1
|
Grushevenko E, Chechenov I, Rokhmanka T, Anokhina T, Bazhenov S, Borisov I. Effect of Side Substituent on Comb-like Polysiloxane Membrane Pervaporation Properties During Recovery of Alcohols C2-C4 from Water. Polymers (Basel) 2024; 16:3530. [PMID: 39771382 PMCID: PMC11678792 DOI: 10.3390/polym16243530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The pervaporation properties of membranes based on comb-like polysiloxanes when C2-C4 alcohols are removed from water were studied for the first time. It was established that membranes based on comb-like polysiloxanes with linear aliphatic and organosilicon substituents have increased permeability selectivity for C3+ alcohols. The obtained results were interpreted from the point of view of the solubility of the components of the separated mixture in polysiloxanes. It was shown that membranes based on polysiloxanes with linear substituents have increased butanol/water permeability selectivity (2.5-3.7). The achieved selectivity values correspond to the level of highly selective zeolite membranes, which allows for a reduction in energy consumption for the pervaporation removal of butanol by more than two times.
Collapse
Affiliation(s)
- Evgenia Grushevenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; (E.G.); (I.C.); (T.R.); (T.A.); (S.B.)
| | - Islam Chechenov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; (E.G.); (I.C.); (T.R.); (T.A.); (S.B.)
| | - Tatyana Rokhmanka
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; (E.G.); (I.C.); (T.R.); (T.A.); (S.B.)
| | - Tatiana Anokhina
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; (E.G.); (I.C.); (T.R.); (T.A.); (S.B.)
| | - Stepan Bazhenov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; (E.G.); (I.C.); (T.R.); (T.A.); (S.B.)
| | - Ilya Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia; (E.G.); (I.C.); (T.R.); (T.A.); (S.B.)
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Lobachevskogo St. 2/31, 420111 Kazan, Tatarstan, Russia
| |
Collapse
|
2
|
Caliskan E, Shishatskiy S, Filiz V. Comparative Study of Polymer of Intrinsic Microporosity-Derivative Polymers in Pervaporation and Water Vapor Permeance Applications. Polymers (Basel) 2024; 16:2932. [PMID: 39458760 PMCID: PMC11511032 DOI: 10.3390/polym16202932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
This study assesses the gas and water vapor permeance of PIM-derivative thin-film composite (TFC) membranes using pervaporation and "pressure increase" methods, and provides a comparative view of "time lag" measurements of thick films obtained from our previous work. In this study, TFC membranes were prepared using PIM-1 and homopolymers that were modified with different side groups to explore their effects on gas and water vapor transport. Rigid and bulky aliphatic groups were used to increase the polymer's free volume and were evaluated for their impact on both gas and water transport. Aromatic side groups were specifically employed to assess water affinity. The permeance of CO2, H2, CH4 and water vapor through these membranes was analyzed using the 'pressure increase' method to determine the modifications' influence on transport efficiency and interaction with water molecules. Over a 20 h period, the aging and the permeance of the TFC membranes were analyzed using this method. In parallel, pervaporation experiments were conducted on samples taken independently from the same membrane roll to assess water flux, with particular attention paid to the liquid form on the feed side. The significantly higher water vapor transport rates observed in pervaporation experiments compared to those using the "pressure increase" method underline the efficiency of pervaporation. This efficiency suggests that membranes designed for pervaporation can serve as effective alternatives to conventional porous membranes used in distillation applications. Additionally, incorporating "time lag" results from a pioneering study into the comparison revealed that the trends observed in "time lag" and pervaporation results exhibited similar trends, whereas "pressure increase" data showed a different development. This discrepancy is attributed to the state of the polymer, which varies significantly depending on the operating conditions.
