1
|
Chhabra AM, Amos RA, Simone CB, Kaiser A, Perles LA, Giap H, Hallemeier CL, Johnson JE, Lin H, Wroe AJ, Diffenderfer ES, Wolfgang JA, Sakurai H, Lu HM, Hong TS, Koay EJ, Terashima K, Vitek P, Rule WG, Apisarnthanarax SJ, Badiyan SN, Molitoris JK, Chuong M, Nichols RC. Proton Beam Therapy for Pancreatic Tumors: A Consensus Statement from the Particle Therapy Cooperative Group Gastrointestinal Subcommittee. Int J Radiat Oncol Biol Phys 2025; 122:19-30. [PMID: 39761799 DOI: 10.1016/j.ijrobp.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/02/2024] [Accepted: 12/14/2024] [Indexed: 01/24/2025]
Abstract
Radiation therapy manages pancreatic cancer in various settings; however, the proximity of gastrointestinal (GI) luminal organs at risk (OARs) poses challenges to conventional radiation therapy. Proton beam therapy (PBT) may reduce toxicities compared to photon therapy. This consensus statement summarizes PBT's safe and optimal delivery for pancreatic tumors. Our group has specific expertise using PBT for GI indications and has developed expert recommendations for treating pancreatic tumors with PBT. Computed tomography (CT) simulation: Patients should be simulated supine (arms above head) with custom upper body immobilization. For stomach/duodenum filling consistency, patients should restrict oral intake within 3 hours before simulation/treatments. Fiducial markers may be implanted for image guidance; however, their design and composition require scrutiny. The reconstruction field-of-view should encompass all immobilization devices at the target level (CT slice thickness 2-3 mm). Four-dimensional CT should quantify respiratory motion and guide motion mitigation. Respiratory gating is recommended when motion affects OAR sparing or reduces target coverage. Treatment planning: Beam-angle selection factors include priority OAR-dose minimization, water-equivalent-thickness stability along the beam path, and enhanced relative biological effect consideration due to the increased linear energy transfer at the proton beam end-of-range. Posterior and right-lateral beam angles that avoid traversing GI luminal structures are preferred (minimizing dosimetric impacts of variable anatomies). Pencil beam scanning techniques should use robust optimization. Single-field optimization is preferable to increase robustness, but if OAR constraints cannot be met, multifield optimization may be used. Treatment delivery: Volumetric image guidance should be used daily. CT scans should be acquired ad hoc as necessary (at minimum every other week) to assess the dosimetric impacts of anatomy changes. Adaptive replanning should be performed as required. Our group has developed recommendations for delivering PBT to safely and effectively manage pancreatic tumors.
Collapse
Affiliation(s)
- Arpit M Chhabra
- Department of Radiation Oncology, New York Proton Center, New York, New York.
| | - Richard A Amos
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| | - Adeel Kaiser
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Luis A Perles
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, Texas
| | - Huan Giap
- Department of Radiation Oncology, OSF HealthCare Cancer Institute, Peoria, IL
| | | | | | - Haibo Lin
- Department of Radiation Oncology, New York Proton Center, New York, New York
| | - Andrew J Wroe
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania Perelmen School of Medicine, Philadelphia, Pennsylvania
| | - John A Wolfgang
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba Faculty of Medicine, Tsukuba, Japan
| | - Hsiao-Ming Lu
- Department of Radiation Oncology, Hefei Ion Medical Center, Hefei, Anhui, People's Republic of China
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eugene J Koay
- Department of GI Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Kazuki Terashima
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Pavel Vitek
- Department of Radiation Oncology, Proton Therapy Center Czech, Prague, Czech Republic
| | - William G Rule
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | | | - Shahed N Badiyan
- Department of Radiation Oncology, UT Southwestern, Dallas, Texas
| | - Jason K Molitoris
- Department of Radiation Oncology, University of Maryland Medical System, Baltimore, Maryland
| | - Michael Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Romaine C Nichols
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| |
Collapse
|
2
|
Simone CB, Amini A, Chetty IJ, Choi JI, Chun SG, Donington J, Edelman MJ, Higgins KA, Kestin LL, Mohindra P, Movsas B, Rodrigues GB, Rosenzweig KE, Rybkin II, Shepherd AF, Slotman BJ, Wolf A, Chang JY. American Radium Society Appropriate Use Criteria Systematic Review and Guidelines on Reirradiation for Non-Small Cell Lung Cancer Executive Summary. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00259-7. [PMID: 40185207 DOI: 10.1016/j.ijrobp.2025.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 04/07/2025]
Abstract
Definitive thoracic reirradiation can improve outcomes for select patients with non-small cell lung cancer (NSCLC) with locoregional recurrences. To date, there is a lack of systematic reviews on safety or efficacy of NSCLC reirradiation and dedicated guidelines. This American Radium Society Appropriate Use Criteria Systematic Review and Guidelines provide practical guidance on thoracic reirradiation safety and efficacy and recommends consensus of strategy, techniques, and composite dose constraints to minimize risks of high-grade/fatal toxicities. Preferred Reporting Items for Systematic Reviews and Meta-Analyses systematic review assessed all studies published through May 2020 evaluating toxicities, local control and/or survival for NSCLC thoracic reirradiation. Of 251 articles, 52 remained after exclusions (3 prospective) and formed the basis for recommendations on the role of concurrent chemotherapy, factors associated with toxicities, and optimal reirradiation modalities and dose-fractionation schemas. Stereotactic body radiation therapy improves conformality/dose escalation and is optimal for primary-alone failures, but caution is needed for central lesions. Concurrent chemotherapy with definitive reirradiation improves outcomes in nodal recurrences but adds toxicity and should be individualized. Hyperfractionated reirradiation may reduce long-term toxicities, although data are limited. Intensity modulated reirradiation is recommended over 3D conformal reirradiation. Particle therapy may further reduce toxicities and enable safer dose escalation. Acute esophagitis/pneumonitis and late pulmonary/cardiac/esophageal/brachial plexus toxicities are dose limiting for reirradiation. Recommended reirradiation composite dose constraints (2 Gy equivalents): esophagus V60 <40%, maximum point dose (Dmax) < 100 Gy; lung V20 <40%; heart V40 <50%; aorta/great vessels Dmax < 120 Gy; trachea/proximal bronchial tree Dmax < 110 Gy; spinal cord Dmax < 57 Gy; brachial plexus Dmax < 85 Gy. Personalized thoracic reirradiation approaches and consensus dose constraints for thoracic reirradiation are recommended and serve as the basis for ongoing Reirradiation Collaborative Group and NRG Oncology initiatives. As very few prospective and small retrospective studies formed the basis for generating the dose constraint recommended in this report, further prospective studies are needed to strengthen and improve these guidelines.
Collapse
Affiliation(s)
- Charles B Simone
- New York Proton Center, New York, New York; Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Arya Amini
- City of Hope Comprehensive Cancer Center, Duarte, California
| | | | - J Isabelle Choi
- New York Proton Center, New York, New York; Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephen G Chun
- University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Martin J Edelman
- Fox Chase Comprehensive Cancer Center, Philadelphia, Pennsylvania
| | | | - Larry L Kestin
- Michigan Healthcare Professionals Radiation Oncology Institute/GenesisCare, Farmington Hills, Michigan
| | | | | | | | | | | | - Annemarie F Shepherd
- New York Proton Center, New York, New York; Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ben J Slotman
- Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Andrea Wolf
- Mount Sinai School of Medicine, New York, New York
| | - Joe Y Chang
- University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
3
|
Verginadis II, Velalopoulou A, Kim MM, Kim K, Paraskevaidis I, Bell B, Oliaei Motlagh SA, Karaj A, Banerjee E, Finesso G, Assenmacher CA, Radaelli E, Lu J, Lin Y, Putt ME, Diffenderfer ES, Guha C, Qin L, Metz JM, Maity A, Cengel KA, Koumenis C, Busch TM. FLASH proton reirradiation, with or without hypofractionation, reduces chronic toxicity in the normal murine intestine, skin, and bone. Radiother Oncol 2025; 205:110744. [PMID: 39880309 DOI: 10.1016/j.radonc.2025.110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND AND PURPOSE The normal tissue sparing afforded by FLASH radiotherapy is being intensely investigated for potential clinical translation. Here, we studied the effects of FLASH proton radiotherapy (F-PRT) in the reirradiation setting, with or without hypofractionation. Chronic toxicities in three murine models of normal tissue toxicity including the intestine, skin, and bone were investigated. MATERIALS AND METHODS In studies of the intestine, single-dose irradiation was performed with 12 Gy of standard proton RT (S-PRT), followed by a second dose of 12 Gy of F-PRT or S-PRT. Additionally, a hypofractionation scheme was applied in the reirradiation setting (3 x 6.4 Gy of F-PRT or S-PRT, given every 48 hrs). In studies of skin/bone of the murine leg, 15 Gy of S-PRT was followed by hypofractionated reirradiation with F-PRT or S-PRT (3 x 11 Gy). RESULTS Compared to reirradiation with S-PRT, F-PRT induced less intestinal fibrosis and collagen deposition that was accompanied by significantly increased survival rate, demonstrating its protective effects on intestinal tissues in the reirradiation setting. In previously irradiated leg tissues, reirradiation with hypofractionated F-PRT created transient dermatitis that fully resolved in contrast to reirradiation with hypofractionated S-PRT. Lymphedema was also alleviated after a second course of radiation with F-PRT, along with significant reductions in the accumulation of fibrous connective tissue in the skin, compared to mice reirradiated with S-PRT. The delivery of a second course of fractionated S-PRT induced tibial fractures in 83.3% of the mice, whereas only 20% of mice reirradiated with F-PRT presented with fractures. CONCLUSION These studies provide the first evidence of the sparing effects of F-PRT in the setting of hypofractionated reirradiation. The results support FLASH as highly relevant to the reirradiation regimen where it exhibits significant potential to minimize chronic complications for patients undergoing RT.
