1
|
Zhang CY, Wu Z, Han G, Wu DS, Chi L, Niu JY, Zhao C, Fang WH, Zhang J. Unraveling the Surface Chemistry of Aluminum Oxo Archimedean Cages for Efficient Serial Adsorption. Angew Chem Int Ed Engl 2025; 64:e202421484. [PMID: 40133229 DOI: 10.1002/anie.202421484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 03/27/2025]
Abstract
Multifunctional materials that meet diverse application needs hold profound significance in resource optimization, efficiency enhancement, and environmental sustainability. However, the development of these materials faces numerous challenges, including raw material acquisition, design feasibility, and long-term stability. This study demonstrates the innovative application of the surface chemistry of aluminum oxo Archimedean cages in efficient serial adsorption. The "Four-in-One" surface chemistry enables various single-crystal-to-single-crystal (SC-SC) structural transformations, involving ligand modification, cation exchange, post-synthetic metalation, and metal elimination, successfully achieving the first reversible SC-SC transformation from cluster structures to infinite frameworks. The fundamental reason behind these dynamic structural changes lies in the exceptional balance between rigidity and flexibility provided by the intercluster tri-pyrazole sites on the Archimedean cages. This diverse structural transformation characteristic offers extensive application potential for solid-liquid and solid-gas serial adsorption. For instance, this material effectively adsorbs heavy metal ions in water treatment and can subsequently be used for the permanent fixation of gaseous radionuclides. This work not only deepens our understanding of dynamic chemistry but also provides guiding significance for environmental remediation.
Collapse
Affiliation(s)
- Cheng-Yang Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Zhicheng Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Gang Han
- Shanghai Institute of Measurement and Testing Technology, 1500 Zhang-Heng Road, Shanghai, 201203, P.R. China
| | - Dong-Shuai Wu
- Shanghai Institute of Measurement and Testing Technology, 1500 Zhang-Heng Road, Shanghai, 201203, P.R. China
| | - Lisheng Chi
- Fujian College, University of Chinese Academy of Sciences, No. 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P.R. China
| | - Jing-Yang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Chao Zhao
- Shanghai Institute of Measurement and Testing Technology, 1500 Zhang-Heng Road, Shanghai, 201203, P.R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- Fujian College, University of Chinese Academy of Sciences, No. 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P.R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- Fujian College, University of Chinese Academy of Sciences, No. 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
2
|
Fu R, Wang R, Wang C, Zhang S, Wang J, Peng R, Zhu X, Kang H, Mao Y. MOFs-based aerogels and their derivatives for water treatment: A review. ENVIRONMENTAL RESEARCH 2025; 279:121824. [PMID: 40373992 DOI: 10.1016/j.envres.2025.121824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/28/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
Metal-organic frameworks (MOFs) are a class of environmental nano-materials composed of metal ions and organic ligands with remarkable physical and chemical properties, such as huge specific surface area as well as abundant pore volume. Based on their unique structures and properties, MOFs have demonstrated potential applications in the fields of adsorption, gas storage, separation membranes, and catalysis, and have become popular candidates in water treatment technologies. However, MOFs particles in powder form are prone to agglomeration and adhesion effects in water, which leads to problems such as difficult separation and secondary pollution. As an ideal carrier for MOFs, aerogels exhibit a unique three-dimensional interconnected pore structure, which endows aerogels with high porosity properties and excellent adsorption capacity. Researchers have skillfully combined MOFs with aerogels to create a new type of MOF aerogel composites (MOFACs). These composites are converted into highly porous and high-strength carbon aerogels through a high-temperature pyrolysis process in an inert environment. These carbon aerogels not only retain the high catalytic efficiency of MOFs, but also inherit the advantages of aerogels in terms of light weight, low density and easy handling. This paper reviews various types of MOFACs, each of which possesses different chemical compositions and physical properties, thus adapting to different applications. The paper also discusses the applications of MOFACs and carbon aerogels in water treatment for catalysis, selective adsorption and solid phase microextraction.
Collapse
Affiliation(s)
- Ranran Fu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450000, China; Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Ruixue Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450000, China; Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Chaohai Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Shiyu Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China; School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China
| | - Junning Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Rongfu Peng
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Xinfeng Zhu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Haiyan Kang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yanli Mao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
3
|
Shemy MH, Mohamed RA, Abdel-Khalek AA, Alqhtani HA, Al Zoubi W, Abukhadra MR. Engineering high-performance CTAB-functionalized magnesium silicate nano-adsorbent for efficient removal of Cd 2+, Co 2+, and Cu 2+ from single-metal aqueous solutions. Front Chem 2025; 13:1583305. [PMID: 40405895 PMCID: PMC12095273 DOI: 10.3389/fchem.2025.1583305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/25/2025] [Indexed: 05/26/2025] Open
Abstract
The development of highly efficient, recyclable adsorbents for heavy metal remediation remains a critical challenge in environmental engineering. This study introduces a novel cetyltrimethylammonium bromide-functionalized magnesium silicate (CTAB/MS) nano-adsorbent was synthesized through a multi-step surface modification of serpentinite involving intercalation with dimethyl sulfoxide, methanol treatment, and CTAB incorporation. The resulting nanostructure was extensively characterized and applied for the removal of cadmium (Cd2+), cobalt (Co2+), and copper (Cu2+) ions from contaminated water. The characterization findings confirmed significant morphological and structural modifications, including enhanced surface area, functional group availability, and mesoporosity, which contributed to enhanced adsorption performance. The kinetic modeling confirmed that the process predominantly followed a pseudo-first-order model, suggesting that rapid physisorption mechanisms controlled the initial adsorption phase. Equilibrium studies revealed that adsorption followed the Langmuir isotherm model, indicating monolayer adsorption on homogeneous active sites, with maximum adsorption capacities of 491.9 mg/g (Cd2+), 481.8 mg/g (Co2+), and 434.3 mg/g (Cu2+) at 303 K. Furthermore, statistical physics-based isotherm model incorporating steric and energetic parameters provided deeper mechanistic insights. The adsorption energy (ΔE) values remained below 12.66 kJ/mol, confirming a predominantly physical adsorption process, while thermodynamic analysis indicated an exothermic and spontaneous nature, as evidenced by negative free enthalpy (G) and internal energy (Eint) values. The recyclability assessment demonstrated that CTAB/MS retained over 70% of its adsorption efficiency after five consecutive regeneration cycles, underscoring its long-term applicability in water treatment. This highlights the potential of CTAB/MS as an advanced, cost-effective, and sustainable solution for large-scale water purification.
Collapse
Affiliation(s)
- Marwa H. Shemy
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Reham A. Mohamed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Ahmed A. Abdel-Khalek
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Haifa A. Alqhtani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Mostafa R. Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| |
Collapse
|
4
|
Shwetha Shree HN, Arpitha HJ, Priyanka HD, Banu N, Gayathri BH, Srinivasan R, Al-Sadoon MK, Durai M, Gnanasekaran L, Ramasundaram S, Yadav AK, Oh TH, Anush SM, Raman G. Effective removal of metal ions using MoS 2 functionalized chitosan Schiff base incorporated with C 3N 4 nanoparticle from aqueous solutions. Int J Biol Macromol 2025; 307:141402. [PMID: 39993684 DOI: 10.1016/j.ijbiomac.2025.141402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/15/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
In the present work, a novel pyrazole-based chitosan Schiff base material was prepared using 5-(4-Methoxyphenoxy)-3-methyl-1-phenyl-1H-pyrazol-4-carboxaldehyde and was modified using MoS2-C3N4, where the nanoparticles get embedded within the polymeric matrix. Further composite material was analyzed and characterized using various analytical techniques such as XRD, SEM, FTIR, EDS, BET and TGA. The adsorbent material was analyzed for the adsorptive take-up process with a metal ion concentration ranging from 20 to 100 mgL-1 and the adsorption occurred due to the interaction between the metal ions and the chitosan Schiff base. The maximum adsorption capacity obtained for the material was 333.3 and 200.02 mg/g for Cu(II) and Cr(VI) respectively. The adsorptive mechanism was found to possess pseudo-second-order kinetics and with a Langmuir adsorption isothermal fit following the monolayer accumulation process. Further, the evaluated thermodynamic study was evaluated to check the thermodynamic parameters which showed the adsorption phenomenon to be spontaneous and showed endothermicity in nature. A regeneration and reusability study was achieved for the composite material using convenient stripping solutions.