Collapse
Affiliation(s)
| | | | - Volkan Filiz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany; (E.C.); (S.S.)
| |
Collapse
|
3
|
Kujawska A, Kujawski W, Capała W, Kiełkowska U, Plesnar M, Kujawa J. Influence of Process Parameters on the Efficiency of Pervaporation Pilot ECO-001 Plant for Raw Ethanol Dehydration. MEMBRANES 2024; 14:90. [PMID: 38668118 PMCID: PMC11052157 DOI: 10.3390/membranes14040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Pervaporation is a membrane-based process used for the separation of liquid mixtures. As this membrane process is governed by the differences in the sorption and diffusivities of separated components, close boiling mixtures and azeotropic mixtures can effectively be separated. The dehydration of ethanol is the most common application of hydrophilic pervaporation. The pilot scale properties of hydrophilic composite poly(vinyl alcohol) PVA membrane (PERVAPTM 2200) in contact with wet raw bioethanol are presented. The wet raw bioethanol was composed of ethanol (82.4-89.6 wt%), water (5.9-8.5 wt%), methanol (2.3-6.9 wt%), cyclohexane (0.2-2.4 wt%), higher alcohols (0.2-1.3 wt%), and acetaldehyde (0.004-0.030 wt%). All experiments were performed using a SULZER ECO-001 plant equipped with a 1.5 m2 membrane module. The efficiency of the dehydration process (i.e., membrane selectivity, permeate flux, degree of dehydration) was discussed as a function of the following parameters: the feed temperature, the feed composition, and the feed flow rate through the module. It was found that the low feed flow rate influenced the dehydration efficiency as the enthalpy of evaporation caused a high temperature drop in the module (around 25 °C at a feed flow rate equal to 5 kg h-1). The separation coefficient during pervaporation was in the range of 600-1200, depending on the feed composition. The increase in temperature augmented the permeation flux and shortened the time needed to reach the assumed level of dehydration. It was revealed that dehydration by pervaporation using ECO-001 pilot plant is an efficient process, allowing also to investigate the influence of various parameters on the process efficiency.
Collapse
Affiliation(s)
- Anna Kujawska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland (U.K.)
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland (U.K.)
| | - Wiesław Capała
- Łukasiewicz Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warszawa, Poland; (W.C.)
| | - Urszula Kiełkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland (U.K.)
| | - Marek Plesnar
- Łukasiewicz Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warszawa, Poland; (W.C.)
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland (U.K.)
| |
Collapse
|
4
|
Song X, Song X, Liu B, Yue Z. Surface-modified silicalite-1-filled PDMS membranes for pervaporation dehydration of trichloroethylene. RSC Adv 2023; 13:33376-33389. [PMID: 38025866 PMCID: PMC10644095 DOI: 10.1039/d3ra05523j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, the impact of silane coupling agents, namely 3-aminopropyltrimethoxysilane (APTMS), trimethylchlorosilane (TMCS), and 1,1,3,3-tetramethyldisilazane (TMDS), on the hydrophobicity of silicalite-1 zeolite was investigated to enhance the pervaporation separation performance of mixed matrix membranes (MMMs) for trichloroethylene (TCE). The hydrophobicity of TMCS@silicalite-1 and TMDS@silicalite-1 particles exhibited significant improvement, as evidenced by the increase in water contact angle from 96.1° to 101.9° and 109.1°, respectively. Conversely, the water contact angle of APTMS@silicalite-1 particles decreased to 85.2°. Silane-modified silicalite-1 particles were incorporated into polydimethylsiloxane (PDMS) to prepare mixed matrix membranes (MMMs), resulting in a significant enhancement in the adsorption selectivity of trichloroethylene (TCE) on membranes containing TMCS@silicalite-1 and TMDS@silicalite-1 particles. The experimental findings demonstrated that the PDMS membrane with a TMDS@silicalite-1 particle loading of 40 wt% exhibited the most favorable pervaporation performance. Under the conditions of a temperature of 30 °C, a flow rate of 100 mL min-1, and a vacuum degree of 30 kPa, the separation factor and total flux of a 3 × 10-7 wt% TCE aqueous solution were found to be 139 and 242 g m-2 h-1, respectively. In comparison to the unmodified silicalite-1/PDMS, the separation factor exhibited a 44% increase, while the TCE flux increased by 16%. Similarly, when compared to the pure PDMS membrane, the separation factor showed an 83% increase, and the TCE flux increased by 20%. These findings provide evidence that the hydrophobic modification of inorganic fillers can significantly enhance the separation performance of PDMS membranes for TCE.