Collapse
Affiliation(s)
- Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anastasia Velalopoulou
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michele M Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyle Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ioannis Paraskevaidis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brett Bell
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Seyyedeh Azar Oliaei Motlagh
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Antoneta Karaj
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Esha Banerjee
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giovanni Finesso
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiawei Lu
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuewei Lin
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary E Putt
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric S Diffenderfer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ling Qin
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James M Metz
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amit Maity
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Mayo CS, Appelt AL, Paradis KC, Dawson LA, Andratschke N, Vasquez Osorio EM, Bentzen SM, Yorke ED, Jackson A, Marks LB, Yom SS. Joining Forces to Advance Reirradiation: Establishing the Reirradiation Collaborative Group. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00139-7. [PMID: 40088225 DOI: 10.1016/j.ijrobp.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 03/17/2025]
Affiliation(s)
- Charles S Mayo
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| | - Ane L Appelt
- Leeds Institute of Medical Research at St James's, University of Leeds, and Leeds Cancer Centre, St James's University Hospital, Leeds, United Kingdom
| | - Kelly C Paradis
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Laura A Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Eliana M Vasquez Osorio
- Division of Cancer Sciences, The University of Manchester & The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Søren M Bentzen
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | - Ellen D Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lawrence B Marks
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sue S Yom
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
5
|
Ruan H, Zhang C, Chen S. Carbon Ion Radiotherapy Reirradiation for Recurrent Malignancy: A Systematic Assessment. Clin Oncol (R Coll Radiol) 2025:103800. [PMID: 40246613 DOI: 10.1016/j.clon.2025.103800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/19/2025]
Abstract
Reirradiation presents a significant challenge despite recent advances in modern radiation therapy. Carbon ion radiotherapy has garnered increasing attention among radiation oncologists due to its potentially superior physical dosimetric distribution and radiobiological advantages. This systematic review comprehensively evaluated clinical outcomes from 27 original studies on the use of carbon ion reirradiation for locoregional recurrent malignancies, including those affecting the central nervous system, lung, head and neck, pancreas, liver, rectum, and gynecological sites. The findings suggest that carbon ion reirradiation for locoregional recurrent malignancies yields favorable clinical outcomes with a relatively low incidence of high-grade toxicities. For recurrent nasopharyngeal carcinoma, the reported 2-year overall survival, local control, regional control, and metastasis-free survival rates were 83.7%, 58.0%, 87.3%, and 94.7%, respectively. Grade ≥3 late nasopharyngeal necrosis occurred in 16% (33/206) of cases. In the case of recurrent glioblastoma, median overall survival and local control survival were reported at 13 and 7 months, respectively, with minimal high-grade complications; observed low-grade toxicities included acute involuntary movements, incomplete hemiparesis, and late-onset dysphasia. For recurrent lung cancer, 2-year local control and overall survival rates were reported as 54.0% and 61.9%, respectively. Grade ≥3 toxicities included two cases of radiation pneumonitis and one case of bronchopleural fistula. In recurrent pancreatic cancer, 1-year local control, progression-free survival, and overall survival rates were 53.5%, 24.5%, and 48.7%, respectively. A high-grade complication of Grade 3 acute duodenal stenosis was observed in one patient. Additionally, concurrent chemotherapy with carbon ion reirradiation was associated with minimal high-grade additive toxicities. Overall, carbon ion reirradiation appears to be a potentially safe and effective reirradiation modality for treating locoregional recurrent malignancies, though data remains limited.
Collapse
Affiliation(s)
- H Ruan
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, 330029, Nanchang, Jiangxi Province, China; Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan.
| | - C Zhang
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan; Department of Medical Physics for Heavy Ion Therapy, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, 371-8511, Gunma, Japan.
| | - S Chen
- Department of Medical Oncology, Nanchang People's Hospital, 330002, Nanchang, Jiangxi Province, China.
| |
Collapse
|
6
|
Vischioni B, Barcellini A, Magro G, Rotondi M, Durante M, Facoetti A, Thariat J, Orlandi E. Radioresistant, Rare, Recurrent, and Radioinduced: 4 Rs of Hadrontherapy for Patients Selections. Int J Part Ther 2025; 15:100737. [PMID: 39927286 PMCID: PMC11804719 DOI: 10.1016/j.ijpt.2024.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 02/11/2025] Open
Abstract
Purpose To describe the role of hadrontherapy (HT) in treating radioresistant, rare, recurrent, and radio-induced tumors, which can be defined, in assonance with the 4Rs of radiobiology, the "4Rs" of HT indications. Materials and Methods This is a narrative review written by a multidisciplinary team consisting of radiation oncologists, radiobiologists, and physicists on the current literature on HT, particularly carbon ion radiation therapy. To refine HT indications within the context of the "4Rs" framework, we evaluated tumor histologies across different clinical indication settings and emphasized the radiobiological mechanisms contributing to the effectiveness of HT. Results For rare, radioresistant, recurrent, and radio-induced tumors, HT has proven to be effective and safe, achieving high rates of local response with mild toxicity. The current review shows that the biological parameters can assist clinicians in identifying appropriate cases for HT treatment. Conclusion Biological characteristics of the tumor support the administration of HT in radioresistant, rare, recurrent, and radio-induced tumors and should be considered during multidisciplinary discussions.
Collapse
Affiliation(s)
- Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Giuseppe Magro
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Marco Rotondi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany
- Department of Physics, Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
- Department of Physics "Ettore Pancini," University Federico II, Naples
| | - Angelica Facoetti
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Juliette Thariat
- Département de Radiothérapie, Centre François Baclesse, Caen, France
| | - Ester Orlandi
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| |
Collapse
|
7
|
Paganetti H, Simone CB, Bosch WR, Haas-Kogan D, Kirsch DG, Li H, Liang X, Liu W, Mahajan A, Story MD, Taylor PA, Willers H, Xiao Y, Buchsbaum JC. NRG Oncology White Paper on the Relative Biological Effectiveness in Proton Therapy. Int J Radiat Oncol Biol Phys 2025; 121:202-217. [PMID: 39059509 PMCID: PMC11646189 DOI: 10.1016/j.ijrobp.2024.07.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
This position paper, led by the NRG Oncology Particle Therapy Work Group, focuses on the concept of relative biologic effect (RBE) in clinical proton therapy (PT), with the goal of providing recommendations for the next-generation clinical trials with PT on the best practice of investigating and using RBE, which could deviate from the current standard proton RBE value of 1.1 relative to photons. In part 1, current clinical utilization and practice are reviewed, giving the context and history of RBE. Evidence for variation in RBE is presented along with the concept of linear energy transfer (LET). The intertwined nature of tumor radiobiology, normal tissue constraints, and treatment planning with LET and RBE considerations is then reviewed. Part 2 summarizes current and past clinical data and then suggests the next steps to explore and employ tools for improved dynamic models for RBE. In part 3, approaches and methods for the next generation of prospective clinical trials are explored, with the goal of optimizing RBE to be both more reflective of clinical reality and also deployable in trials to allow clinical validation and interpatient comparisons. These concepts provide the foundation for personalized biologic treatments reviewed in part 4. Finally, we conclude with a summary including short- and long-term scientific focus points for clinical PT. The practicalities and capacity to use RBE in treatment planning are reviewed and considered with more biological data in hand. The intermediate step of LET optimization is summarized and proposed as a potential bridge to the ultimate goal of case-specific RBE planning that can be achieved as a hypothesis-generating tool in near-term proton trials.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Charles B Simone
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston Children's Hospital, Boston, Massachusetts
| | - David G Kirsch
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey C Buchsbaum
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
8
|
Najjari-Jamal D, Rovirosa A, Gimeno-Morales M, Majercakova K, Sánchez M, Garcia S, Guevara D, Muñoz T, De la Fuente C, Micó S, Stefanovic M, Matute R, Córdoba S. Reirradiation Practice in Gynecological Cancer: Insights from a National Survey in Spain. Clin Transl Oncol 2024:10.1007/s12094-024-03804-x. [PMID: 39636497 DOI: 10.1007/s12094-024-03804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Given the lack of standardisation in gynecological cancer reirradiation, the Gyneacologial Radiation Oncology (GINECOR) working group on behalf of the Spanish Society of Radiation Oncology (SEOR), works towards to inquire the current state of reirradiation practices among the radiation oncology departments in Spain. METHODS An online 37-question survey was sent to all GINECOR members, representing most Spanish centers. The survey addressed general aspects of reirradiation, including experience, reirradiation sites, and techniques used. It included seven clinical case scenarios on reirradiation, and a final section on technical aspects of external beam radiotherapy (EBRT) and brachytherapy (BT) treatment. Descriptive statistics were used for data analysis. RESULTS Out of 58 centers, 29 responded, with 51.7% performing ≥ 5 reirradiation cases annually. While most centers offer multiple techniques, only 16/29 have access to BT. For in-field local relapse with surgery contraindicated, 79.3% performed BT in endometrial cancer, but only 27.5% treated with BT in cervical cancer recurrence. In this case, 17.2% used SBRT. For endometrial and cervical cancer, 44.8% and 65.4% of centers prescribed doses based on organ-at-risk tolerance, respectively. For pelvic wall/parametrial in-field relapse, 46.4% of the centres reirradiated with stereotactic body radiotherapy (SBRT), and 32.1% with BT. In nodal reirradiation, SBRT was preferred by 90% of centers. Variability was observed in target volume definitions for EBRT and proton therapy. CONCLUSIONS Reirradiation for gynecological cancer remains unstandardized, presenting significant challenges in clinical practice. To improve reirradiation protocols in gynecological cancer, the GINECOR working group is currently conducting a systematic review and formulating Delphi recommendations.