Collapse
Affiliation(s)
- H N Shwetha Shree
- ACU-Centre for Research and Innovation, Adichunchanagiri School of Natural Sciences, Adichunchanagiri University, Mandya 571448, India
| | - H J Arpitha
- Department of Physics, Sri Adichunchanagiri First Grade College, Channarayapatna 573116, Karnataka, India
| | - H D Priyanka
- Department of Chemistry, BGSIT College of Engineering, BG Nagar, 571448 Karnataka, India
| | - Nagma Banu
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India
| | - B H Gayathri
- BMS College for Women, Basavanagudi, Bengaluru 560004, Karnataka, India
| | - Ramachandran Srinivasan
- Centre for Ocean Research, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Mohammad Khalid Al-Sadoon
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mathivanan Durai
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), 602105 Chennai, Tamil Nadu, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India.
| | | | | | - Akhilesh Kumar Yadav
- Department of Electronics and Communication Engineering, School of Core Engineering, Faculty of Science, Technology and Architecture (FoST&A), Manipal University Jaipur, Jaipur, 303007, India.
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38436, Republic of Korea
| | - S M Anush
- ACU-Centre for Research and Innovation, Adichunchanagiri School of Natural Sciences, Adichunchanagiri University, Mandya 571448, India.
| | - Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38436, Republic of Korea
| |
Collapse
|
5
|
Zhou N, Wu X, Wang S, Qu J, Tan Y, Luan C, Yin X, Wu X, Zhuang X. Amino-Modified ZIF-90 for Effective Adsorption of Au(III) in Environmental Water. Molecules 2025; 30:1826. [PMID: 40333849 PMCID: PMC12029406 DOI: 10.3390/molecules30081826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025] Open
Abstract
In this work, amino-modified ZIF-90 (NH2-ZIF-90) was prepared by using butylamine as a modifier, and its effectiveness in adsorbing Au(III) from environmental samples was investigated. The morphology and structure of NH2-ZIF-90 were analyzed via SEM, XRD, FT-IR, and XPS. Optimal adsorption occurred after 12 h of shaking in a pH = 5 aqueous solution with 2 mg mL-1 NH2-ZIF-90. The adsorption kinetics conformed to a pseudo-second-order model, and the equilibrium data fit the Freundlich isotherm model well. Finally, NH2-ZIF-90 was successfully used in lake water and tap water samples for Au(III) adsorption, with recovery rates ranging from 81.0% to 93.3%. This study presents a novel approach for addressing Au(III) adsorption challenges.
Collapse
Affiliation(s)
- Na Zhou
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (N.Z.); (X.W.); (Y.T.); (C.L.); (X.Y.)
| | - Xueli Wu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (N.Z.); (X.W.); (Y.T.); (C.L.); (X.Y.)
| | - Shaoxia Wang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (S.W.); (J.Q.); (X.W.)
| | - Jianfei Qu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (S.W.); (J.Q.); (X.W.)
| | - Yang Tan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (N.Z.); (X.W.); (Y.T.); (C.L.); (X.Y.)
| | - Chuanlei Luan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (N.Z.); (X.W.); (Y.T.); (C.L.); (X.Y.)
| | - Xiuli Yin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (N.Z.); (X.W.); (Y.T.); (C.L.); (X.Y.)
| | - Xuran Wu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (S.W.); (J.Q.); (X.W.)
| | - Xuming Zhuang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (S.W.); (J.Q.); (X.W.)
| |
Collapse
|
6
|
Sayed A, El-Sherbeeny AM, Abdel-Gawad GI, Mohamed EA, Al Zoubi W, Abukhadra MR. Effective and realistic sequestration of Sr 2+ and B 3+ ions from the aqueous environments using coral reefs based Ca-MCM-41: Gulf of Suez as case study. Front Chem 2025; 13:1550726. [PMID: 40308266 PMCID: PMC12041029 DOI: 10.3389/fchem.2025.1550726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
A mesoporous calcium-bearing siliceous framework (Ca-MCM-41) was synthesized using natural coral reef carbonate rocks as precursors. The structural characterization, confirmed through XRD, SEM, FT-IR, and BET analyses, validated the formation of the MCM-41 framework with well-defined mesoporous properties and a high surface area of 159.6 m2/g. The developed Ca-MCM-41 was evaluated as a potential adsorbent for the removal of Sr2+ and B3+ ions from both aqueous solutions and real seawater samples collected from the Gulf of Suez, Egypt. The adsorption capacity at saturation reached 285.9 mg/g for Sr2+ and 86.1 mg/g for B3+, demonstrating the framework's high affinity for these contaminants. The adsorption mechanisms were elucidated using steric and energetic parameters, as derived from statistical physics-based isotherm models. The Ca-MCM-41 framework exhibited a higher active site density (148.9 mg/g) for Sr2+ compared to B3+ (54.8 mg/g), explaining its superior sequestration performance for strontium ions. Each receptor site was capable of accommodating up to three Sr2+ ions and 2 B3+ ions, indicating a multi-ionic interaction process and preferential vertical alignment during adsorption. Energetic analysis revealed that the sequestration process occurred via physical adsorption with interaction energies below 7 kJ/mol, alongside exothermic and spontaneous behavior, as evidenced by calculated internal energy, entropy, and enthalpy values. The developed Ca-MCM-41 structure demonstrated notable efficiency in real seawater applications, achieving sequestration percentages of 80% for Sr2+ and 64% for B3+, considering their average concentrations (24.2 mg/L for Sr2+ and 12.85 mg/L for B3+) in a 1-L volume. These findings highlight the high potential of Ca-MCM-41 as an effective and sustainable adsorbent for Sr2+ and B3+ removal in environmental water treatment applications.
