1
|
Kitai H, Mulcrone D, Souma T. Pax inhibition: stressing proximal tubule for successful repair. Am J Physiol Renal Physiol 2025; 328:F270-F271. [PMID: 39792148 DOI: 10.1152/ajprenal.00368.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Affiliation(s)
- Hiroki Kitai
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States
| | - Devin Mulcrone
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
2
|
Vanichapol T, Gonzalez A, Delgado R, Brewer M, Clouthier KA, Menshikh AA, Snyder WE, Rahman T, Sander V, Yang H, Davidson AJ, de Caestecker MP. Permanent defects in renal medullary structure and function after reversal of urinary obstruction. JCI Insight 2025; 10:e187008. [PMID: 39847447 PMCID: PMC11949033 DOI: 10.1172/jci.insight.187008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
Urinary obstruction causes injury to the renal medulla, impairing the ability to concentrate urine and increasing the risk of progressive kidney disease. However, the regenerative capacity of the renal medulla after reversal of obstruction is poorly understood. To investigate this, we developed a mouse model of reversible urinary obstruction. Despite robust regeneration and complete histological recovery of the renal medulla, these mice exhibited a permanent defect in urinary concentrating capacity. However, there were lasting changes in the composition, organization, and transcriptional profiles of epithelial, endothelial, and interstitial cells. Persistent inflammatory responses were also seen in patients with renal stone disease, but there were also adaptive responses to the increasingly hypoxic environment of the renal medulla that occurred only after reversal of obstruction. These findings indicate that while partial repair occurs after reversal of urinary obstruction, there are lasting structural and functional changes across all major cellular compartments of the renal medulla. These changes reflect shared and distinct responses to different renal medullary injuries in humans and mice.
Collapse
Affiliation(s)
- Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | | | | - Maya Brewer
- Division of Nephrology, Department of Medicine, and
| | | | | | | | | | - Veronika Sander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
3
|
Vanichapol T, Gonzalez A, Delgado R, Brewer M, Clouthier KA, Menshikh A, Snyder WE, Rahman T, Sander V, Yang H, Davidson A, de Caestecker M. Partial repair causes permanent defects in papillary structure and function after reversal of urinary obstruction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612436. [PMID: 39314319 PMCID: PMC11419032 DOI: 10.1101/2024.09.11.612436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Urinary obstruction causes injury to the renal papilla and leads to defects in the ability to concentrate urine which predisposes to progressive kidney injury. However, the regenerative capacity of the papilla after reversal of obstruction is poorly understood. To address this, we developed a mouse model of reversible urinary obstruction which is characterized by extensive papillary injury, followed by a robust regeneration response and complete histological recovery over a 3- month period. However, these mice have a pronounced defect in urinary concentrating capacity. We now show that this is due to permanent changes in the composition, organization, and transcriptional signatures of epithelial, endothelial, and interstitial cell lineages in the papilla. There are persistent inflammatory responses that are also seen in patients with renal stone disease but are associated with cell-specific adaptive responses to the increasingly hypoxic environment of the papilla after reversal of obstruction. Taken together, our analysis of a new model of reversible urinary obstruction reveals that partial repair leads to permanent changes in the structure and function of all of the major cellular compartments in the papilla that include both shared and distinct responses to different types of renal papillary injury in humans and mice. Summary Partial repair after reversal of urinary obstruction leads to permanent changes in structure and function of all major cellular compartments in the renal papilla.
Collapse
|
4
|
Beamish JA, Watts JA, Dressler GR. Gene regulation in regeneration after acute kidney injury. J Biol Chem 2024; 300:107520. [PMID: 38950862 PMCID: PMC11325799 DOI: 10.1016/j.jbc.2024.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Acute kidney injury (AKI) is a common condition associated with significant morbidity, mortality, and cost. Injured kidney tissue can regenerate after many forms of AKI. However, there are no treatments in routine clinical practice to encourage recovery. In part, this shortcoming is due to an incomplete understanding of the genetic mechanisms that orchestrate kidney recovery. The advent of high-throughput sequencing technologies and genetic mouse models has opened an unprecedented window into the transcriptional dynamics that accompany both successful and maladaptive repair. AKI recovery shares similar cell-state transformations with kidney development, which can suggest common mechanisms of gene regulation. Several powerful bioinformatic strategies have been developed to infer the activity of gene regulatory networks by combining multiple forms of sequencing data at single-cell resolution. These studies highlight not only shared stress responses but also key changes in gene regulatory networks controlling metabolism. Furthermore, chromatin immunoprecipitation studies in injured kidneys have revealed dynamic epigenetic modifications at enhancer elements near target genes. This review will highlight how these studies have enhanced our understanding of gene regulation in injury response and regeneration.