Collapse
Affiliation(s)
- Xiaosan Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| | - Xichen Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Bo Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Zilin Yue
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| |
Collapse
|
5
|
Imad M, Castro-Muñoz R. Ongoing Progress on Pervaporation Membranes for Ethanol Separation. MEMBRANES 2023; 13:848. [PMID: 37888020 PMCID: PMC10608438 DOI: 10.3390/membranes13100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic compound in both diluted (ethanol-water-) and concentrated solutions (water-ethanol-). Pervaporation (PV), as a membrane technology, has emerged as a promising solution offering significant reductions in energy and resource consumption during the production of high-purity components. This review aims to provide a panorama of the recent advancements in materials adapted into PV membranes, encompassing polymeric membranes (and possible blending), inorganic membranes, mixed-matrix membranes, and emerging two-dimensional-material membranes. Among these membrane materials, we discuss the ones providing the most relevant performance in separating ethanol from the liquid systems of water-ethanol and ethanol-water, among others. Furthermore, this review identifies the challenges and future opportunities in material design and fabrication techniques, and the establishment of structure-performance relationships. These endeavors aim to propel the development of next-generation pervaporation membranes with an enhanced separation efficiency.
Collapse
Affiliation(s)
- Muhammad Imad
- Department of Process and Systems Engineering, Otto-von-Guericke University, 39106 Magdeburg, Germany
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule, Haripur 22620, Pakistan
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
6
|
Song X, Song X, Zhang Y, Fan J. Improving the Pervaporation Performance of PDMS Membranes for Trichloroethylene by Incorporating Silane-Modified ZSM-5 Zeolite. Polymers (Basel) 2023; 15:3777. [PMID: 37765631 PMCID: PMC10537036 DOI: 10.3390/polym15183777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The hydrophobic nature of inorganic zeolite particles plays a crucial role in the efficacy of mixed matrix membranes (MMMs) for the separation of trichloroethylene (TCE) through pervaporation. This study presents a novel approach to further augment the hydrophobicity of ZSM-5. The ZSM-5 zeolite molecular sieve was subjected to modification using three different silane coupling agents, namely, n-octyltriethoxysilane (OTES), γ-methacryloxypropyltrimethoxysilane (KH-570), and γ-aminopropyltriethoxysilane (KH-550). The water contact angles of the resulting OTES@ZSM-5, KH-570@ZSM-5, and KH-550@ZSM-5 particles exhibited significant increases from 97.2° to 112.8°, 109.1°, and 102.7°, respectively, thereby indicating a notable enhancement in hydrophobicity. Subsequently, mixed matrix membranes (MMMs) were fabricated by incorporating the aforementioned silane-modified ZSM-5 particles into polydimethylsiloxane (PDMS), leading to a considerable improvement in the adsorption selectivity of these membranes towards trichloroethylene (TCE). The findings indicate that the PDMS membrane with a 20 wt.% OTES@ZSM-5 particle loading exhibits superior pervaporation performance. When subjected to a temperature of 30 °C, flow rate of 100 mL/min, and vacuum of 30 Kpa, the separation factor and total flux of a 3 × 10-7 wt.% TCE solution reach 328 and 155 gm-2·h-1, respectively. In comparison to the unmodified ZSM-5/PDMS membrane, the separation factor demonstrates a 41% increase, while the TCE flux experiences a 6% increase. Consequently, this approach effectively enhances the pervaporation separation capabilities of the PDMS membrane for TCE.
Collapse
Affiliation(s)
- Xiaosan Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (X.S.); (Y.Z.); (J.F.)