Collapse
Affiliation(s)
- Alshaima Sayed
- Faculty of Earth Science, Beni-Suef University, Beni-Suef, Egypt
- Materials Technologies and their applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Ahmed M. El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | | | - Essam A. Mohamed
- Faculty of Earth Science, Beni-Suef University, Beni-Suef, Egypt
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Mostafa R. Abukhadra
- Materials Technologies and their applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| |
Collapse
|
7
|
Gaber W, Shehata N, El-Sherbeeny AM, Al Zoubi W, Mehaney A, Abukhadra MR. Facile exfoliation of natural talc into separated mesoporous magnesium silicate nano-sheets for effective sequestration of phosphate and nitrate ions: characterization and advanced modeling. Front Chem 2025; 13:1571723. [PMID: 40303846 PMCID: PMC12037480 DOI: 10.3389/fchem.2025.1571723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/10/2025] [Indexed: 05/02/2025] Open
Abstract
Magnesium silicate nano-sheets were synthesized from natural talc by facile exfoliation and delamination methods as exfoliated product (EXTC) of 29.5 nm average pore diamter, enhanced surface area (103 m2/g), and adsorption perforamnces. The sucessful development of EXTC particles was followed based on different techniques and applied in effective sequestration of PO4 3- and NO3 - ions from water. The EXTC product as adsorbent demonstrates remarkable effectiveness for both PO4 3- (257.9 mg/g) and NO3 - (164.2 mg/g) as compared to several studied structures. Depending on the steric analysis of Monolayer equilibrium model, the interface of EXTC highly saturated with interactive receptors for the both ions but with higher abundant for PO4 3- (151.5 mg/g) as compared to NO3 - (61.5 mg/g). This resulted in higher aggregation effect during the uptake of NO3 - (4 ions per site) than PO4 3- (3 ions per site) which also donate the vertical orientation of these adsorbed ions and operation of multi-ionic sequestration mechanisms. The structure is highly recyclable and of significant safety and cane be applied in its spent or exhausted state as fertilizer. The energetic evaluation considering the Gaussian energy (<8.5 kJ/mol) as well as the sequestration energy (<4 kJ/mol), suggested the predominant impact of physical mechanisms (hydrogen bonds and electrostatic attraction), in addition to the impact of the weak chemical complexation. Furthermore, the thermodynamic functions declare the retention of these ions into the framework of EXTC by exothermic and spontaneous reactions.
Collapse
Affiliation(s)
- Walaa Gaber
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
- Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M. El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ahmed Mehaney
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa R. Abukhadra
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
- Materials Technologies and their applications Lab, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
8
|
Farhan AM, Khaled ESH, Abdel-Khalek AA, El-Sherbeeny AM, Al Zoubi W, Abukhadra MR. Tailoring the synergistic effect of integrated polypyrrole hydrogel on the adsorption activity of rice husk-based activated carbon (polypyrrole/activated carbon composite) for bisphenol-A and 4-chlorophenol: experimental and theoretical analysis. Front Bioeng Biotechnol 2025; 13:1556887. [PMID: 40190715 PMCID: PMC11968677 DOI: 10.3389/fbioe.2025.1556887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
Rice husk-derived activated carbon was hybridized with polypyrrole hydrogel (Pyh), producing advanced nanocomposite (Pyh/AC). The composite was applied as an enhanced adsorbent for two forms of toxic phenolic compounds, particularly bisphenol-A (BSP-A) and 4-chlorophenol (4-CL). The adsorption studies were evaluated considering the synthetic effect of Pyh based on the criteria of statistical physics equilibrium modeling. The reported saturation adsorption capacities for BSP-A and 4-CL using Pyh/AC are 321.4 mg/g and 365.8 mg/g, respectively. These values are significantly higher than the estimated values for the hydrogel in separated form. The analysis of the steric properties validated the saturation of the composite with about 169.7 mg/g and 119.5 mg/g as active site density during the uptake of BSP-A and 4-CL, respectively. These values are higher than the estimated densities using Pyh (110.5 mg/g (BSP-A) and 99.3 mg/g (4-CL)), demonstrating the positive impact of the hybridization process in terms of surface area, porosity, and incorporated chemical functional groups. Furthermore, the capacity of each site on the structure of Pyh/AC to accommodate up to 3 molecules of BSP-A and 6 molecules of 4-CL displays the operation of multi-molecular mechanisms and the ordering of these adsorbed molecules vertically and in non-parallel forms. The adsorption energies, either based on classic (<21 kJ/mol) or advanced (<20 kJ/mol) isotherm studies, reflect the physisorption of the phenolic compounds on the surface of Pyh/AC. The composite also shows thermodynamically stable properties and the uptake reactions that occurred with exothermic, favorable, and spontaneous properties.
Collapse
Affiliation(s)
- Amna M. Farhan
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Eman S. H. Khaled
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | | | - Ahmed M. El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Mostafa R. Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| |
Collapse
|
9
|
Xu C, Liu Q, Han Y, Hu S, Xu S. Efficient adsorption of Cu 2+ using ZnCo bimetallic organic frameworks loaded cellulose-based modified aerogel: Adsorption behavior and mechanism. ENVIRONMENTAL RESEARCH 2025; 269:120877. [PMID: 39826652 DOI: 10.1016/j.envres.2025.120877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Cellulose has been broadly used in wastewater treatment. However, its adsorption capacity is limited by the lack of strong sites interacted with pollutants. Because of the good ability of carrying other substances, cellulose-based materials still have considerable room for improvement in adsorption capacity. Therefore, in virtue of this property, we synthesized a cellulose nanofibril (CNF) composite, Zn0.5Co0.5-ZIF@GEL aerogel, using mussel-bionic technique and zeolitic imidazolate frameworks (ZIFs) materials, which was applied in adsorbing copper ions. The experiments indicated the adsorption kinetics was consistent with the pseudo-second-order model. Langmuir model had a better fitting effect in isotherm analysis, revealing that the maximum adsorption capacity was 274.73 mg/g at 25 °C. Furthermore, we found that the appropriate doping of Co element to achieve an optimal synergistic effect enhance the adsorption capacity of Cu2+ greatly. The mechanisms of synthesis and adsorption progress were also deeply researched. Overall, the findings of Zn0.5Co0.5-ZIF@GEL promote the application of ZIFs in the adsorption field of polydopamine-composited CNF aerogel.
Collapse
Affiliation(s)
- Chongqin Xu
- College of Home and Art Design, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China
| | - Qi Liu
- College of Home and Art Design, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China
| | - Yawen Han
- College of Home and Art Design, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China
| | - Shaokuan Hu
- College of Home and Art Design, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China
| | - Shuyan Xu
- College of Home and Art Design, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
10
|
Alfassam HE, Nasser N, Othman SI, Alharbi HM, Alenazi NA, Rudyani HA, Allam AA, Al Zoubi W, Abukhadra MR. Insight into loading, release, and anticancer activities of the methanol hybridized glauconite nano-sheets as a potential carrier of cisplatin: equilibrium and release kinetics. Front Chem 2025; 13:1523664. [PMID: 40084277 PMCID: PMC11903436 DOI: 10.3389/fchem.2025.1523664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/03/2025] [Indexed: 03/16/2025] Open
Abstract
Advanced silicate nano-sheets as exfoliated and separated layers were developed from natural glauconite and hybridized with methanol, producing a methoxy exfoliated structure (Mth/EXGL). The structure was assessed as an enhanced carrier of the cisplatin drug (CSPN) with significant loading, release, and cytotoxicity properties. The methoxy form of exfoliated glauconite showed better loading properties (327.7 mg/g) than the exfoliated sample (202.4 mg/g) as well as the raw sample (119.3 mg/g). This enhancement was assigned to the incorporated active loading centers after the methanol hybridization step, which is in agreement with the steric studies and determined active site density (Nm = 45.5 mg/g (Mth/EXGL), 38.4 mg/g (EXGL), and 26.3 mg/g (glauconite). Moreover, each site across the interface of Mth/EXGL has the capacity to be loaded with 8 CSPN molecules, donating multi-molecular mechanisms and their loading in vertical orientation. The CSPN loading energy value (<8 kJ/mol) into Mth/EXGL reflected the dominant impact of the physical mechanisms, including electrostatic attractions and hydrogen bonding. The recognized release profile demonstrates continuous and controlled behavior that can extend up to 110 h at pH 7.4 and 170 h at pH 5.5. This releasing behavior is regulated by two main processes (diffusion and erosion) based on the release kinetic findings. Also, Mth/EXGL as a carrier of CSPN induces its cytotoxic effect on human cervical epithelial tumors (HeLa) (0.65% cell viability) as compared to the free form of CSPN (6.6% cell viability). The Mth/EXGL is recommended as a delivery system for CSPN considering its determined loading, release, and cytotoxicity properties.