Collapse
Affiliation(s)
- Dina Najjari-Jamal
- Radiation Oncology Department, Catalan Institute of Oncology (ICO), University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.
| | - Angels Rovirosa
- Radiation Oncology Department, Hospital Cl¡nic IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Marta Gimeno-Morales
- Radiation Oncology Department, Cancer Center Clinica, Universidad de Navarra, University of Navarre, Pamplona/Madrid, Spain
| | - Katarina Majercakova
- Radiation Oncology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Sánchez
- Radiation Oncology Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Sonia Garcia
- Radiation Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
| | - Diana Guevara
- Radiation Oncology Department, Clinica Benidorm Hospital, Benidorm, Alicante, Spain
| | - Teresa Muñoz
- Radiation Oncology Department, Hospital Ramón y Cajal, Madrid, Spain
| | - Cristina De la Fuente
- Radiation Oncology Department, Puerta de Hierro University Hospital, Majadahonda, Madrid, Spain
| | - Soraya Micó
- Radiation Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Milica Stefanovic
- Radiation Oncology Department, Catalan Institute of Oncology (ICO), University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Raul Matute
- Radiation Oncology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Sofia Córdoba
- Radiation Oncology Department, Puerta de Hierro University Hospital, Majadahonda, Madrid, Spain
| |
Collapse
|
9
|
Chhabra AM, Snider JW, Kole AJ, Stock M, Holtzman AL, Press R, Wang CJ, Li H, Lin H, Shi C, McDonald M, Soike M, Zhou J, Sabouri P, Mossahebi S, Colaco R, Albertini F, Simone CB. Proton Therapy for Spinal Tumors: A Consensus Statement From the Particle Therapy Cooperative Group. Int J Radiat Oncol Biol Phys 2024; 120:1135-1148. [PMID: 39181272 DOI: 10.1016/j.ijrobp.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE Proton beam therapy (PBT) plays an important role in the management of primary spine tumors. The purpose of this consensus statement was to summarize safe and optimal delivery of PBT for spinal tumors. METHODS AND MATERIALS The Particle Therapy Cooperative Group Skull Base/Central nervous system/Sarcoma Subcommittee consisting of radiation oncologists and medical physicists with specific expertise in spinal irradiation developed expert recommendations discussing treatment planning considerations and current approaches in the treatment of primary spinal tumors. RESULTS Computed tomography simulation: factors that require significant consideration include (1) patient comfort, (2) setup reproducibility and stability, and (3) accessibility of appropriate beam angles. SPINE STABILIZATION HARDWARE If present, hardware should be placed with cross-links well above/below the level of the primary tumor to reduce the metal burden at the level of the tumor bed. New materials that can reduce uncertainties include polyether-ether-ketone and composite polyether-ether-ketone-carbon fiber implants. FIELD ARRANGEMENT Appropriate beam selection is required to ensure robust target coverage and organ at risk sparing. Commonly, 2 to 4 treatment fields, typically from posterior and/or posterior-oblique directions, are used. TREATMENT PLANNING METHODOLOGY Robust optimization is recommended for all pencil beam scanning plans (the preferred treatment modality) and should consider setup uncertainty (between 3 and 7 mm) and range uncertainty (3%-3.5%). In the presence of metal hardware, use of an increased range uncertainty up to 5% is recommended. CONCLUSIONS The Particle Therapy Cooperative Group Skull Base/Central nervous system/Sarcoma Subcommittee has developed recommendations to enable centers to deliver PBT safely and effectively for the management of primary spinal tumors.
Collapse
Affiliation(s)
- Arpit M Chhabra
- Department of Radiation Oncology, New York Proton Center, New York, New York.
| | - James W Snider
- Department of Radiation Oncology, South Florida Proton Therapy Institute, Delray Beach, Florida
| | - Adam J Kole
- Department of Radiation Oncology, University of Alabama, Birmingham, Alabama
| | - Markus Stock
- Department of Medical Physics, EBG MedAustron, Wiener Neustadt, Austria
| | - Adam L Holtzman
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - Robert Press
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - C Jake Wang
- Department of Radiation Oncology, Willis Knighton Cancer Center, Shreveport, Louisiana
| | - Heng Li
- Department of Medical Physics, Johns Hopkins, Baltimore, Maryland
| | - Haibo Lin
- Department of Radiation Oncology, New York Proton Center, New York, New York
| | - Chengyu Shi
- Department of Medical Physics, City of Hope, Irvine, California
| | - Mark McDonald
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Michael Soike
- Department of Radiation Oncology, University of Alabama, Birmingham, Alabama
| | - Jun Zhou
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Pouya Sabouri
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sina Mossahebi
- Department of Medical Physics, Maryland Proton Treatment Center, Baltimore, Maryland
| | - Rovel Colaco
- Department of Radiation Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Francesca Albertini
- Department of Medical Physics, Paul Scherrer Institut, Würenlingen, Switzerland
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| |
Collapse
|
10
|
Malouff TD, Newpower M, Bush A, Seneviratne D, Ebner DK. A Practical Primer on Particle Therapy. Pract Radiat Oncol 2024; 14:590-602. [PMID: 38844118 DOI: 10.1016/j.prro.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE Particle therapy is a promising treatment technique that is becoming more commonly used. Although proton beam therapy remains the most commonly used particle therapy, multiple other heavier ions have been used in the preclinical and clinical settings, each with its own unique properties. This practical review aims to summarize the differences between the studied particles, discussing their radiobiological and physical properties with additional review of the available clinical data. METHODS AND MATERIALS A search was carried out on the PubMed databases with search terms related to each particle. Relevant radiobiology, physics, and clinical studies were included. The articles were summarized to provide a practical resource for practicing clinicians. RESULTS A total of 113 articles and texts were included in our narrative review. Currently, proton beam therapy has the most data and is the most widely used, followed by carbon, helium, and neutrons. Although oxygen, neon, silicon, and argon have been used clinically, their future use will likely remain limited as monotherapy. CONCLUSIONS This review summarizes the properties of each of the clinically relevant particles. Protons, helium, and carbon will likely remain the most commonly used, although multi-ion therapy is an emerging technique.
Collapse
Affiliation(s)
- Timothy D Malouff
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Mark Newpower
- Department of Radiation Oncology, University of Oklahoma, OU Health Stephenson Cancer Center, Oklahoma City, Oklahoma
| | - Aaron Bush
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - Danushka Seneviratne
- Department of Radiation Oncology, University of Oklahoma, OU Health Stephenson Cancer Center, Oklahoma City, Oklahoma
| | - Daniel K Ebner
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Chan AW, Lin H, Yacoub I, Chhabra AM, Choi JI, Simone CB. Proton Therapy in Uveal Melanoma. Cancers (Basel) 2024; 16:3497. [PMID: 39456591 PMCID: PMC11506608 DOI: 10.3390/cancers16203497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Uveal melanoma is the most common primary intraocular malignancy in adults. Treatment options for localized, early-stage disease include enucleation, brachytherapy, and proton beam therapy. This review aims to evaluate the role of proton therapy in the definitive management of uveal melanoma, focusing on its physics, radiobiology, treatment techniques, and associated outcomes. Methods: This narrative review synthesizes current literature on proton therapy for uveal melanoma, emphasizing case selection, treatment efficacy, and side effects. Results: Proton therapy offers significant advantages for thicker uveal melanomas (over 8 mm) due to its unique physical properties, including a rapid dose fall-off that protects critical structures like the retina and optic nerve. Proton therapy may have benefits in tumor control for ocular melanomas given its increased relative biological effectiveness relative to photon therapy for these typically more radioresistant melanomas. Proton therapy may also hold special value for uveal melanomas in close proximity to the optic nerve, as patients are at high risk of visual toxicities with brachytherapy. The review discusses the efficacy of proton therapy across small, medium, and large tumors, along with strategies for improving patient survival through combined systemic therapy. Additionally, the potential of ocular reirradiation with proton therapy is addressed. Conclusions: Proton therapy is an effective treatment for uveal melanoma. It offers advantages over brachytherapy for large tumors, tumors that are close to the optic nerve or insertion of extra-ocular muscles.
Collapse
Affiliation(s)
- Adrian Wai Chan
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, The University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | | | - J. Isabelle Choi
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles B. Simone
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
12
|
Mein S, Wuyckens S, Li X, Both S, Carabe A, Vera MC, Engwall E, Francesco F, Graeff C, Gu W, Hong L, Inaniwa T, Janssens G, de Jong B, Li T, Liang X, Liu G, Lomax A, Mackie T, Mairani A, Mazal A, Nesteruk KP, Paganetti H, Pérez Moreno JM, Schreuder N, Soukup M, Tanaka S, Tessonnier T, Volz L, Zhao L, Ding X. Particle arc therapy: Status and potential. Radiother Oncol 2024; 199:110434. [PMID: 39009306 DOI: 10.1016/j.radonc.2024.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
There is a rising interest in developing and utilizing arc delivery techniques with charged particle beams, e.g., proton, carbon or other ions, for clinical implementation. In this work, perspectives from the European Society for Radiotherapy and Oncology (ESTRO) 2022 physics workshop on particle arc therapy are reported. This outlook provides an outline and prospective vision for the path forward to clinically deliverable proton, carbon, and other ion arc treatments. Through the collaboration among industry, academic, and clinical research and development, the scientific landscape and outlook for particle arc therapy are presented here to help our community understand the physics, radiobiology, and clinical principles. The work is presented in three main sections: (i) treatment planning, (ii) treatment delivery, and (iii) clinical outlook.