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xichen Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (X.S.); (Y.Z.); (J.F.)
| | - Yue Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (X.S.); (Y.Z.); (J.F.)
| | - Jishuo Fan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (X.S.); (Y.Z.); (J.F.)
| |
Collapse
|
7
|
Alonso-Riaño P, Illera AE, Amândio MS, Xavier AM, Beltrán S, Teresa Sanz M. Valorization of brewer’s spent grain by furfural recovery/removal from subcritical water hydrolysates by pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Pereira MJ, Pintado M, Brazinha C, Crespo J. Recovery of Valuable Aromas from Sardine Cooking Wastewaters by Pervaporation with Fractionated Condensation: Matrix Effect and Model Validation. MEMBRANES 2022; 12:988. [PMID: 36295747 PMCID: PMC9611368 DOI: 10.3390/membranes12100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Due to the lack of studies addressing the influence of real food matrices on integrated organophilic pervaporation/fractionated condensation processes, the present work analyses the impact of the real matrix of sardine cooking wastewaters on the fractionation of aromas. In a previous study, a thermodynamic/material balance model was developed to describe the integrated pervaporation-a fractionated condensation process of aroma recovery from model solutions that emulate seafood industry aqueous effluents, aiming to define the best conditions for off-flavour removal. This work assesses whether the previously developed mathematical model, validated only with model solutions, is also applicable in predicting the fractionation of aromas of different chemical families from real effluents (sardine cooking wastewaters), aiming for off-flavour removals. It was found that the food matrix does not influence substantial detrimental consequences on the model simulations, which validates and extends the applicability of the model.
Collapse
Affiliation(s)
- M. João Pereira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Manuela Pintado
- CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Carla Brazinha
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - João Crespo
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
9
|
Mutto A, Mahawer K, Shukla A, Gupta SK. Understanding butanol recovery and coupling effects in pervaporation of Acetone-Butanol-Ethanol (ABE) solutions: A modelling and experimental study. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Valério R, Brazinha C, Crespo JG. Comparative Analysis of Bio-Vanillin Recovery from Bioconversion Media Using Pervaporation and Vacuum Distillation. MEMBRANES 2022; 12:801. [PMID: 36005716 PMCID: PMC9416510 DOI: 10.3390/membranes12080801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The increasing demand for natural products has led to biotechnological vanillin production, which requires the recovery of vanillin (and vanillyl alcohol at trace concentrations, as in botanical vanillin) from the bioconversion broth, free from potential contaminants: the substrate and metabolites of bioconversion. This work discusses the recovery and fractionation of bio-vanillin, from a bioconversion broth, by pervaporation and by vacuum distillation, coupled with fractionated condensation. The objective was to recover vanillin free of potential contaminants, with maximised fluxes and selectivity for vanillin against water and minimised energy consumption per mass of vanillin recovered. In vacuum distillation fractionated condensation, adding several consecutive water pulses to the feed increased the percentage of recovered vanillin. In pervaporation-fractionated condensation and vacuum distillation-fractionated condensation processes, it was possible to recover vanillin and traces of vanillyl alcohol without the presence of potential contaminants. Vacuum distillation-experiments presented higher vanillin fluxes than pervaporation fractionated condensation experiments, 2.7 ± 0.1 g·m-2 h-1 and 1.19 ± 0.01 g·m-2 h-1, respectively. However, pervaporation fractionated condensation assures a selectivity of vanillin against water of 4.5 on the pervaporation step (acting as a preconcentration step) and vacuum distillation fractionated condensation requires a higher energy consumption per mass of vanillin recovered when compared with pervaporation- fractionated condensation, 2727 KWh kgVAN-1 at 85 °C and 1361 KWh kgVAN-1 at 75 °C, respectively.