Collapse
Affiliation(s)
- Haifa E. Alfassam
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nourhan Nasser
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Sarah I. Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hanan M. Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Noof A. Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hassan A. Rudyani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Ahmed A. Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Mostafa R. Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| |
Collapse
|
11
|
Abukhadra MR, Fadl Allah A, Shaban M, Alenazi NA, Alqhtani HA, Bin-Jumah M, Allam AA, Bellucci S. Experimental and advanced equilibrium studies on the enhanced adsorption of phosphate, cadmium, and safranin dye pollutants using methoxy exfoliated glauconite. Front Chem 2024; 12:1471994. [PMID: 39569015 PMCID: PMC11576185 DOI: 10.3389/fchem.2024.1471994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Natural glauconite, as a mixed-layered clay mineral, was subjected to exfoliation processes, producing silicate monolayers or individual sheets that were further modified with methanol into methoxy exfoliated glauconite (Mth/EXG). The structure was assessed as an enhanced adsorbent for three types of common water contaminants, including phosphate (PO4 3-), safranin-O dye (SFR), and cadmium metal ions (Cd2+). The Mth/EXG structure achieved promising adsorption capacities at the saturation points equal to 269.9 mg/g for PO4 3-, 312 mg/g for SFR, and 234.5 mg/g for Cd2+ which are significantly better than the reported values for several studied adsorbents of higher costs and complex production procedures. The adsorption processes and the predicted regulated mechanisms in terms of the adsorbate/adsorbent interface were illustrated based on the steric and energetic findings that correspond to the applied monolayer equilibrium model of one energy site. The structure displays active site densities of 82.5 mg/g (PO4 3-), 136.3 mg/g (SFR), and 83.4 mg/g (Cd2+), which illustrate the high uptake performance of SFR. Also, the steric parameters reflected the suitability of each existing site to be filled with 4 ions of PO4 3-, SFR, and Cd2+. The adsorption energy (less than 40 kJ/mol) in conjunction with free adsorption energy from D-R model (8-16 kJ/mol) and steric parameters validate the dominant impact of the multi-ionic physical mechanisms (hydrogen bonding and van der Waals forces), in addition to the assistant impact of some weak chemical processes that might be assigned to the formed inner-sphere complex. Also, these reactions all occurred spontaneously with exothermic behaviors according to the thermodynamic functions. Additionally, the structure exhibit significant affinity for the studied pollutants even in the existing of completive chemical including anions, cations and organic molecules.
Collapse
Affiliation(s)
- Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
- Geology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Aya Fadl Allah
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
| | - Noof A Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Haifa A Alqhtani
- Department of Biology, college of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - May Bin-Jumah
- Department of Biology, college of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, Egypt
| | | |
Collapse
|
12
|
Yu Y, Zhang Y, Zhao Y, Lv K, Ai L, Wu Z, Song Z, Zhang J. Probiotic bacterial adsorption coupled with CRISPR/Cas12a system for mercury (II) ions detection. Biosens Bioelectron 2024; 263:116627. [PMID: 39102774 DOI: 10.1016/j.bios.2024.116627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
The complex sample matrix poses significant challenges in accurately detecting heavy metals. In view of its superior performance for the biological adsorption of heavy metals, probiotic bacteria can be explored for functional unit to eliminate matrix interference. Herein, Lactobacillus rhamnosus (LGG) demonstrates a remarkable tolerance and can adsorb up to 300 μM of Hg2+, following the Freundlich isotherm model with the correlation coefficient (R2) value of 0.9881. Subsequently, by integrating the CRISPR/Cas12a system, a sensitive and specific fluorescent biosensor, "Cas12a-MB," has been developed for Hg2+ detection. Specifically, Hg2+ adsorbed onto LGG can specifically bind to the nucleic acid probe, thereby inhibiting the binding of the probe to LGG and the subsequent activation of the CRISPR/Cas12a system. Under optimal experimental conditions, with the detection time of 90 min and the detection limit of 0.44 nM, the "Cas12a-MB" biosensor offers a novel, eco-friendly approach for Hg2+ detection, showcasing the innovative application of probiotics in biosensor.
Collapse
Affiliation(s)
- Ying Yu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuan Zhang
- Center for Molecular Recognition and Biosensing, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yining Zhao
- Center for Molecular Recognition and Biosensing, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Kangzheng Lv
- Center for Molecular Recognition and Biosensing, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhengjun Wu
- State Key Laboratory of Dairy Biotechnology, Technology Center Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
| | - Zibo Song
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi, 653100, China
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
13
|
Li L, Liu B, Li Z. Metal-organic framework-based membranes for ion separation/selection from salt lake brines and seawater. NANOSCALE 2024; 16:19543-19563. [PMID: 39360896 DOI: 10.1039/d4nr02454k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Nanofiltration (NF) technologies have evolved into a stage ready for industrial commercialization. NF membranes with unique separation characteristics are widely used for ion selection in water environments. Although many materials have been synthesized and functionalized for specific ion separation, the permeability-selectivity trade-off is still a major challenge. Metal-organic frameworks (MOFs), as a class of promising materials to meet industrial demands, are gaining increasing attention. Many experimental and theoretical studies have been conducted on the applications of MOF-based membranes in ion selection. This review focuses on MOF-based NF membranes for ion separation/selection from seawater and salt lake brines, including their applications in industry. First, a brief discussion on the development of membrane technology for ion selection is given, with the principles of ion separation via NF membranes, industrial implementations, and technical difficulties being discussed. Next, the benefits and challenges of using MOF membranes in NF processes are elaborated, including the basic properties of MOFs, approaches to fabricate MOF membranes for efficient ion selection and challenges in constructing industrially viable membranes. Finally, state-of-the-art studies on key characteristics of MOFs for NF membrane fabrication are presented. It indicates that the utilization of MOF-based membranes has significant potential to improve ion separation performance. However, the lack of sufficient data under industrial conditions highlights the need for further development in this area.
Collapse
Affiliation(s)
- Lirong Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- School of Electrical, Energy and Power Engineering, YangZhou University, Yangzhou, Jiangsu 225127, China
| | - Biyuan Liu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Zhigang Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
14
|
Ali SM, Mohamed RA, Abdel-Khalek AA, Ahmed AM, Abukhadra M. Physicochemical, steric, and energetic characterization of kaolinite based silicate nano-sheets as potential adsorbents for safranin basic dye: effect of exfoliation reagent and techniques. Front Chem 2024; 12:1455838. [PMID: 39494396 PMCID: PMC11528917 DOI: 10.3389/fchem.2024.1455838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/09/2024] [Indexed: 11/05/2024] Open
Abstract
Kaolinite was subjected to advanced exfoliation processes to form separated nano-silicate sheets (EXK) with enhanced physicochemical properties as adsorbents. This involved the incorporation of different exfoliating agents, urea (U/EXK), KNO3 (N/EXK), and CTAB (C/EXK), highlighting their impacts on their textural and surficial properties as adsorbents for safranin dye. The applied characterization techniques confirmed the higher exfoliating degree of C/EXK, followed by N/EXK and U/EXK. This appeared significantly in the determined surface area (55.7 m2/g (C/EXK), 36.7 m2/g (U/EXK), and 47.1 m2/g (N/EXK)) and adsorption performances. The C/EXK structure displayed a better safranin uptake capacity (273.2 mg/g) than N/EXK (231 mg/g) and U/EXK (178.4 mg/g). Beside the remarkable differences in textural properties, the advanced mathematical modeling and the corresponding steric and energetic parameters illustrate the mentioned uptake properties. The interface of C/EXK is highly saturated by active uptake sites (Nm = 158.8 mg/g) as compared to N/EXK (109.3 mg/g) and U/EXK (93.4 mg/g), which is in agreement with the characterization findings and the expected higher exposure of siloxane groups. Each of these sites can be filled with four dye molecules using C/EXK and N/EXK, which implies the vertical orientation of these adsorbed ions and the effective operation of multi-molecular mechanisms. The energetic (ΔE < 40 kJ/mol) and thermodynamic investigations indicate the spontaneous, physical, and exothermic uptake of safranin molecules by EXK particulates. These mechanisms might involve dipole bonding (2-29 kJ/mol), electrostatic attraction (2-50 kJ/mol), van der Waals forces (4-10 kJ/mol), and hydrogen bonding (<30 kJ/mol).