Collapse
Affiliation(s)
- Stewart Mein
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sophie Wuyckens
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Xiaoqiang Li
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Macarena Chocan Vera
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | | | | | - Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Wenbo Gu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Liu Hong
- Ion Beam Applications SA, Louvain-la-Neuve, Belgium
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Medical Physics and Engineering, Graduate School of Medicine, Division of Health Sciences, Osaka University, Osaka, Japan
| | | | - Bas de Jong
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Taoran Li
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Gang Liu
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Antony Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; ETH, Department of Physics, Zürich, Switzerland
| | - Thomas Mackie
- Department of Human Oncology, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | | | - Konrad P Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | | | | | | | - Sodai Tanaka
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Lennart Volz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Lewei Zhao
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA.
| |
Collapse
|
13
|
Frank SJ, Das IJ, Simone CB, Davis BJ, Deville C, Liao Z, Lo SS, McGovern SL, Parikh RR, Reilly M, Small W, Schechter NR. ACR-ARS Practice Parameter for the Performance of Proton Beam Therapy. Int J Part Ther 2024; 13:100021. [PMID: 39347377 PMCID: PMC11437389 DOI: 10.1016/j.ijpt.2024.100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose This practice parameter for the performance of proton beam radiation therapy was revised collaboratively by the American College of Radiology (ACR) and the American Radium Society (ARS). This practice parameter was developed to serve as a tool in the appropriate application of proton therapy in the care of cancer patients or other patients with conditions in which radiation therapy is indicated. It addresses clinical implementation of proton radiation therapy, including personnel qualifications, quality assurance (QA) standards, indications, and suggested documentation. Materials and Methods This practice parameter for the performance of proton beam radiation therapy was developed according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards) by the Committee on Practice Parameters - Radiation Oncology of the ACR Commission on Radiation Oncology in collaboration with the ARS. Results The qualifications and responsibilities of personnel, such as the proton center Chief Medical Officer or Medical Director, Radiation Oncologist, Radiation Physicist, Dosimetrist and Therapist, are outlined, including the necessity for continuing medical education. Proton therapy standard clinical indications and methodologies of treatment management are outlined by disease site and treatment group (e.g. pediatrics) including documentation and the process of proton therapy workflow and equipment specifications. Additionally, this proton therapy practice parameter updates policies and procedures related to a quality assurance and performance improvement program (QAPI), patient education, infection control, and safety. Conclusion As proton therapy becomes more accessible to cancer patients, policies and procedures as outlined in this practice parameter will help ensure quality and safety programs are effectively implemented to optimize clinical care.
Collapse
Affiliation(s)
- Steven J. Frank
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Indra J. Das
- Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhongxing Liao
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon S. Lo
- University of Washington Medical Center, Seattle, WA 98195, USA
| | - Susan L. McGovern
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rahul R. Parikh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - William Small
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maguire Center, Maywood, IL 60153, USA
| | | |
Collapse
|
14
|
Verginadis II, Velalopoulou A, Kim MM, Kim K, Paraskevaidis I, Bell B, Oliaei Motlagh SA, Karaj A, Banerjee E, Finesso G, Assenmacher CA, Radaelli E, Lu J, Lin Y, Putt ME, Diffenderfer ES, Guha C, Qin L, Metz JM, Maity A, Cengel KA, Koumenis C, Busch TM. FLASH proton reirradiation, with or without hypofractionation, mitigates chronic toxicity in the normal murine intestine, skin, and bone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602528. [PMID: 39026805 PMCID: PMC11257476 DOI: 10.1101/2024.07.08.602528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Background and purpose The normal tissue sparing afforded by FLASH radiotherapy (RT) is being intensely investigated for potential clinical translation. Here, we studied the effects of FLASH proton RT (F-PRT) in the reirradiation setting, with or without hypofractionation. Chronic toxicities in three murine models of normal tissue toxicity including the intestine, skin, and bone were investigated. Materials and methods In studies of the intestine, single-dose irradiation was performed with 12 Gy of Standard proton RT (S-PRT), followed by a second dose of 12 Gy of F-PRT or S-PRT. Additionally, a hypofractionation scheme was applied in the reirradiation setting (3 x 6.4 Gy of F-PRT or S-PRT, given every 48 hrs). In studies of skin/bone of the murine leg, 15 Gy of S-PRT was followed by hypofractionated reirradiation with F-PRT or S-PRT (3 x 11 Gy). Results Compared to reirradiation with S-PRT, F-PRT reduced intestinal fibrosis and collagen deposition in the reirradiation setting and significantly increased survival rate, demonstrating its protective effects on intestinal tissues. In previously irradiated leg tissues, reirradiation with hypofractionated F-PRT created transient dermatitis that fully resolved in contrast to reirradiation with hypofractionated S-PRT. Lymphedema was also alleviated after a second course of radiation with F-PRT, along with significant reductions in the accumulation of fibrous connective tissue in the skin compared to mice reirradiated with S-PRT. The delivery of a second course of fractionated S-PRT induced tibial fractures in 83.3% of the mice, whereas only 20% of mice reirradiated with F-PRT presented with fractures. Conclusion These studies provide the first evidence of the sparing effects of F-PRT, in the setting of hypofractionated reirradiation. The results support FLASH as highly relevant to the reirradiation regimen where it exhibits significant potential to minimize chronic complications for patients undergoing RT.
Collapse
|
15
|
Hotca A, Sindhu KK, Lehrer EJ, Hartsell WF, Vargas C, Tsai HK, Chang JH, Apisarnthanarax S, Nichols RC, Chhabra AM, Hasan S, Press RH, Lazarev S, Hajj C, Kabarriti R, Rule WG, Simone CB, Choi JI. Reirradiation With Proton Therapy for Recurrent Malignancies of the Esophagus and Gastroesophageal Junction: Results of the Proton Collaborative Group Multi-Institutional Prospective Registry Trial. Adv Radiat Oncol 2024; 9:101459. [PMID: 38596455 PMCID: PMC11002543 DOI: 10.1016/j.adro.2024.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/21/2024] [Indexed: 04/11/2024] Open
Abstract
Purpose Treatment options for recurrent esophageal cancer (EC) previously treated with radiation therapy (RT) are limited. Reirradiation (reRT) with proton beam therapy (PBT) can offer lower toxicities by limiting doses to surrounding tissues. In this study, we present the first multi-institutional series reporting on toxicities and outcomes after reRT for locoregionally recurrent EC with PBT. Methods and Materials Analysis of the prospective, multicenter, Proton Collaborative Group registry of patients with recurrent EC who had previously received photon-based RT and underwent PBT reRT was performed. Patient/tumor characteristics, treatment details, outcomes, and toxicities were collected. Local control (LC), distant metastasis-free survival (DMFS), and overall survival (OS) were estimated using the Kaplan-Meier method. Event time was determined from reRT start. Results Between 2012 and 2020, 31 patients received reRT via uniform scanning/passive scattering (61.3%) or pencil beam scanning (38.7%) PBT at 7 institutions. Median prior RT, PBT reRT, and cumulative doses were 50.4 Gy (range, 37.5-110.4), 48.6 Gy (relative biological effectiveness) (25.2-72.1), and 99.9 Gy (79.1-182.5), respectively. Of these patients, 12.9% had 2 prior RT courses, and 67.7% received PBT with concurrent chemotherapy. Median follow-up was 7.2 months (0.9-64.7). Post-PBT, there were 16.7% locoregional only, 11.1% distant only, and 16.7% locoregional and distant recurrences. Six-month LC, DMFS, and OS were 80.5%, 83.4%, and 69.1%, respectively. One-year LC, DMFS, and OS were 67.1%, 83.4%, and 27%, respectively. Acute grade ≥3 toxicities occurred in 23% of patients, with 1 acute grade 5 toxicity secondary to esophageal hemorrhage, unclear if related to reRT or disease progression. No grade ≥3 late toxicities were reported. Conclusions In the largest report to date of PBT for reRT in patients with recurrent EC, we observed acceptable acute toxicities and encouraging rates of disease control. However, these findings are limited by the poor prognoses of these patients, who are at high risk of mortality. Further research is needed to better assess the long-term benefits and toxicities of PBT in this specific patient population.