Collapse
Affiliation(s)
- Rita Valério
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carla Brazinha
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - João G. Crespo
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
11
|
Figueroa Paredes DA, Sánchez RJ, Magariño M, Espinosa J. Pervaporative recovery of aroma compounds in the production of non-alcoholic beers: Incorporation of different condensation strategies into the conceptual design of the process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Design of a perstraction-based extraction system for the removal of polychlorinated biphenyls from bovine milk via COSMO-RS: Membrane screening. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Pereira M, Brazinha C, Crespo J. Pervaporation recovery of valuable aromas from by-products of the seafood industry: Modelling of fractionated condensation for off-flavour removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Shen B, Zhao S, Yang X, Carta M, Zhou H, Jin W. Relation between permeate pressure and operational parameters in VOC/nitrogen separation by a PDMS composite membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Zhan X, Zhao X, Gao Z, Ge R, Lu J, Wang L, Li J. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Durďáková TM, Hovorka Š, Hrdlička Z, Vopička O. Comparison of pervaporation and perstraction for the separation of p‑xylene/m‑xylene mixtures using PDMS and CTA membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
|
18
|
Angelini A, Fodor C, Leva L, Car A, Dinu IA, Yave W, Meier W. Synthesis and characterization of tailor‐made
N
‐vinylpyrrolidone copolymers and their blend membranes with polyvinyl alcohol for bioethanol dehydration by pervaporation. J Appl Polym Sci 2021. [DOI: 10.1002/app.51562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Csaba Fodor
- Department of Chemistry University of Basel Basel Switzerland
| | - Luigi Leva
- Research and Development Department DeltaMem AG Allschwill Switzerland
| | - Anja Car
- Department of Chemistry University of Basel Basel Switzerland
| | | | - Wilfredo Yave
- Research and Development Department DeltaMem AG Allschwill Switzerland
| | - Wolfgang Meier
- Department of Chemistry University of Basel Basel Switzerland
| |
Collapse
|
19
|
The fabrication, characterization, and pervaporation performance of poly(ether-block-amide) membranes blended with 4-(trifluoromethyl)-N(pyridine-2-yl)benzamide and 4-(dimethylamino)-N(pyridine-2-yl)benzamide fillers. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Organic vapour permeation in amorphous and semi-crystalline rubbery membranes: Experimental data versus prediction by solubility parameters. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Fluorinated MOF-808 with various modulators to fabricate high-performance hybrid membranes with enhanced hydrophobicity for organic-organic pervaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Arregoitia-Sarabia C, González-Revuelta D, Fallanza M, Gorri D, Ortiz I. Polymer inclusion membranes containing ionic liquids for the recovery of n-butanol from ABE solutions by pervaporation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Knozowska K, Kujawa J, Lagzdins R, Figoli A, Kujawski W. A New Type of Composite Membrane PVA-NaY/PA-6 for Separation of Industrially Valuable Mixture Ethanol/Ethyl Tert-Butyl Ether by Pervaporation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3676. [PMID: 32825354 PMCID: PMC7504003 DOI: 10.3390/ma13173676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/29/2022]
Abstract
Pervaporation is a membrane technique used to separate azeotropic and close boiling solvents. Heterogenous PVA composite membranes with NaY zeolite supported on polyamide-6 were fabricated and utilized in organic-organic pervaporation. The efficiency of prepared membranes was evaluated in the separation of ethanol/ethyl tert-butyl ether (EtOH/ETBE) using separation factor (β) and the thickness normalized pervaporation separation index (PSIN). Implementation of the fringe projection phase-shifting method allowed to the determined contact angle corrected by roughness. The influence of the presence of water traces in the feed on the overall separation efficiency was also discussed using the enrichment factor for water (EFwater). The incorporation of NaY into PVA matrix increases surface roughness and hydrophilicity of the composite membrane. It was found that membranes selectively transport ethanol from the binary EtOH/ETBE mixture. The values of β (2.3) and PSIN (288 μm g m-2 h-1) for PVA-NaY/PA6 membrane were improved by 143% and 160% in comparison to the values for the pristine PVA/PA6 membrane. It was found that membranes showed EFwater > 1, thus revealing the preferential transport of water molecules across membranes. These results are also significant for the design of membranes for the removal of water excess from the mixtures of organic solvents.
Collapse
Affiliation(s)
- Katarzyna Knozowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (K.K.); (J.K.); (R.L.)
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (K.K.); (J.K.); (R.L.)
| | - Renars Lagzdins
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (K.K.); (J.K.); (R.L.)