Collapse
Affiliation(s)
- Samar Mohamed Ali
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Reham A. Mohamed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | | | - Ashour M. Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mostafa Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
15
|
Bin Jumah MN, Al Othman SI, Alomari AA, Allam AA, Abukhadra MR. Synthesis and characterization of cellulose fibers modified zinc phosphate/hydroxyapatite core-shell as enhanced carrier of cisplatin: Loading, release, and cytotoxicity. Int J Biol Macromol 2024; 277:134169. [PMID: 39097057 DOI: 10.1016/j.ijbiomac.2024.134169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
The uncontrolled administration of the cisplatin drug (CPTN) resulted in numerous drawbacks. Therefore, effective, affordable, and biocompatible delivery systems were suggested to regulate the loading, release, and therapeutic effect of CPTN. Zinc phosphate/hydroxyapatite hybrid form (ZP/HP) and core-shell nano-rod morphology, as well as its functionalized derivative with cellulose (CF@ZP/HP), were synthesized by the facile dissolution precipitation method followed by mixing with cellulose fibers, respectively. The developed CF@ZP/HP displayed remarkable enhanced CPTN loading properties (418.2 mg/g) as compared to ZP/HP (259.8 mg/g). The CPTN loading behaviors into CF@ZP/HP follow the Langmuir isotherm properties (R2 > 0.98) in addition to the kinetic activities of the pseudo-first-order model (R2 > 0.96). The steric assessment validates the notable increase in the existing loading receptors after the functionalization of ZP/HP with CF from 57.7 mg/g (ZP/HP) to 90.5 mg/g. The functionalization also impacted the capacity of each existing receptor to be able to ensure 5 CPTN molecules. This, in addition to the loading energies (<40 kJ/mol), donates the loading of CPTN by physical multi-molecular processes and in vertical orientation. The CPTN releasing patterns of CF@ZP/HP exhibit slow and controlled properties (95.7 % after 200 h at pH 7.4 and 100 % after 120 h at pH 5.5), but faster than the properties of ZP/HP. The kinetic modeling of the release activities together with the diffusion exponent (>0.45) reflected the release of CPTN according to both erosion and diffusion mechanisms. The loading of CPTN into both ZP/HP and CF@ZP/HP also resulted in a marked enhancement in the anticancer activity of CPTN against human cervical epithelial malignancies (HeLa) (cell viability = 5.6 % (CPTN), 3.2 % (CPTN loaded ZP/HP), and 1.12 % (CPTN loaded CF@ZP/HP)).
Collapse
Affiliation(s)
- May N Bin Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sarah I Al Othman
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Awatif Abdulaziz Alomari
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt; Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt.
| |
Collapse
|
16
|
Talha N, El-Sherbeeny AM, Zoubi WA, Abukhadra MR. Synergetic studies on the thermochemical activation and polyaniline integration on the adsorption properties of natural coal for chlorpyrifos pesticide: steric and energetic studies. Sci Rep 2024; 14:21116. [PMID: 39256397 PMCID: PMC11387739 DOI: 10.1038/s41598-024-70676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Three types of synthetic coal-derived adsorbents were characterized as potential enhanced structurers during the removal of chlorpyrifos pesticide. The raw coal (CA) was activated into porous graphitic carbon (AC), and both CA and AC were blended with polyaniline polymers (PANI/CA and PANI/AC) forming two advanced composites. The adsorption performances of the modified structures in comparison with CA were evaluated based on both the steric and energetic parameters of the applied advanced isotherm model (the monolayer model of one energy). The uptake performances reflected higher capacities for the PANI hybridized form (235.8 mg/g (PANI/CA) and 309.75 mg/g (PANI/AC) as compared to AC (156.9 mg/g) and raw coal (135.8 mg/g). This signifies the impact of activation step and PANI blending on the surface and textural properties of coal. The steric investigation determined the saturation of the coal surface with extra active sites after the activation step (Nm(AC) = 62.05 mg/g) and the PANI integration (Nm(PANI/CA) = 113.5 mg/g and Nm(PANI/AC) = 169.7 mg/g) as compared to raw coal (Nm(CA) = 39.6 mg/g). This illustrated the reported uptake efficiencies of the modified samples, which can be attributed to the enhancement in the surface area and the incorporation of additional chemical groups. The results also reflect that each site can be loaded with 3-4 molecules of chlorpyrifos, which are arranged vertically and adsorbed by multi-molecular mechanisms. The energetic studies (< 40 kJ/mol) suggested the physical uptake of pesticide molecules by dipole bonding and hydrogen bonding processes. The thermodynamic functions donate the exothermic properties of 47reactions that occur spontaneously.
Collapse
Affiliation(s)
- Norhan Talha
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Mostafa R Abukhadra
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt.
- Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt.
| |
Collapse
|
17
|
Choi YY, Hanh To DT, Kim S, Cwiertny DM, Myung NV. Mechanically durable tri-composite polyamide 6/hematite nanoparticle/tetra-n-butylammonium bromide (PA6/α-Fe 2O 3/TBAB) nanofiber based membranes for phosphate remediation. Front Chem 2024; 12:1472640. [PMID: 39314992 PMCID: PMC11416959 DOI: 10.3389/fchem.2024.1472640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Essential properties for a Point of Use (POU) water filter include maintaining high removal capacity and rate, with excellent mechanical properties to withstand pressure drop. Herein, mechanically robust tri-composite polyamide 6/iron oxide nanoparticles/tetra-n-butylammonium bromide (PA6/α-Fe2O3/TBAB) nanofiber composite membranes were electrospun for phosphate (P) remediation, where the diameter and composition were tuned by controlling solution compositions and electrospinning conditions. Tri-composite composition and morphology affect phosphate uptake where the adsorption capacity followed Langmuir isotherm whereas the adsorption kinetics followed pseudo second order behavior. Mechanical properties (i.e., Young's Modulus (E) and toughness) were significantly influenced by the composition and morphology of the tri-composite, as well. Although additional TBAB and iron oxide decreased toughness, there are optimum composition ranges which resulted in maximum Young's Modulus. Of the synthesized nanofiber membranes, PA6/α-Fe2O3/TBAB nanofibers with 17% α-Fe2O3 and 2% TBAB showed excellent phosphate uptake capacity [i.e., 8.9 mg/g (52 mg of P/g of α-Fe2O3)] while it is bendable, stretchable, and able to plastically deform without fracturing (i.e., Young's modulus of 2.06 × 108 Pa and Toughness of 1.35 × 106 J m-3). With concerns over the impact of P on water resources and the long-term availability of limited P resources, this tri-composite membrane is well suited for applications in both wastewater treatment and resource recovery.