Collapse
Affiliation(s)
| | - Kunal K. Sindhu
- Icahn School of Medicine at Mount Sinai, New York, New York
- New York Proton Center, New York, New York
| | - Eric J. Lehrer
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | | - Smith Apisarnthanarax
- University of Washington, Fred Hutchinson Cancer Center Proton Therapy, Seattle, Washington
| | - Romaine C. Nichols
- University of Florida Health Proton Therapy Institute, Jacksonville, Florida
| | - Arpit M. Chhabra
- Icahn School of Medicine at Mount Sinai, New York, New York
- New York Proton Center, New York, New York
| | - Shaakir Hasan
- New York Proton Center, New York, New York
- Montefiore Medical Center, Bronx, New York
| | | | - Stanislav Lazarev
- Icahn School of Medicine at Mount Sinai, New York, New York
- New York Proton Center, New York, New York
| | - Carla Hajj
- New York Proton Center, New York, New York
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rafi Kabarriti
- New York Proton Center, New York, New York
- Montefiore Medical Center, Bronx, New York
| | | | - Charles B. Simone
- New York Proton Center, New York, New York
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - J. Isabelle Choi
- New York Proton Center, New York, New York
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
16
|
Yegya-Raman N, Berman AT, Ciunci CA, Friedes C, Berlin E, Iocolano M, Wang X, Lai C, Levin WP, Cengel KA, O'Reilly SE, Cohen RB, Aggarwal C, Marmarelis ME, Singh AP, Sun L, Bradley JD, Plastaras JP, Simone CB, Langer CJ, Feigenberg SJ. Phase 2 Trial of Consolidation Pembrolizumab After Proton Reirradiation for Thoracic Recurrences of Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2024; 119:56-65. [PMID: 37652303 DOI: 10.1016/j.ijrobp.2023.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/08/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE Reirradiation (reRT) with proton beam therapy (PBT) may offer a chance of cure while minimizing toxicity for patients with isolated intrathoracic recurrences of non-small cell lung cancer (NSCLC). However, distant failure remains common, necessitating strategies to integrate more effective systemic therapy. METHODS AND MATERIALS This was a phase 2, single-arm trial (NCT03087760) of consolidation pembrolizumab after PBT reRT for locoregional recurrences of NSCLC. Four to 12 weeks after completion of 60 to 70 Gy PBT reRT, patients without progressive disease received pembrolizumab for up to 12 months. Primary endpoint was progression-free survival (PFS), measured from the start of reRT. Secondary endpoints were overall survival (OS) and National Cancer Institute Common Terminology Criteria for Adverse Events, version 5.0 toxicity. RESULTS Between 2017 and 2021, 22 patients received PBT reRT. Median interval from prior radiation end to reRT start was 20 months. Most recurrences (91%) were centrally located. Most patients received concurrent chemotherapy (95%) and pencil beam scanning PBT (77%), and 36% had received prior durvalumab. Fifteen patients (68%) initiated consolidation pembrolizumab on trial and received a median of 3 cycles (range, 2-17). Pembrolizumab was discontinued most commonly due to toxicity (n = 5; 2 were pembrolizumab-related), disease progression (n = 4), and completion of 1 year (n = 3). Median follow-up was 38.7 months. Median PFS and OS were 8.8 months (95% CI, 4.2-23.7) and 22.8 months (95% CI, 6.9-not reached), respectively. There was only one isolated in-field failure after reRT. Grade ≥3 toxicities occurred in 10 patients (45%); 2 were pembrolizumab-related. There were 2 grade 5 toxicities, an aorto-esophageal fistula at 6.9 months and hemoptysis at 46.8 months, both probably from reRT. The trial closed early due to widespread adoption of immunotherapy off-protocol. CONCLUSIONS In the first-ever prospective trial combining PBT reRT with consolidation immunotherapy, PFS was acceptable and OS favorable. Late grade 5 toxicity occurred in 2 of 22 patients. This approach may be considered in selected patients with isolated thoracic recurrences of NSCLC.
Collapse
Affiliation(s)
- Nikhil Yegya-Raman
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abigail T Berman
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christine A Ciunci
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cole Friedes
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eva Berlin
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle Iocolano
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xingmei Wang
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ching Lai
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - William P Levin
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shannon E O'Reilly
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Roger B Cohen
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charu Aggarwal
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melina E Marmarelis
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aditi P Singh
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lova Sun
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey D Bradley
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John P Plastaras
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles B Simone
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Corey J Langer
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven J Feigenberg
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
17
|
Kotecha R, La Rosa A, Mehta MP. How proton therapy fits into the management of adult intracranial tumors. Neuro Oncol 2024; 26:S26-S45. [PMID: 38437667 PMCID: PMC10911801 DOI: 10.1093/neuonc/noad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Intracranial tumors include a challenging array of primary and secondary parenchymal and extra-axial tumors which cause neurologic morbidity consequential to location, disease extent, and proximity to critical neurologic structures. Radiotherapy can be used in the definitive, adjuvant, or salvage setting either with curative or palliative intent. Proton therapy (PT) is a promising advance due to dosimetric advantages compared to conventional photon radiotherapy with regards to normal tissue sparing, as well as distinct physical properties, which yield radiobiologic benefits. In this review, the principles of efficacy and safety of PT for a variety of intracranial tumors are discussed, drawing upon case series, retrospective and prospective cohort studies, and randomized clinical trials. This manuscript explores the potential advantages of PT, including reduced acute and late treatment-related side effects and improved quality of life. The objective is to provide a comprehensive review of the current evidence and clinical outcomes of PT. Given the lack of consensus and directives for its utilization in patients with intracranial tumors, we aim to provide a guide for its judicious use in clinical practice.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Department of Translational Medicine, Hebert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
18
|
Isabelle Choi J, Wojcieszynski A, Amos RA, Giap H, Apisarnthanarax S, Ashman JB, Anand A, Perles LA, Williamson T, Ramkumar S, Molitoris J, Simone CB, Chuong MD. PTCOG Gastrointestinal Subcommittee Lower Gastrointestinal Tract Malignancies Consensus Statement. Int J Part Ther 2024; 11:100019. [PMID: 38757077 PMCID: PMC11095104 DOI: 10.1016/j.ijpt.2024.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Radiotherapy delivery in the definitive management of lower gastrointestinal (LGI) tract malignancies is associated with substantial risk of acute and late gastrointestinal (GI), genitourinary, dermatologic, and hematologic toxicities. Advanced radiation therapy techniques such as proton beam therapy (PBT) offer optimal dosimetric sparing of critical organs at risk, achieving a more favorable therapeutic ratio compared with photon therapy. Materials and Methods The international Particle Therapy Cooperative Group GI Subcommittee conducted a systematic literature review, from which consensus recommendations were developed on the application of PBT for LGI malignancies. Results Eleven recommendations on clinical indications for which PBT should be considered are presented with supporting literature, and each recommendation was assessed for level of evidence and strength of recommendation. Detailed technical guidelines pertaining to simulation, treatment planning and delivery, and image guidance are also provided. Conclusion PBT may be of significant value in select patients with LGI malignancies. Additional clinical data are needed to further elucidate the potential benefits of PBT for patients with anal cancer and rectal cancer.
Collapse
Affiliation(s)
- J. Isabelle Choi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- New York Proton Center, New York, New York, USA
| | | | - Richard A. Amos
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - Huan Giap
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Smith Apisarnthanarax
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | | | - Aman Anand
- Department of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Luis A. Perles
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Tyler Williamson
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Jason Molitoris
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Charles B. Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- New York Proton Center, New York, New York, USA
| | - Michael D. Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| |
Collapse
|
19
|
Bakhtiar M, Butala AA, Berlin EE, Metz JM, Bradley JD, Jones JA, Lukens JN, Paydar I, Taunk NK. Factors Associated With and Characteristics of Patients Receiving Proton Therapy at the End of Life. Int J Part Ther 2024; 11:100014. [PMID: 38757084 PMCID: PMC11095101 DOI: 10.1016/j.ijpt.2024.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose To identify the characteristics, indications, and toxicities among patients receiving proton beam therapy (PBT) in the final year of life at an academic medical center. Materials and Methods A retrospective review of patients who received PBT within the final 12 months of life was performed. Electronic medical records were reviewed for patient and treatment details from 2010 to 2019. Patients were followed from the start of PBT until death or last follow-up. Acute (3 months) toxicities were graded using the Common Terminology Criteria for Adverse Events v5.0. Imaging response was assessed using the Response Evaluation Criteria in Solid Tumors v1.1. The χ2 test was used to evaluate factors associated with palliative treatment. Simple logistic regression was used to evaluate factors associated with toxicity. Results Bet299 patients were treated at the end of life (EOL) out of 5802 total patients treated with PBT (5.2%). Median age was 68 years (19-94 years), 58% male. The most common cancer was nonsmall cell lung cancer (27%). Patients were treated for symptom palliation alone (11%), durable control (57%), curative intent (16%), local recurrence (14%), or oligometastatic disease (2%). Forty-five percent received reirradiation. Median treatment time was 32 days (1-189 days). Acute toxicity was noted in 85% of the patients (31% G1, 53% G2, 15% G3). Thirteen patients (4%) experienced chronic toxicity. Breast and hematologic malignancy were associated with palliative intent χ2 (1, N = 14) = 17, P = .013; (χ2 (1, N = 14) = 18, P = .009). Conclusion The number of patients treated with PBT at the EOL was low compared to all comers. Many of these patients received treatment with definitive doses and concurrent systemic therapy. Some patients spent a large portion of their remaining days on treatment. A prognostic indicator may better optimize patient selection for PBT at the EOL.