- Faculty of Nature Sciences and Mathematics, Daugavpils University, 1 Parādes Street, LV-5401 Daugavpils, Latvia
| | - Alberto Figoli
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17c, 87030 Rende, Italy;
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland; (K.K.); (J.K.); (R.L.)
- National Research Nuclear University MEPhI, 31 Kashirskoe Hwy, Moscow 115409, Russia
| |
Collapse
|
24
|
Knozowska K, Li G, Kujawski W, Kujawa J. Novel heterogeneous membranes for enhanced separation in organic-organic pervaporation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Fabrication of PDMS based membranes with improved separation efficiency in hydrophobic pervaporation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
High performance and thermally stable PDMS pervaporation membranes prepared using a phenyl-containing tri-functional crosslinker for n-butanol recovery. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Grushevenko EA, Podtynnikov IA, Borisov IL. High-Selectivity Pervaporation Membranes for 1-Butanol Removal from Wastewater. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427219110168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Efficient recovery of the volatile aroma components from blackberry juice using a ZIF-8/PDMS hybrid membrane. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115844] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Li Y, Zong C, Zhou H, Jin W. Pervaporative separation of methyl acetate–methanol azeotropic mixture using high‐performance polydimethylsiloxane/ceramic composite membrane. ASIA-PAC J CHEM ENG 2019. [DOI: 10.1002/apj.2343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuxue Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing PR China
| | - Chuanxin Zong
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing PR China
| | - Haoli Zhou
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing PR China
| | - Wanqin Jin
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech University Nanjing PR China
| |
Collapse
|
30
|
The potential of pervaporation for biofuel recovery from fermentation: An energy consumption point of view. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.09.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Petrusová Z, Machanová K, Stanovský P, Izák P. Separation of organic compounds from gaseous mixtures by vapor permeation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Poly(vinyl alcohol)/ZSM-5 zeolite mixed matrix membranes for pervaporation dehydration of isopropanol/water solution through response surface methodology. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Golubev GS, Borisov IL, Volkov VV. Performance of Commercial and Laboratory Membranes for Recovering Bioethanol from Fermentation Broth by Thermopervaporation. RUSS J APPL CHEM+ 2018. [DOI: 10.1134/s1070427218080177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
The preparation of polyelectrolyte/hydrolyzed polyacrylonitrile composite hollow fiber membrane for pervaporation. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Knozowska K, Kujawski W, Zatorska P, Kujawa J. Pervaporative efficiency of organic solvents separation employing hydrophilic and hydrophobic commercial polymeric membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Chrzanowska E, Gierszewska M, Kujawa J, Raszkowska-Kaczor A, Kujawski W. Development and Characterization of Polyamide-Supported Chitosan Nanocomposite Membranes for Hydrophilic Pervaporation. Polymers (Basel) 2018; 10:polym10080868. [PMID: 30960793 PMCID: PMC6403665 DOI: 10.3390/polym10080868] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 11/16/2022] Open
Abstract
An experimental protocol of preparation of homogeneous and nanocomposite chitosan (Ch) based membranes supported on polyamide-6 (PA6) films was developed and described in detail. Montmorillonite (MMT) and Cloisite 30B (C30B) nanoclays were used as nanofillers to improve mechanical properties of chitosan films. The surface, mechanical, and transport properties of PA6 supported Ch, Ch/MMT and Ch/C30B membranes were studied and compared with a pristine, non-supported chitosan membrane. Implementation of advanced analytical techniques e.g., SEM reveal the clays nanoparticles are well dispersed in the chitosan matrix. According to AFM images, composite chitosan/nanoclay membranes possess higher roughness compared with unfilled ones. On the other hand, an incorporation of clay particles insignificantly changed the mechanical and thermal properties of the membranes. It was also found that all membranes are hydrophilic and water is preferentially removed from EtOH/H₂O and iPrOH/H₂O mixtures by pervaporation. Supporting of chitosan and chitosan/nanoclay thin films onto PA6 porous substrate enhanced permeate flux and pervaporation separation index, in comparison to the pristine Ch membrane. Concerning separation factor (β), the highest value equal to 4500 has been found for a chitosan composite membrane containing Cloisite 30B contacting 85/15 wt % iPrOH/H₂O mixture. The mentioned membrane was characterized by the normalized flux of 0.5 μm·kg·m-2·h-1. Based on the established data, it was possible to conclude that chitosan membranes are meaningful material in dehydration of azeotropic mixtures. Nevertheless, to boost up the membrane efficiency, the further modification process is required.