Collapse
Affiliation(s)
- Yun Young Choi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Dung Thi Hanh To
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA, United States
| | - David M. Cwiertny
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA, United States
- Department of Chemistry, University of Iowa, Iowa City, IA, United States
| | - Nosang V. Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
18
|
Abukhadra MR, Allah AF, Shaban M, Alenazi NA, Alqhtani HA, Bin-Jumah M, Allam AA. Enhanced remediation of U(vi) ions from water resources using advanced forms of morphologically modified glauconite (nano-sheets and nano-rods): experimental and theoretical investigations. RSC Adv 2024; 14:28017-28034. [PMID: 39228761 PMCID: PMC11369765 DOI: 10.1039/d4ra05514d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Two forms of morphologically transformed glauconite (GL) involved exfoliated nanosheets (EXG) and nanorods (GRs), which were synthesized by facile exfoliating and scrolling modification under sonication. The two advanced forms (EXG and GRs) were applied as enhanced adsorbents for U(vi) ions and compared with using raw glauconite. The developed GRs structure displays higher saturation retention properties (319.5 mg g-1) in comparison with both EXG (264.8 mg g-1) and GL (237.9 mg g-1). This enhancement is assigned to the noticeable increment in the surface area (32.6 m2 g-1 (GL), 86.4 m2 g-1 (EXG), and 123.7 m2 g-1 (GRs)) in addition to the surface reactivity and exposure of effective siloxane groups. This was supported by the steric investigation based on the isotherm basics of the monolayer model of one energy site. The steric functions declared a strong increase in the density of the existing effective uptake receptors throughout the modification stages (GRs (112.1 mg g-1) > EXG (87.7 mg g-1) > 72.5 mg g-1 (GL)). Also, each active site can be filled with 4 U(vi) ions, donating the parallel orientation of these ions and the operation of multi-ionic mechanisms. The energetic functions, either the uptake energy (<13 kJ mol-1) or Gaussian energy (<5 kJ mol-1), validate the retention of U(vi) by physical reactions. These reactions displayed spontaneous properties and exothermic behaviors based on the investigated thermodynamic functions, including entropy, enthalpy, and internal energy. The structures also showed significant recyclability, indicating potential application on a realistic and commercial scale.
Collapse
Affiliation(s)
- Mostafa R Abukhadra
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni Suef City Egypt
- Geology Department, Faculty of Science, Beni-Suef University Egypt
| | - Aya Fadl Allah
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni Suef City Egypt
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef City Egypt
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah Madinah 42351 Saudi Arabia
| | - Noof A Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University Al-kharj 11942 Saudi Arabia
| | - Haifa A Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University P. O. BOX 84428 Riyadh 11671 Saudi Arabia
| | - May Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University P. O. BOX 84428 Riyadh 11671 Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University Riyadh 11623 Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University Beni-suef 65211 Egypt
| |
Collapse
|
19
|
Villafranca JC, Berton P, Ferguson M, Clausen R, Arancibia-Miranda N, Martinis EM. Aluminosilicates-based nanosorbents for heavy metal removal - A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134552. [PMID: 38823105 DOI: 10.1016/j.jhazmat.2024.134552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/17/2024] [Accepted: 05/03/2024] [Indexed: 06/03/2024]
Abstract
Contamination of water bodies with heavy metals poses a significant threat to human health and the environment, requiring the development of effective treatment techniques. In this context, aluminosilicates emerge as promising sorbents due to their cost-effectiveness and natural abundance. This review provides a clear, in-depth, and comprehensive description of the structure, properties, and characteristics of aluminosilicates, supporting their application as adsorbents and highlighting their diversity and adaptability to different matrices and analytes. Furthermore, the functionalization of these materials is thoroughly addressed, detailing the techniques currently used, exposing the advantages and disadvantages of each approach, and establishing comparisons and evaluations of the performances of various functionalized aluminosilicates in the extraction of heavy metals in aqueous matrices. This work aims not only to comprehensively review numerous studies from recent years but also to identify trends in the study of such materials and inspire future research and applications in the field of contaminant removal using aluminosilicates.
Collapse
Affiliation(s)
- Juan C Villafranca
- Facultad de Ingeniería, Universidad Nacional de Cuyo - Centro Universitario, Mendoza, M5500 Mendoza, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Paula Berton
- Chemical and Petroleum Engineering Department, University of Calgary, Calgary, AB, Canada
| | - Michael Ferguson
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ruth Clausen
- Facultad de Ingeniería, Universidad Nacional de Cuyo - Centro Universitario, Mendoza, M5500 Mendoza, Argentina
| | - Nicolás Arancibia-Miranda
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago, Chile; Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Estefanía M Martinis
- Facultad de Ingeniería, Universidad Nacional de Cuyo - Centro Universitario, Mendoza, M5500 Mendoza, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
20
|
Wang Y, Wang K, Zhou X, Dai B, Du D. Calcium oxide enhances the anaerobic co-digestion of excess sludge and plant waste: performance and mechanism. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1267-1279. [PMID: 39215737 DOI: 10.2166/wst.2024.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
The study investigates the effect of the oxidant calcium oxide (CaO) on the codigestion of excess sludge (ES) and plant waste (PW) under mesophilic anaerobic conditions to enhance methane production. The findings indicate that CaO significantly elevated methane yield in the codigestion system, with an optimum CaO addition of 6% resulting in a maximum methane production of 461 mL/g volatile solids, which is approximately 1.3 times that of the control group. Mechanistic exploration revealed that CaO facilitated the disintegration of organic matter, enhanced the release of soluble chemical oxygen demand, and increased the concentrations of soluble proteins and polysaccharides within the codigestion substrate. The presence of CaO was conducive to the generation and biological transformation of volatile fatty acids, with a notable accumulation of acetic acid, a smaller carboxylic acid within the VFAs. The proportion of acetate in the CaO-amended group increased to 32.6-36.9%. Enzymatic analysis disclosed that CaO enhanced the activity of hydrolytic and acidogenic enzymes associated with the ES and PW codigestion process but suppressed the activity of coenzyme F420. Moreover, CaO augmented the nutrient load in the fermentation liquid. The study provides an alternative scheme for the efficient resource utilization of ES and PW.
Collapse
Affiliation(s)
- Yongliang Wang
- Jiangsu Urban and Rural Construction Vocational College, Jiangsu Province Engineering Research Center of Low-carbon Building Materials and Urban and Rural Ecological, Changzhou 213147, China E-mail:
| | - Kang Wang
- Jiangsu Urban and Rural Construction Vocational College, Jiangsu Province Engineering Research Center of Low-carbon Building Materials and Urban and Rural Ecological, Changzhou 213147, China
| | - Xiaohui Zhou
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding 071001, China
| | - Bin Dai
- Suzhou Yuanke Ecological Construction Group, Suzhou 215123, China
| | - Daozhong Du
- Jiangsu Urban and Rural Construction Vocational College, Jiangsu Province Engineering Research Center of Low-carbon Building Materials and Urban and Rural Ecological, Changzhou 213147, China
| |
Collapse
|
21
|
Fan D, Peng Y, He X, Ouyang J, Fu L, Yang H. Recent Progress on the Adsorption of Heavy Metal Ions Pb(II) and Cu(II) from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1037. [PMID: 38921913 PMCID: PMC11206449 DOI: 10.3390/nano14121037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
With the processes of industrialization and urbanization, heavy metal ion pollution has become a thorny problem in water systems. Among the various technologies developed for the removal of heavy metal ions, the adsorption method is widely studied by researchers and various nanomaterials with good adsorption performances have been prepared during the past decades. In this paper, a variety of novel nanomaterials with excellent adsorption performances for Pb(II) and Cu(II) reported in recent years are reviewed, such as carbon-based materials, clay mineral materials, zero-valent iron and their derivatives, MOFs, nanocomposites, etc. The novel nanomaterials with extremely high adsorption capacity, selectivity and particular nanostructures are summarized and introduced, along with their advantages and disadvantages. And, some future research priorities for the treatment of wastewater are also prospected.