Collapse
Affiliation(s)
- Mina Bakhtiar
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Harvard Radiation Oncology Program, Dana Farber Cancer Institute/Brigham and Women's Hospital & Massachusetts General Hospital, Boston, MA 02215, USA
| | - Anish A. Butala
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eva E. Berlin
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James M. Metz
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua A. Jones
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Nicholas Lukens
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ima Paydar
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neil K. Taunk
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Choi JI, McCormick B, Park P, Millar M, Walker K, Tung CC, Huang S, Florio P, Chen CC, Lozano A, Hanlon AL, Fox J, Xu AJ, Zinovoy M, Mueller B, Bakst R, LaPlant Q, Braunstein LZ, Khan AJ, Powell SN, Cahlon O. Comparative Evaluation of Proton Therapy and Volumetric Modulated Arc Therapy for Brachial Plexus Sparing in the Comprehensive Reirradiation of High-Risk Recurrent Breast Cancer. Adv Radiat Oncol 2024; 9:101355. [PMID: 38405315 PMCID: PMC10885571 DOI: 10.1016/j.adro.2023.101355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/07/2023] [Indexed: 02/27/2024] Open
Abstract
Purpose Recurrent or new primary breast cancer requiring comprehensive regional nodal irradiation after prior radiation therapy (RT) to the supraclavicular area and upper axilla is challenging due to cumulative brachial plexus (BP) dose tolerance. We assessed BP dose sparing achieved with pencil beam scanning proton therapy (PBS-PT) and photon volumetric modulated arc therapy (VMAT). Methods and Materials In an institutional review board-approved planning study, all patients with ipsilateral recurrent breast cancer treated with PBS-PT re-RT (PBT1) with at least partial BP overlap from prior photon RT were identified. Comparative VMAT plans (XRT1) using matched BP dose constraints were developed. A second pair of proton (PBT2) and VMAT (XRT2) plans using standardized target volumes were created, applying uniform prescription dose of 50.4 per 1.8 Gy and a maximum BP constraint <25 Gy. Incidence of brachial plexopathy was also assessed. Results Ten consecutive patients were identified. Median time between RT courses was 48 months (15-276). Median first, second, and cumulative RT doses were 50.4 Gy (range, 42.6-60.0), 50.4 Gy relative biologic effectiveness (RBE) (45.0-64.4), and 102.4 Gy (RBE) (95.0-120.0), respectively. Median follow-up was 15 months (5-33) and 18 months for living patients (11-33) Mean BP max was 37.5 Gy (RBE) for PBT1 and 36.9 Gy for XRT1. Target volume coverage of V85% (volume receiving 85% of prescription dose), V90%, and V95% were numerically lower for XRT1 versus PBT1. Similarly, axilla I-III and supraclavicular area coverage were significantly higher for PBT2 than XRT2 at dose levels of V55%, V65%, V75%, V85%, and V95%. Only axilla I V55% did not reach significance (P = .06) favoring PBS-PT. Two patients with high cumulative BPmax (95.2 Gy [RBE], 101.6 Gy [RBE]) developed brachial plexopathy symptoms with ulnar nerve distribution neuropathy without pain or weakness (1 of 2 had symptom resolution after 6 months without intervention). Conclusions PBS-PT improved BP sparing and target volume coverage versus VMAT. For patients requiring comprehensive re-RT for high-risk, nonmetastatic breast cancer recurrence with BP overlap and reasonable expectation for prolonged life expectancy, PBT may be the preferred treatment modality.
Collapse
Affiliation(s)
- J. Isabelle Choi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- New York Proton Center, New York, New York
| | - Beryl McCormick
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter Park
- New York Proton Center, New York, New York
| | | | - Katherine Walker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Peter Florio
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Alicia Lozano
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Roanoke, Virginia
| | - Alexandra L. Hanlon
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Roanoke, Virginia
| | - Jana Fox
- New York Proton Center, New York, New York
- Department of Radiation Oncology, Montefiore Medical Center
| | - Amy J. Xu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa Zinovoy
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Boris Mueller
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard Bakst
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Mt. Sinai Health System, New York, New York
| | - Quincey LaPlant
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lior Z. Braunstein
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Atif J. Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Simon N. Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Oren Cahlon
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, New York University Langone, New York, New York
| |
Collapse
|
21
|
Chakraborty MA, Khan AJ, Cahlon O, Xu AJ, Braunstein LZ, Powell SN, Choi JI. Proton Reirradiation for High-Risk Recurrent or New Primary Breast Cancer. Cancers (Basel) 2023; 15:5722. [PMID: 38136268 PMCID: PMC10742022 DOI: 10.3390/cancers15245722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy is an integral component of multidisciplinary breast cancer care. Given how commonly radiotherapy is used in the treatment of breast cancer, many patients with recurrences have received previous radiotherapy. Patients with new primary breast cancer may also have received previous radiotherapy to the thoracic region. Curative doses and comprehensive field photon reirradiation (reRT) have often been avoided in these patients due to concerns for severe toxicities to organs-at-risk (OARs), such as the heart, lungs, brachial plexus, and soft tissue. However, many patients may benefit from definitive-intent reRT, such as patients with high-risk disease features such as lymph node involvement and dermal/epidermal invasion. Proton therapy is a potentially advantageous treatment option for delivery of reRT due to its lack of exit dose and greater conformality that allow for enhanced non-target tissue sparing of previously irradiated tissues. In this review, we discuss the clinical applications of proton therapy for patients with breast cancer requiring reRT, the currently available literature and how it compares to historical photon reRT outcomes, treatment planning considerations, and questions in this area warranting further study. Given the dosimetric advantages of protons and the data reported to date, proton therapy is a promising option for patients who would benefit from the added locoregional disease control provided by reRT for recurrent or new primary breast cancer.
Collapse
Affiliation(s)
- Molly A. Chakraborty
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Atif J. Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Oren Cahlon
- Department of Radiation Oncology, New York University, New York, NY 10016, USA
| | - Amy J. Xu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lior Z. Braunstein
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon N. Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - J. Isabelle Choi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- New York Proton Center, New York, NY 10035, USA
| |
Collapse
|
22
|
Grou-Boileau F, Tankel J, Nevo Y, Najmeh S, Spicer J, Cools-Lartigue J, Mueller C, Ferri L. Locoregional Recurrence of Esophageal Cancer Treated with Curative Intent Local Salvage Therapy: A Single Center Experience. J Gastrointest Cancer 2023; 54:1292-1299. [PMID: 36988820 DOI: 10.1007/s12029-023-00929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
PURPOSE Locoregional recurrence of esophageal carcinoma after neoadjuvant therapy and en bloc esophagectomy, although uncommon, is challenging to manage. Currently, there are no standard treatment approaches prompting many health care providers to adopt a palliative approach. We describe our experience and outcomes of treating this specific group of patients with a focus on salvage curative intent local therapy. METHODS All patients undergoing en bloc esophagectomy following neoadjuvant therapy between 2007 and 2017 at the McGill University Health Centre, a tertiary referral center for esophageal cancer, were identified. Patient follow-up included a structured surveillance protocol with serial endoscopic and cross-sectional imaging studies. Local recurrence was defined as histologically confirmed recurrences at the anastomosis. Regional recurrence was defined as radiological evidence of celiac, mediastinal, or para-esophageal/conduit lymphadenopathy. Demographic, pathologic, therapeutic variables were extracted as well as disease free and overall survival. RESULTS Of 755 patients identified, locoregional recurrences occurred in 27 patients (3.6%) of whom 18 were included in the analysis. The median disease-free survival post index operation was 15 months (IQR 10-23). The sites of recurrence were local (6/18, 33.3%); regional (8/18, 44.4%); and locoregional (4, 22.2%). Chemoradiation was the most common modality used to treat recurrence (10/18, 55.6%) whilst 4 (22.2%) underwent surgery. Following treatment for locoregional recurrence, 1-year overall survival was 61.1% and at 5 years was 22.2%. CONCLUSION Consolidative salvage local therapy for locoregional recurrence after en bloc esophagectomy is feasible and can entail prolonged survival in a subset of patients.
Collapse
Affiliation(s)
- Frédéric Grou-Boileau
- Division of Thoracic and Upper Gastrointestinal Surgery, Montreal General Hospital, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, Canada
| | - James Tankel
- Division of Thoracic and Upper Gastrointestinal Surgery, Montreal General Hospital, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, Canada
| | - Yehonatan Nevo
- Division of Thoracic and Upper Gastrointestinal Surgery, Montreal General Hospital, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, Canada
| | - Sara Najmeh
- Division of Thoracic and Upper Gastrointestinal Surgery, Montreal General Hospital, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, Canada
| | - Jonathan Spicer
- Division of Thoracic and Upper Gastrointestinal Surgery, Montreal General Hospital, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, Canada
| | - Jonathan Cools-Lartigue
- Division of Thoracic and Upper Gastrointestinal Surgery, Montreal General Hospital, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, Canada
| | - Carmen Mueller
- Division of Thoracic and Upper Gastrointestinal Surgery, Montreal General Hospital, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, Canada
| | - Lorenzo Ferri
- Division of Thoracic and Upper Gastrointestinal Surgery, Montreal General Hospital, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, Canada.
| |
Collapse
|
23
|
Lee SU, Kim TH. Current evidence and the potential role of proton beam therapy for hepatocellular carcinoma. Clin Mol Hepatol 2023; 29:958-968. [PMID: 37822213 PMCID: PMC10577334 DOI: 10.3350/cmh.2023.0274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 10/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death, and external beam radiation therapy has emerged as a promising approach for managing HCC. Proton beam therapy (PBT) offers dosimetric advantages over X-ray therapy, with superior physical properties known as the Bragg peak. PBT holds promise for reducing hepatotoxicity and allowing safe dose-escalation to the tumor. It has been tried in various clinical conditions and has shown promising local tumor control and survival outcomes. A recent phase III trial demonstrated the non-inferiority of PBT in local tumor control compared to current standard radiofrequency ablation in early-stage HCC. PBT also tended to show more favorable outcomes compared to transarterial chemoembolization in the intermediate stage, and has proven effective in-field disease control and safe toxicity profiles in advanced HCC. In this review, we discuss the rationale, clinical studies, optimal indication, and future directions of PBT in HCC treatment.