Collapse
Affiliation(s)
- Ewelina Chrzanowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Magdalena Gierszewska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Aneta Raszkowska-Kaczor
- Institute for Engineering of Polymer Materials and Dyes, 55 Marii Skłodowskiej-Curie Street, 87-100 Toruń, Poland.
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland.
| |
Collapse
|
37
|
Rezakazemi M, Marjani A, Shirazian S. Organic solvent removal by pervaporation membrane technology: experimental and simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19818-19825. [PMID: 29736659 DOI: 10.1007/s11356-018-2155-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
This work presents purification of cyclohexane using polydimethylsiloxane (PDMS) membranes in pervaporation (PV) process. The PDMS is a rubbery polymer and appropriate as membrane material for purification of cyclohexane. PV which is a low-energy separation process was chosen for purification of cyclohexane due to its superior advantages compared to other processes. Effect of feed concentration on separation factor was investigated in order to optimize the process. It was indicated that dehydration of 80 wt% cyclohexane mixture at a temperature of 300 K and a vacuum pressure of 10 mmHg could be effectively achieved and high separation factor of 2500 was obtained. Furthermore, a two-dimensional mechanistic model was proposed for predicting mass transfer of cyclohexane in the process. The mechanistic model accounts for mass transfer of cyclohexane across the membrane, and concentration distribution of cyclohexane was determined. It was revealed that the most mass transfer flux of cyclohexane occur at the region near the inlet of feed channel, while the flux at the upper side of the module reaches zero value due to the effect of velocity distribution on the convective mass transfer of cyclohexane.
Collapse
Affiliation(s)
- Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Azam Marjani
- Department of Chemistry, Islamic Azad University, Arak Branch, Arak, Iran
| | - Saeed Shirazian
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
38
|
Al-Gharabli S, Kujawski W, El-Rub ZA, Hamad EM, Kujawa J. Enhancing membrane performance in removal of hazardous VOCs from water by modified fluorinated PVDF porous material. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
|
40
|
Modification of polyacrylonitrile membranes via plasma treatment followed by polydimethylsiloxane coating for recovery of ethyl acetate from aqueous solution through vacuum membrane distillation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Zheng PY, Li XQ, Wu JK, Wang NX, Li J, An QF. Enhanced butanol selectivity of pervaporation membrane with fluorinated monolayer on polydimethylsiloxane surface. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Rynkowska E, Fatyeyeva K, Kujawa J, Dzieszkowski K, Wolan A, Kujawski W. The Effect of Reactive Ionic Liquid or Plasticizer Incorporation on the Physicochemical and Transport Properties of Cellulose Acetate Propionate-Based Membranes. Polymers (Basel) 2018; 10:polym10010086. [PMID: 30966119 PMCID: PMC6415109 DOI: 10.3390/polym10010086] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 11/16/2022] Open
Abstract
Pervaporation is a membrane-separation technique which uses polymeric and/or ceramic membranes. In the case of pervaporation processes applied to dehydration, the membrane should transport water molecules preferentially. Reactive ionic liquid (RIL) (3-(1,3-diethoxy-1,3-dioxopropan-2-yl)-1-methyl-1H-imidazol-3-ium) was used to prepare novel dense cellulose acetate propionate (CAP) based membranes, applying the phase-inversion method. The designed polymer-ionic liquid system contained ionic liquid partially linked to the polymeric structure via the transesterification reaction. The various physicochemical, mechanical, equilibrium and transport properties of CAP-RIL membranes were determined and compared with the properties of CAP membranes modified with plasticizers, i.e., tributyl citrate (TBC) and acetyl tributyl citrate (ATBC). Thermogravimetric analysis (TGA) testified that CAP-RIL membranes as well as CAP membranes modified with TBC and ATBC are thermally stable up to at least 120 °C. Tensile tests of the membranes revealed improved mechanical properties reflected by reduced brittleness and increased elongation at break achieved for CAP-RIL membranes in contrast to pristine CAP membranes. RIL plasticizes the CAP matrix, and CAP-RIL membranes possess preferable mechanical properties in comparison to membranes with other plasticizers investigated. The incorporation of RIL into CAP membranes tuned the surface properties of the membranes, enhancing their hydrophilic character. Moreover, the addition of RIL into CAP resulted in an excellent improvement of the separation factor, in comparison to pristine CAP membranes, in pervaporation dehydration of propan-2-ol. The separation factor β increased from ca. 10 for pristine CAP membrane to ca. 380 for CAP-16.7-RIL membranes contacting an azeotropic composition of water-propan-2-ol mixture (i.e., 12 wt % water).