Collapse
Affiliation(s)
- Dikang Fan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
| | - Yang Peng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Xi He
- Changsha Industrial Technology Research Institute (Environmental Protection) Co., Ltd., Changsha 410083, China;
- Aerospace Kaitian Environmental Technology Co., Ltd., Changsha 410083, China
| | - Jing Ouyang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
| | - Liangjie Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
22
|
Ismail UM, Vohra MS, Onaizi SA. Adsorptive removal of heavy metals from aqueous solutions: Progress of adsorbents development and their effectiveness. ENVIRONMENTAL RESEARCH 2024; 251:118562. [PMID: 38447605 DOI: 10.1016/j.envres.2024.118562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Increased levels of heavy metals (HMs) in aquatic environments poses serious health and ecological concerns. Hence, several approaches have been proposed to eliminate/reduce the levels of HMs before the discharge/reuse of HMs-contaminated waters. Adsorption is one of the most attractive processes for water decontamination; however, the efficiency of this process greatly depends on the choice of adsorbent. Therefore, the key aim of this article is to review the progress in the development and application of different classes of conventional and emerging adsorbents for the abatement of HMs from contaminated waters. Adsorbents that are based on activated carbon, natural materials, microbial, clay minerals, layered double hydroxides (LDHs), nano-zerovalent iron (nZVI), graphene, carbon nanotubes (CNTs), metal organic frameworks (MOFs), and zeolitic imidazolate frameworks (ZIFs) are critically reviewed, with more emphasis on the last four adsorbents and their nanocomposites since they have the potential to significantly boost the HMs removal efficiency from contaminated waters. Furthermore, the optimal process conditions to achieve efficient performance are discussed. Additionally, adsorption isotherm, kinetics, thermodynamics, mechanisms, and effects of varying adsorption process parameters have been introduced. Moreover, heavy metal removal driven by other processes such as oxidation, reduction, and precipitation that might concurrently occur in parallel with adsorption have been reviewed. The application of adsorption for the treatment of real wastewater has been also reviewed. Finally, challenges, limitations and potential areas for improvements in the adsorptive removal of HMs from contaminated waters are identified and discussed. Thus, this article serves as a comprehensive reference for the recent developments in the field of adsorptive removal of heavy metals from wastewater. The proposed future research work at the end of this review could help in addressing some of the key limitations facing this technology, and create a platform for boosting the efficiency of the adsorptive removal of heavy metals.
Collapse
Affiliation(s)
- Usman M Ismail
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Muhammad S Vohra
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
23
|
Sharma S, Sharma M, Kumar R, Akhtar MS, Umar A, Alkhanjaf AAM, Baskoutas S. Recent advances and mechanisms of microbial bioremediation of nickel from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40224-40244. [PMID: 37930578 DOI: 10.1007/s11356-023-30556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
The global concern over emerging pollutants, characterized by their low concentrations and high toxicity, necessitates effective remediation strategies. Among these pollutants, pharmaceutical and personal care products, pesticides, surfactants, and persistent organic pollutants have gained significant attention. These contaminants are extensively distributed within aquatic ecosystems, posing threats to both human and aquatic physiological systems. Nickel, a valuable metal renowned for its corrosion-resistant properties, is widely utilized in various industrial processes, leading to the generation of nickel-containing waste streams, including batteries, catalysts, wastewater, and electrolyte bleed-off. Contamination of soil, water, or air by these waste materials can have adverse effects on the environment and human health. This review article focuses on the recent advancements in environmental and economic implications associated with the removal of nickel from diverse waste sources. Physicochemical technologies employed for treating different nickel-containing effluents and wastewater are discussed, alongside bioremediation techniques and the underlying mechanisms by which microorganisms facilitate nickel removal. The recovery of nickel from waste materials holds paramount importance not only from an economic standpoint but also to mitigate environmental impacts.
Collapse
Affiliation(s)
- Sonu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), Haryana, 133207, India
| | - Monu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), Haryana, 133207, India
| | - Raman Kumar
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), Haryana, 133207, India.
| | - Mohammad Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur, Uttar Pradesh, 242001, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Abdulrab Ahmed M Alkhanjaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 11001, Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|
24
|
Bin Jumah MN, Al Othman SI, Alomari AA, Allam AA, Abukhadra MR. Characterization of chitosan- and β-cyclodextrin-modified forms of magnesium-doped hydroxyapatites as enhanced carriers for levofloxacin: loading, release, and anti-inflammatory properties. RSC Adv 2024; 14:16991-17007. [PMID: 38799215 PMCID: PMC11124724 DOI: 10.1039/d4ra02144d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
An advanced form of magnesium-rich hydroxyapatite (Mg·HAP) was modified with two types of biopolymers, namely chitosan (CH/Mg·HAP) and β-cyclodextrin (CD/Mg·HAP), producing two types of bio-composites. The synthesized materials were developed as enhanced carriers for levofloxacin to control its loading, release, and anti-inflammatory properties. The polymeric modification significantly improved the loading efficiency to 281.4 mg g-1 for CH/Mg·HAP and 332.4 mg g-1 for CD/Mg·HAP compared with 218.3 mg g-1 for Mg·HAP. The loading behaviors were determined using conventional kinetic and isotherm models and mathematical parameters of new equilibrium models (the monolayer model of one energy). The estimated density of effective loading sites (Nm (LVX) = 88.03 mg g-1 (Mg·HAP), 115.8 mg g-1 (CH/Mg·HAP), and 138.5 mg g-1 (CD/Mg·HAP)) illustrates the markedly higher loading performance of the modified forms of Mg·HAP. Moreover, the loading energies (<40 kJ mol-1) in conjunction with the capacity of each loading site (n > 1) and Gaussian energies (<8 kJ mol-1) signify the physical trapping of LVX molecules in vertical orientation. The addressed materials validate prolonged and continuous release behaviors. These behaviors accelerated after the modification procedures, as the complete release was identified after 160 h (CH/Mg·HAP) and 200 h (CD/Mg·HAP). The releasing behaviors are regulated by both diffusion and erosion mechanisms, according to the kinetic investigations and diffusion exponent analysis (>0.45). The entrapping of LVX into Mg·HAP induces its anti-inflammatory properties against the generation of cytokines (IL-6 and IL-8) in human bronchial epithelia cells (NL20), and this effect displays further enhancement after the integration of chitosan and β-cyclodextrin.