Collapse
Affiliation(s)
- Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason A Watts
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
5
|
Hinze C, Lovric S, Halloran PF, Barasch J, Schmidt-Ott KM. Epithelial cell states associated with kidney and allograft injury. Nat Rev Nephrol 2024; 20:447-459. [PMID: 38632381 PMCID: PMC11660082 DOI: 10.1038/s41581-024-00834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
The kidney epithelium, with its intricate arrangement of highly specialized cell types, constitutes the functional core of the organ. Loss of kidney epithelium is linked to the loss of functional nephrons and a subsequent decline in kidney function. In kidney transplantation, epithelial injury signatures observed during post-transplantation surveillance are strong predictors of adverse kidney allograft outcomes. However, epithelial injury is currently neither monitored clinically nor addressed therapeutically after kidney transplantation. Several factors can contribute to allograft epithelial injury, including allograft rejection, drug toxicity, recurrent infections and postrenal obstruction. The injury mechanisms that underlie allograft injury overlap partially with those associated with acute kidney injury (AKI) and chronic kidney disease (CKD) in the native kidney. Studies using advanced transcriptomic analyses of single cells from kidney or urine have identified a role for kidney injury-induced epithelial cell states in exacerbating and sustaining damage in AKI and CKD. These epithelial cell states and their associated expression signatures are also observed in transplanted kidney allografts, suggesting that the identification and characterization of transcriptomic epithelial cell states in kidney allografts may have potential clinical implications for diagnosis and therapy.
Collapse
Affiliation(s)
- Christian Hinze
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Svjetlana Lovric
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada
- Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan Barasch
- Division of Nephrology, Columbia University, New York City, NY, USA
| | - Kai M Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
6
|
Cippà PE, McMahon AP. Proximal tubule responses to injury: interrogation by single-cell transcriptomics. Curr Opin Nephrol Hypertens 2023; 32:352-358. [PMID: 37074682 PMCID: PMC10330172 DOI: 10.1097/mnh.0000000000000893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
PURPOSE OF REVIEW Acute kidney injury (AKI) occurs in approximately 10-15% of patients admitted to hospital and is associated with adverse clinical outcomes. Despite recent advances, management of patients with AKI is still mainly supportive, including the avoidance of nephrotoxins, volume and haemodynamic management and renal replacement therapy. A better understanding of the renal response to injury is the prerequisite to overcome current limitations in AKI diagnostics and therapy. RECENT FINDINGS Single-cell technologies provided new opportunities to study the complexity of the kidney and have been instrumental for rapid advancements in the understanding of the cellular and molecular mechanisms of AKI. SUMMARY We provide an update on single-cell technologies and we summarize the recent discoveries on the cellular response to injury in proximal tubule cells from the early response in AKI, to the mechanisms of tubule repair and the relevance of maladaptive tubule repair in the transition to chronic kidney disease.
Collapse
Affiliation(s)
- Pietro E Cippà
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculity of Biomedical Sciences, Università della Svizzera Italiana, Lugano Switzerland
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Akalay S, Hosgood SA. How to Best Protect Kidneys for Transplantation-Mechanistic Target. J Clin Med 2023; 12:jcm12051787. [PMID: 36902572 PMCID: PMC10003664 DOI: 10.3390/jcm12051787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The increasing number of patients on the kidney transplant waiting list underlines the need to expand the donor pool and improve kidney graft utilization. By protecting kidney grafts adequately from the initial ischemic and subsequent reperfusion injury occurring during transplantation, both the number and quality of kidney grafts could be improved. The last few years have seen the emergence of many new technologies to abrogate ischemia-reperfusion (I/R) injury, including dynamic organ preservation through machine perfusion and organ reconditioning therapies. Although machine perfusion is gradually making the transition to clinical practice, reconditioning therapies have not yet progressed from the experimental setting, pointing towards a translational gap. In this review, we discuss the current knowledge on the biological processes implicated in I/R injury and explore the strategies and interventions that are being proposed to either prevent I/R injury, treat its deleterious consequences, or support the reparative response of the kidney. Prospects to improve the clinical translation of these therapies are discussed with a particular focus on the need to address multiple aspects of I/R injury to achieve robust and long-lasting protective effects on the kidney graft.
Collapse
Affiliation(s)
- Sara Akalay
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, 3000 Leuven, Belgium
| | - Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence:
| |
Collapse
|