1
|
Liu Z, Pan C, Huang H. The role of axon guidance molecules in the pathogenesis of epilepsy. Neural Regen Res 2025; 20:1244-1257. [PMID: 39075893 PMCID: PMC11624883 DOI: 10.4103/nrr.nrr-d-23-01620] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 07/31/2024] Open
Abstract
Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Chunhua Pan
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
2
|
Swaim GL, Glomb OV, Xie Y, Emerson C, Li Z, Beaudet D, Hendricks AG, Yogev S. Axonal Mechanotransduction Drives Cytoskeletal Responses to Physiological Mechanical Forces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637689. [PMID: 39990487 PMCID: PMC11844441 DOI: 10.1101/2025.02.11.637689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Axons experience strong mechanical forces due to animal movement. While these forces serve as sensory cues in mechanosensory neurons, their impact on other neuron types remains poorly defined. Here, we uncover signaling that controls an axonal cytoskeletal response to external physiological forces and plays a key role in axonal integrity. Live imaging of microtubules at single-polymer resolution in a C. elegans motor neuron reveals local oscillatory movements that fine-tune polymer positioning. Combining cell-specific chemogenetic silencing with targeted degradation alleles to distinguish neuron-intrinsic from extrinsic regulators of these movements, we find that they are driven by muscle contractions and require the mechanosensitive protein Talin, the small GTPase RhoA, and actomyosin activity in the axon. Genetic perturbation of the axon's ability to buffer tension by disrupting the spectrin-based membrane-associated skeleton leads to RhoA hyperactivation, actomyosin relocalization to foci at microtubule ends, and converts local oscillations into processive bidirectional movements. This results in large gaps between microtubules, disrupting coverage of the axon and leading to its breakage and degeneration. Notably, hyperpolarizing muscle or degrading components of the mechanotransduction signaling pathway in the axon rescues cytoskeletal defects in spectrin-deficient axons. These results identify mechanisms of an axonal cytoskeletal response to physiological forces and highlight the importance of force-buffering and mechanotransduction signaling for axonal integrity.
Collapse
Affiliation(s)
- Grace L Swaim
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- These authors contributed equally
| | - Oliver V. Glomb
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- These authors contributed equally
| | - Yi Xie
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Chloe Emerson
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510
| | - Zhuoyuan Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9
| | - Adam G. Hendricks
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9
| | - Shaul Yogev
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
3
|
Fontana F, Donato AC, Malik A, Gelain F. Unveiling Interactions between Self-Assembling Peptides and Neuronal Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26811-26823. [PMID: 39653368 DOI: 10.1021/acs.langmuir.4c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The use of self-assembling peptide hydrogels in the treatment of spinal cord and brain injuries, especially when combined with adult neural stem cells, has shown great potential. To advance tissue engineering, it is essential to understand the effect of mechanochemical signaling on cellular differentiation. The elucidation of the molecular interactions at the level of the neuronal membrane still represents a promising area of investigation for many drug delivery and tissue engineering applications. An innovative molecular dynamics framework has been introduced to investigate the effect of SAP fibrils with different charges on neural membrane lipid domain dynamics. Such advance enables the in silico exploration of the biomimetic properties of SAP hydrogels and other polymeric biomaterials for tissue engineering applications.
Collapse
Affiliation(s)
- Federico Fontana
- Center for Nanomedicine and Tissue Engineering (CNTE), A.S.S.T. Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, Milan 20162, Italy
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unità di Ingegneria Tissutale, Viale Cappuccini 1, San Giovanni Rotondo, Foggia 71013, Italy
| | - Alice Cristina Donato
- Center for Nanomedicine and Tissue Engineering (CNTE), A.S.S.T. Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, Milan 20162, Italy
- Histology Unit, Department of Molecular Medicine, University of Padova, Padova 35121, Italy
| | - Ashish Malik
- Center for Nanomedicine and Tissue Engineering (CNTE), A.S.S.T. Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, Milan 20162, Italy
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unità di Ingegneria Tissutale, Viale Cappuccini 1, San Giovanni Rotondo, Foggia 71013, Italy
| | - Fabrizio Gelain
- Center for Nanomedicine and Tissue Engineering (CNTE), A.S.S.T. Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, Milan 20162, Italy
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unità di Ingegneria Tissutale, Viale Cappuccini 1, San Giovanni Rotondo, Foggia 71013, Italy
| |
Collapse
|
4
|
Falconieri A, Coppini A, Raffa V. Microtubules as a signal hub for axon growth in response to mechanical force. Biol Chem 2024; 405:67-77. [PMID: 37674311 DOI: 10.1515/hsz-2023-0173] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023]
Abstract
Microtubules are highly polar structures and are characterized by high anisotropy and stiffness. In neurons, they play a key role in the directional transport of vesicles and organelles. In the neuronal projections called axons, they form parallel bundles, mostly oriented with the plus-end towards the axonal termination. Their physico-chemical properties have recently attracted attention as a potential candidate in sensing, processing and transducing physical signals generated by mechanical forces. Here, we discuss the main evidence supporting the role of microtubules as a signal hub for axon growth in response to a traction force. Applying a tension to the axon appears to stabilize the microtubules, which, in turn, coordinate a modulation of axonal transport, local translation and their cross-talk. We speculate on the possible mechanisms modulating microtubule dynamics under tension, based on evidence collected in neuronal and non-neuronal cell types. However, the fundamental question of the causal relationship between these mechanisms is still elusive because the mechano-sensitive element in this chain has not yet been identified.
Collapse
Affiliation(s)
| | - Allegra Coppini
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| |
Collapse
|
5
|
Sinclair P, Kabbani N. Ionotropic and metabotropic responses by alpha 7 nicotinic acetylcholine receptors. Pharmacol Res 2023; 197:106975. [PMID: 38032294 DOI: 10.1016/j.phrs.2023.106975] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to a superfamily of cys-loop receptors characterized by the assembly of five subunits into a multi-protein channel complex. Ligand binding to nAChRs activates rapid allosteric transitions of the receptor leading to channel opening and ion flux in neuronal and non-neuronal cell. Thus, while ionotropic properties of nAChRs are well recognized, less is known about ligand-mediated intracellular metabotropic signaling responses. Studies in neural and non-neural cells confirm ionotropic and metabotropic channel responses following ligand binding. In this review we summarize evidence on the existence of ionotropic and metabotropic signaling responses by homopentameric α7 nAChRs in various cell types. We explore how coordinated calcium entry through the ion channel and calcium release from nearby stores gives rise to signaling important for the modulation of cytoskeletal motility and cell growth. Amino acid residues for intracellular protein binding within the α7 nAChR support engagement in metabotropic responses including signaling through heterotrimeric G proteins in neural and immune cells. Understanding the dual properties of ionotropic and metabotropic nAChR responses is essential in advancing drug development for the treatment of various human disease.
Collapse
Affiliation(s)
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, Fairfax, VA, USA; School of Systems Biology, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
6
|
Trembleau A, Breau MA. Editorial for the special issue "Driving forces behind the wiring of neuronal circuits". Semin Cell Dev Biol 2023; 140:1-2. [PMID: 36088209 DOI: 10.1016/j.semcdb.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A Trembleau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - M A Breau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR 7622), Institut de Biologie Paris Seine (IBPS), Developmental Biology Laboratory, Paris, France.
| |
Collapse
|