Collapse
Affiliation(s)
- Sung Uk Lee
- Center for Proton Therapy, National Cancer Center, Goyang, Korea
| | - Tae Hyun Kim
- Center for Proton Therapy, National Cancer Center, Goyang, Korea
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| |
Collapse
|
24
|
Pennock M, Wei S, Cheng C, Lin H, Hasan S, Chhabra AM, Choi JI, Bakst RL, Kabarriti R, Simone II CB, Lee NY, Kang M, Press RH. Proton Bragg Peak FLASH Enables Organ Sparing and Ultra-High Dose-Rate Delivery: Proof of Principle in Recurrent Head and Neck Cancer. Cancers (Basel) 2023; 15:3828. [PMID: 37568644 PMCID: PMC10417542 DOI: 10.3390/cancers15153828] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Proton pencil-beam scanning (PBS) Bragg peak FLASH combines ultra-high dose rate delivery and organ-at-risk (OAR) sparing. This proof-of-principle study compared dosimetry and dose rate coverage between PBS Bragg peak FLASH and PBS transmission FLASH in head and neck reirradiation. PBS Bragg peak FLASH plans were created via the highest beam single energy, range shifter, and range compensator, and were compared to PBS transmission FLASH plans for 6 GyE/fraction and 10 GyE/fraction in eight recurrent head and neck patients originally treated with quad shot reirradiation (14.8/3.7 CGE). The 6 GyE/fraction and 10 GyE/fraction plans were also created using conventional-rate intensity-modulated proton therapy techniques. PBS Bragg peak FLASH, PBS transmission FLASH, and conventional plans were compared for OAR sparing, FLASH dose rate coverage, and target coverage. All FLASH OAR V40 Gy/s dose rate coverage was 90-100% at 6 GyE and 10 GyE for both FLASH modalities. PBS Bragg peak FLASH generated dose volume histograms (DVHs) like those of conventional therapy and demonstrated improved OAR dose sparing over PBS transmission FLASH. All the modalities had similar CTV coverage. PBS Bragg peak FLASH can deliver conformal, ultra-high dose rate FLASH with a two-millisecond delivery of the minimum MU per spot. PBS Bragg peak FLASH demonstrated similar dose rate coverage to PBS transmission FLASH with improved OAR dose-sparing, which was more pronounced in the 10 GyE/fraction than in the 6 GyE/fraction. This feasibility study generates hypotheses for the benefits of FLASH in head and neck reirradiation and developing biological models.
Collapse
Affiliation(s)
- Michael Pennock
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY 10461, USA;
| | - Shouyi Wei
- Department of Physics, New York Proton Center, New York, NY 10035, USA; (S.W.); (H.L.); (S.H.); (M.K.)
| | - Chingyun Cheng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Haibo Lin
- Department of Physics, New York Proton Center, New York, NY 10035, USA; (S.W.); (H.L.); (S.H.); (M.K.)
| | - Shaakir Hasan
- Department of Physics, New York Proton Center, New York, NY 10035, USA; (S.W.); (H.L.); (S.H.); (M.K.)
| | - Arpit M. Chhabra
- Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA; (A.M.C.); (J.I.C.); (C.B.S.II)
| | - J. Isabelle Choi
- Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA; (A.M.C.); (J.I.C.); (C.B.S.II)
| | - Richard L. Bakst
- Department of Radiation Oncology—Radiation Oncology Associates, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Rafi Kabarriti
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY 10461, USA;
| | - Charles B. Simone II
- Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA; (A.M.C.); (J.I.C.); (C.B.S.II)
| | - Nancy Y. Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Minglei Kang
- Department of Physics, New York Proton Center, New York, NY 10035, USA; (S.W.); (H.L.); (S.H.); (M.K.)
| | - Robert H. Press
- Department of Radiation Oncology, Baptist Health South Florida, Miami Cancer Institute, Miami, FL 33176, USA;
| |
Collapse
|
25
|
Kobeissi JM, Simone CB, Hilal L, Wu AJ, Lin H, Crane CH, Hajj C. Proton Therapy in the Management of Luminal Gastrointestinal Cancers: Esophagus, Stomach, and Anorectum. Cancers (Basel) 2022; 14:2877. [PMID: 35740544 PMCID: PMC9221464 DOI: 10.3390/cancers14122877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
While the role of proton therapy in gastric cancer is marginal, its role in esophageal and anorectal cancers is expanding. In esophageal cancer, protons are superior in sparing the organs at risk, as shown by multiple dosimetric studies. Literature is conflicting regarding clinical significance, but the preponderance of evidence suggests that protons yield similar or improved oncologic outcomes to photons at a decreased toxicity cost. Similarly, protons have improved sparing of the organs at risk in anorectal cancers, but clinical data is much more limited to date, and toxicity benefits have not yet been shown clinically. Large, randomized trials are currently underway for both disease sites.
Collapse
Affiliation(s)
- Jana M. Kobeissi
- Department of Radiation Oncology, School of Medicine, American University of Beirut Medical Center, Beirut 1007, Lebanon; (J.M.K.); (L.H.)
| | - Charles B. Simone
- Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA; (C.B.S.II); (H.L.)
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA; (A.J.W.); (C.H.C.)
| | - Lara Hilal
- Department of Radiation Oncology, School of Medicine, American University of Beirut Medical Center, Beirut 1007, Lebanon; (J.M.K.); (L.H.)
| | - Abraham J. Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA; (A.J.W.); (C.H.C.)
| | - Haibo Lin
- Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA; (C.B.S.II); (H.L.)
| | - Christopher H. Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA; (A.J.W.); (C.H.C.)
| | - Carla Hajj
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA; (A.J.W.); (C.H.C.)
| |
Collapse
|
26
|
Ward MC, Koyfman SA, Bakst RL, Margalit DN, Beadle BM, Beitler JJ, Chang SSW, Cooper JS, Galloway TJ, Ridge JA, Robbins JR, Sacco AG, Tsai CJ, Yom SS, Siddiqui F. Retreatment of Recurrent or Second Primary Head and Neck Cancer After Prior Radiation: Executive Summary of the American Radium Society® (ARS) Appropriate Use Criteria (AUC): Expert Panel on Radiation Oncology - Head and Neck Cancer. Int J Radiat Oncol Biol Phys 2022; 113:759-786. [PMID: 35398456 DOI: 10.1016/j.ijrobp.2022.03.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Re-treatment of recurrent or second primary head and neck cancers occurring in a previously irradiated field is complex. Few guidelines exist to support practice. METHODS We performed an updated literature search of peer-reviewed journals in a systematic fashion. Search terms, key questions, and associated clinical case variants were formed by panel consensus. The literature search informed the committee during a blinded vote on the appropriateness of treatment options via the modified Delphi method. RESULTS The final number of citations retained for review was 274. These informed five key questions, which focused on patient selection, adjuvant re-irradiation, definitive re-irradiation, stereotactic body radiation (SBRT), and re-irradiation to treat non-squamous cancer. Results of the consensus voting are presented along with discussion of the most current evidence. CONCLUSIONS This provides updated evidence-based recommendations and guidelines for the re-treatment of recurrent or second primary cancer of the head and neck.
Collapse
Affiliation(s)
- Matthew C Ward
- Levine Cancer Institute, Atrium Health, Charlotte, North Carolina; Southeast Radiation Oncology Group, Charlotte, North Carolina.
| | | | | | - Danielle N Margalit
- Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Beth M Beadle
- Stanford University School of Medicine, Palo Alto, California
| | | | | | | | | | - John A Ridge
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jared R Robbins
- University of Arizona College of Medicine Tucson, Tucson, Arizona
| | - Assuntina G Sacco
- University of California San Diego Moores Cancer Center, La Jolla, California
| | - C Jillian Tsai
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sue S Yom
- University of California, San Francisco, California
| | | |
Collapse
|
27
|
Beddok A, Calugaru V, de Marzi L, Graff P, Dumas JL, Goudjil F, Dendale R, Minsat M, Verrelle P, Buvat I, Créhange G. Clinical and technical challenges of cancer reirradiation: Words of wisdom. Crit Rev Oncol Hematol 2022; 174:103655. [PMID: 35398521 DOI: 10.1016/j.critrevonc.2022.103655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/25/2022] Open
Abstract
Since the development of new radiotherapy techniques that have improved healthy tissue sparing, reirradiation (reRT) has become possible. The selection of patients eligible for reRT is complex given that it can induce severe or even fatal side effects. The first step should therefore be to assess, in the context of multidisciplinary staff meeting, the patient's physical status, the presence of sequelae resulting from the first irradiation and the best treatment option available. ReRT can be performed either curatively or palliatively to treat a cancer-related symptom that is detrimental to the patient's quality of life. The selected techniques for reRT should provide the best protection of healthy tissue. The construction of target volumes and the evaluation of constraints regarding the doses that can be used in this context have not yet been fully codified. These points raised in the literature suggest that randomized studies should be undertaken to answer pending questions.