Collapse
Affiliation(s)
- Edyta Rynkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France.
| | - Kateryna Fatyeyeva
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France.
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
| | - Krzysztof Dzieszkowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
| | - Andrzej Wolan
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
- Synthex Technologies Sp. z o.o., 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland.
| |
Collapse
|
43
|
Performance of commercial composite hydrophobic membranes applied for pervaporative reclamation of acetone, butanol, and ethanol from aqueous solutions: Binary mixtures. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.07.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
High-flux POMS organophilic pervaporation for ABE recovery applied in fed-batch and continuous set-ups. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Nanostructured polyelectrolyte-surfactant complex pervaporation membranes for ethanol recovery: the relationship between the membrane structure and separation performance. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2006-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
Huang W, Liu B, Chen Z, Wang H, Ren L, Jiao J, Zhuang L, Luo J, Jiang L. Fabrication of Magnetic Nanofibers by Needleless Electrospinning from a Self-Assembling Polymer Ferrofluid Cone Array. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E277. [PMID: 28926978 PMCID: PMC5618388 DOI: 10.3390/nano7090277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 11/21/2022]
Abstract
Magnetic nanofiber has been widely applied in biomedical fields due to its distinctive size, morphology, and properties. We proposed a novel needleless electrospinning method to prepare magnetic nanofibers from the self-assembling "Taylor cones" of poly(vinyl pyrrolidone) (PVP)/Fe₃O₄ ferrofluid (PFF) under the coincident magnetic and electric fields. The results demonstrated that a static PFF Rosensweig instability with a conical protrusion could be obtained under the magnetic field. The tip of the protrusion emitted an electrospinning jet under the coincident magnetic and electric fields. The needleless electrospinning showed a similar process phenomenon in comparison with conventional electrospinning. The prepared nanofibers were composed of Fe₃O₄ particles and PVP polymer. The Fe₃O₄ particles aggregated inside and on the surface of the nanofibers. The nanofibers prepared by needleless electrospinning exhibited similar morphology compared with the conventionally electrospun nanofibers. The nanofibers also exhibited good ferromagnetic and magnetic field responsive properties.
Collapse
Affiliation(s)
- Weilong Huang
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Bin Liu
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Zhipeng Chen
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Hongjian Wang
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Lei Ren
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Jiaming Jiao
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Lin Zhuang
- School of Physics, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Jie Luo
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Lelun Jiang
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
47
|
Pervaporative butanol removal from PBE fermentation broths for the bioconversion of glycerol by Clostridium pasteurianum. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
|
49
|
Santoro S, Galiano F, Jansen JC, Figoli A. Strategy for scale-up of SBS pervaporation membranes for ethanol recovery from diluted aqueous solutions. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Use of pervaporation process for the recovery of aroma compounds produced by P. fermentans in sugarcane molasses. Bioprocess Biosyst Eng 2017; 40:959-967. [DOI: 10.1007/s00449-017-1759-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/08/2017] [Indexed: 11/25/2022]
|