures of temporal variation, or heterochrony, in the rates of somite formation. The heterochrony was also evident within and between species throughout ontogeny, up to the juvenile stages. Finally, the identified interspecific differences in the development of pigmentation and craniofacial cartilages, present at the earliest stages of their overt formation, provide compelling evidence that the species-specific trajectories begin divergence during early embryogenesis, potentially during somitogenesis and NC development. Altogether, our results expand our understanding of fundamental cichlid biology and provide new insights into the developmental origins of vertebrate morphological diversity.
Collapse
Affiliation(s)
| | | | - Samuel McKay
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | | |
Collapse
|