Collapse
Affiliation(s)
- Arnaud Beddok
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Université Paris Saclay/Inserm/Institut Curie. Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France.
| | - Valentin Calugaru
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France
| | - Ludovic de Marzi
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Université Paris Saclay/Inserm/Institut Curie. Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France
| | - Pierre Graff
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France
| | - Jean-Luc Dumas
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France
| | - Farid Goudjil
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France
| | - Rémi Dendale
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France
| | - Mathieu Minsat
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France
| | - Pierre Verrelle
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France
| | - Irène Buvat
- Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Université Paris Saclay/Inserm/Institut Curie. Orsay. France
| | - Gilles Créhange
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Université Paris Saclay/Inserm/Institut Curie. Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France
| |
Collapse
|
28
|
Choi JI, Khan AJ, Powell SN, McCormick B, Lozano AJ, Del Rosario G, Mamary J, Liu H, Fox P, Gillespie E, Braunstein LZ, Mah D, Cahlon O. Proton reirradiation for recurrent or new primary breast cancer in the setting of prior breast irradiation. Radiother Oncol 2021; 165:142-151. [PMID: 34688807 DOI: 10.1016/j.radonc.2021.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Late local recurrences and second primary breast cancers are increasingly common. Proton beam therapy (PBT) reirradiation (reRT) may allow safer delivery of a second definitive radiotherapy (RT) course. We analyzed outcomes of patients with recurrent or new primary breast cancer who underwent reRT. MATERIALS AND METHODS In an IRB-approved retrospective study, patient/tumor characteristics, treatment parameters, outcomes, and toxicities were collected for all consecutive patients with recurrent or new primary non-metastatic breast cancer previously treated with breast or chest wall RT who underwent PBT reRT. RESULTS Forty-six patients received reRT using uniform (70%) or pencil beam (30%) scanning PBT. Median first RT, reRT, and cumulative doses were 60 Gy (range 45-66 Gy), 50.4 Gy(RBE) (40-66.6 Gy(RBE)), and 110 Gy(RBE) (96.6-169.4 Gy(RBE)), respectively. Median follow-up was 21 months. There were no local or regional recurrences; 17% developed distant recurrence. Two-year DMFS and OS were 92.0% and 93.6%, respectively. Nine of 13 (69.2%) patients who underwent implant or flap reconstruction developed capsular contracture, 3 (23.1%) requiring surgical intervention. One (7.7%) patient developed grade 3 breast pain requiring mastectomy after breast conserving surgery. No acute or late grade 4-5 toxicities were seen. Increased body mass index (BMI) was protective of grade ≥ 2 acute toxicity (OR = 0.84, 95%CI = 0.70-1.00). CONCLUSION In the largest series to date of PBT reRT for breast cancer recurrence or new primary after prior definitive breast or chest wall RT, excellent locoregional control and few high-grade toxicities were encountered. PBT reRT may provide a relatively safe and highly effective salvage option. Additional patients and follow-up are needed to correlate composite normal tissue doses with toxicities and assess long-term outcomes.
Collapse
Affiliation(s)
- J Isabelle Choi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA; New York Proton Center, New York, USA.
| | - Atif J Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Beryl McCormick
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | | | | | | | - Haoyang Liu
- ProCure Proton Therapy Center, Somerset, USA
| | - Pamela Fox
- ProCure Proton Therapy Center, Somerset, USA
| | - Erin Gillespie
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Lior Z Braunstein
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Dennis Mah
- ProCure Proton Therapy Center, Somerset, USA
| | - Oren Cahlon
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA; New York Proton Center, New York, USA
| |
Collapse
|
29
|
Press RH, Bakst RL, Sharma S, Kabarriti R, Garg MK, Yeh B, Gelbum DY, Hasan S, Choi JI, Barker CA, Chhabra AM, Simone CB, Lee NY. Clinical Review of Proton Therapy in the Treatment of Unilateral Head and Neck Cancers. Int J Part Ther 2021; 8:248-260. [PMID: 34285951 PMCID: PMC8270109 DOI: 10.14338/ijpt-d-20-00055.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/21/2020] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy is a common treatment modality in the management of head and neck malignancies. In select clinical scenarios of well-lateralized tumors, radiotherapy can be delivered to the primary tumor or tumor bed and the ipsilateral nodal regions, while intentional irradiation of the contralateral neck is omitted. Proton beam therapy is an advanced radiotherapy modality that allows for the elimination of exit-dose through nontarget tissues such as the oral cavity. This dosimetric advantage is apt for unilateral treatments. By eliminating excess dose to midline and contralateral organs at risk and conforming dose around complex anatomy, proton beam therapy can reduce the risk of iatrogenic toxicities. Currently, there is no level I evidence comparing proton beam therapy to conventional photon radiation modalities for unilateral head and neck cancers. However, a growing body of retrospective and prospective evidence is now available describing the dosimetric and clinical advantages of proton beam therapy. Subsequently, the intent of this clinical review is to summarize the current evidence supporting the use of proton beam therapy in unilateral irradiation of head and neck cancers, including evaluation of disease site-specific evidence, unique challenging clinical scenarios, and ongoing clinical trials.
Collapse
Affiliation(s)
- Robert H Press
- Department of Radiation Oncology, New York Proton Center, New York, New York, USA
| | - Richard L Bakst
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sonam Sharma
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, USA
| | - Madhur K Garg
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, USA
| | - Brian Yeh
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daphna Y Gelbum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shaakir Hasan
- Department of Radiation Oncology, New York Proton Center, New York, New York, USA
| | - J Isabelle Choi
- Department of Radiation Oncology, New York Proton Center, New York, New York, USA
| | - Chris A Barker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arpit M Chhabra
- Department of Radiation Oncology, New York Proton Center, New York, New York, USA
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York, USA
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
30
|
Doi H, Tamari K, Oh RJ, Nieder C. New clinical data on human spinal cord re-irradiation tolerance. Strahlenther Onkol 2021; 197:463-473. [PMID: 33950265 PMCID: PMC8154818 DOI: 10.1007/s00066-021-01772-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/23/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE To provide additional clinical data about the re-irradiation tolerance of the spinal cord. METHODS This was a retrospective bi-institutional study of patients re-irradiated to the cervical or thoracic spinal cord with minimum follow-up of 6 months. The maximum dose (Dmax) and dose to 0.1cc (D0.1cc) were determined (magnetic resonance imaging [MRI]-defined cord) and expressed as equivalent dose in 2‑Gy fractions (EQD2) with an α/β value of 2 Gy. RESULTS All 32 patients remained free from radiation myelopathy after a median follow-up of 12 months. Re-irradiation was performed after 6-97 months (median 15). In 22 cases (69%) the re-irradiation spinal cord EQD2 Dmax was higher than that of the first treatment course. Forty-eight of 64 treatment courses employed fraction sizes of 2.5 to 4 Gy to the target volume. The median cumulative spinal cord EQD2 Dmax was 80.7 Gy, minimum 61.12 Gy, maximum 114.79 Gy. The median cumulative spinal cord D0.1cc EQD2 was 76.1 Gy, minimum 61.12 Gy, maximum 95.62 Gy. Besides cumulative dose, other risk factors for myelopathy were present (single-course Dmax EQD2 ≥51 Gy in 9 patients, single-course D0.1cc EQD2 ≥51 Gy in 5 patients). CONCLUSION Even patients treated to higher cumulative doses than previously recommended, or at a considerable risk of myelopathy according to a published risk score, remained free from this complication, although one must acknowledge the potential for manifestation of damage in patients currently alive, i.e., still at risk. Individualized decisions to re-irradiate after appropriate informed consent are an acceptable strategy, including scenarios where low re-irradiation doses to the spinal cord would compromise target coverage and tumor control probability to an unacceptable degree.
Collapse
Affiliation(s)
- Hiroshi Doi
- Miyakojima IGRT Clinic, 1-16-22 Miyakojimahondori, 534-0021 Osaka, Miyakojima-ku Japan
- Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, 589-8511 Osaka, Osaka-Sayama Japan
| | - Keisuke Tamari
- Miyakojima IGRT Clinic, 1-16-22 Miyakojimahondori, 534-0021 Osaka, Miyakojima-ku Japan
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Osaka, Suita Japan
| | - Ryoong-Jin Oh
- Miyakojima IGRT Clinic, 1-16-22 Miyakojimahondori, 534-0021 Osaka, Miyakojima-ku Japan
| | - Carsten Nieder
- Department of Oncology and Palliative Medicine, Nordland Hospital Trust, 8092 Bodø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT—The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
31
|
Therapeutic challenges in radiation-induced salivary gland cancers. Curr Opin Otolaryngol Head Neck Surg 2021; 29:120-125. [PMID: 33394737 DOI: 10.1097/moo.0000000000000694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW To give an overview of recent advances in therapeutic approaches of radiation-induced salivary gland cancers (ri-SGCs). RECENT FINDINGS Reirradiation with protons and carbon ions demonstrated to be feasible, safe and to offer good local control rates, with the possibility of overcoming radioresistance and dosimetric issues in previously irradiated cancer patients. Chromosomal rearrangements, gene fusions and expression profiles are important to identify specific cancer subtypes and can guide tailored systemic therapy. SUMMARY Ri-SGCs are rare and heterogeneous. Patients are often heavily pretreated and at risk of toxicities, and their management remain challenging. A multidisciplinary approach in referral centers is mandatory. Knowledge about SGCs cellular and molecular mechanisms is constantly evolving. In the last years, novel advances in therapeutic approaches, such as carbon ion radiotherapy, are emerging as safe and effective options in active treatment, but further efforts are needed to offer tailored personalized treatments and to improve survival.
Collapse
|