Collapse
Affiliation(s)
- May N Bin Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Sarah I Al Othman
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Awatif Abdulaziz Alomari
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Kingdom of Saudi Arabia
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt +2001288447189
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni-Suef City Egypt
| |
Collapse
|
25
|
Farhan AM, Abu-Taweel GM, Sayed IR, Rudayni HA, Allam AA, Al Zoubi W, Abukhadra MR. Steric, Synergetic, Energetic Studies on the Impact of the Type of the Hybridized Polymers (Chitosan and β-Cyclodextrin) on the Adsorption Properties of Zeolite-A for Congo Red Dye. ACS OMEGA 2024; 9:21204-21220. [PMID: 38764688 PMCID: PMC11097194 DOI: 10.1021/acsomega.4c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Zeolite-A was synthesized successfully from kaolinite and hybridized with two species of biopolymers (chitosan (CH/Z) and β-cyclodextrin (CD/Z)). The obtained hybridized forms were assessed as potential adsorbents of Congo red synthetic dye (CR) with enhanced affinities and elimination capacities. The synthesized CD/Z and CH/Z hybrids demonstrated uptake capacities of 223.6 and 208.7 mg/g, which are significantly higher than single-phase zeolite-A (140.3 mg/g). The integrated polymers change the surface area, surface reactivity, and number of free active receptors that are already present. The classic isotherm investigations validate Langmuir equilibrium behavior for ZA and Freundlich properties for CD/Z and CH/Z. The steric parameters validate a strong increase in the existing active receptors after the incorporation of CD (CD/Z) to be 98.1 mg/g as compared to 83 mg/g for CH/Z and 60.6 mg/g for ZA, which illustrate the detected uptake behaviors. Moreover, the CR dye was adsorbed as several molecules per single site, reflecting the vertical uptake of these molecules by multimolecular mechanisms. The energetic assessment, considering both Gaussian energies and adsorption energies (<40 kJ/mol), validates the dominant impact of the physical mechanism during the sequestration of CR (dipole binding interactions (2-29 kJ/mol) and hydrogen bonds (<30 kJ/mol)), in addition to the considerable effect of ion exchange processes. Based on the thermodynamic parameters, the CR molecules were adsorbed by exothermic and spontaneous reactions.
Collapse
Affiliation(s)
- Amna M. Farhan
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 65211, Egypt
- Chemistry
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 65211, Egypt
| | - Gasem M. Abu-Taweel
- Department
of Biology, College of Science, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| | - Islam R. Sayed
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 65211, Egypt
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 65211, Egypt
| | - Hassan Ahmed Rudayni
- Department
of Biology, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Kingdom of Saudi Arabia
| | - Ahmed A. Allam
- Department
of Biology, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Kingdom of Saudi Arabia
| | - Wail Al Zoubi
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mostafa R. Abukhadra
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 65211, Egypt
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 65211, Egypt
| |
Collapse
|
26
|
Sun X, Talha N, Ahmed AM, Rafea MA, Alenazi NA, Abukhadra MR. Steric and energetic studies on the influence of cellulose on the adsorption effectiveness of Mg trapped hydroxyapatite for enhanced remediation of chlorpyrifos and omethoate pesticides. Int J Biol Macromol 2024; 265:130711. [PMID: 38490378 DOI: 10.1016/j.ijbiomac.2024.130711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Magnesium-trapped hydroxyapatite (Mg.HP) was hybridized with cellulose fiber to produce a bio-composite (CLF/HP) with enhanced adsorption affinities for two types of toxic pesticides (chlorpyrifos (CF) and omethoate (OM)). The enhancement influence of the hybridized cellulose on the adsorption performances of Mg.HP was illustrated based on the determined steric and energetic factors. The computed CF and OM adsorption performances of CLF/HP during the saturation phases are 279.8 mg/g and 317.9 mg/g, respectively, which are significantly higher than the determined values using Mg/HP (143.4 mg/g (CF) and 145.3 mg/g (OM)). The steric analysis demonstrates a strong impact of the hybridization process on the reactivity of the surface of the composite. While CLF/HP reflects effective uptake site densities (Nm) of 93.3 mg/g (CF) and 135.3 mg/g (OM), the estimated values for Mg.HP are 51.2 mg/g (CF) and 46.11 mg/g (OM), which explain the reported enhancement in the adsorption performances of the composite. The capacity of each uptake site to be occupied with more than one molecule (n (CF) = 3-3.74 and n (OM) = 2.35-3.54) suggests multimolecular uptake. The energetic factors suggested physical mechanistic processes of spontaneous and exothermic behaviors either during the uptake of CF or OM.
Collapse
Affiliation(s)
- Xiaohui Sun
- College of Civil and Transportation Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China.
| | - Norhan Talha
- Materials Technologies and their applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt
| | - Ashour M Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - M Abdel Rafea
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Noof A Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Mostafa R Abukhadra
- Materials Technologies and their applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt.
| |
Collapse
|
27
|
Ahmed AM, Saad I, Rafea MA, Abukhadra MR. Synergetic and advanced isotherm investigation for the enhancement influence of zeolitization and β-cyclodextrin hybridization on the retention efficiency of U(vi) ions by diatomite. RSC Adv 2024; 14:8752-8768. [PMID: 38495997 PMCID: PMC10938553 DOI: 10.1039/d3ra08709c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/03/2024] [Indexed: 03/19/2024] Open
Abstract
In synergetic investigations, the adsorption effectiveness of diatomite-based zeolitic structure (ZD) as well as its β-cyclodextrin (CD) hybrids (CD/ZD) towards uranium ions (U(vi)) was evaluated to examine the influence of the transformation procedures. The retention behaviors and mechanistic processes have been demonstrated through analyzing the steric and energetic factors employing the modern equilibrium approach (a monolayer model with a single energy level). After the saturation phase, the uptake characteristics of U(vi) were dramatically improved to 297.5 mg g-1 after the CD blending procedure versus ZD (262.3 mg g-1) or 127.8 mg g-1. The steric analysis indicated a notable increase in binding site levels after the zeolitization steps (Nm = 85.7 mg g-1) as well as CD implementation (Nm = 91.2 mg g-1). This finding clarifies the reported improvement in the ability of CD/ZD to effectively retain the U(vi) ions. Furthermore, every single active site of the CD/ZD material has the capacity to adsorb around four ions, which are aligned according to a vertical pattern. The energetic aspects, specifically Gaussian energy (<8 kJ mol-1) along with retention energy (<40 kJ mol-1), validate the regulated influences of the physical mechanistic processes. The physical adsorption of U(vi) seems to depend on various intermolecular forces, such as van der Waals forces, in conjunction with zeolitic ion exchanging pathways (0.6-25 kJ mol-1). The thermodynamic assets have been evaluated to confirm the exothermic together with spontaneous adsorption U(vi) by ZD and its blend with CD (CD/ZD).
Collapse
Affiliation(s)
- Ashour M Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Kingdom of Saudi Arabia
| | - Islam Saad
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt
| | - M Abdel Rafea
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Kingdom of Saudi Arabia
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University Beni Suef City Egypt
- Materials Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University Beni Suef City Egypt
| |
Collapse
|
28
|
Abukhadra MR, Nasser N, El-Sherbeeny AM, Al Zoubi W. Enhanced Retention of Cd(II) by Exfoliated Bentonite and Its Methoxy Form: Steric and Energetic Studies. ACS OMEGA 2024; 9:11534-11550. [PMID: 38496923 PMCID: PMC10938405 DOI: 10.1021/acsomega.3c08592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Synergistic studies were conducted to evaluate the retention potentiality of exfoliating bentonite (EXBEN) as well as its methanol hybridization derivative (Mth/EXBEN) toward Cd(II) ions to be able to verify the effects of the transformation processes. The adsorption characteristics were established by considering the steric and energetic aspects of the implemented advanced equilibrium simulation, specifically the monolayer model with a single energy level. Throughout the full saturation states, the adsorption characteristics of Cd(II) increased substantially to 363.7 mg/g following the methanol hybridized treatment in comparison to EXBEN (293.2 mg/g) as well as raw bentonite (BEN) (187.3 mg/g). The steric analysis indicated a significant rise in the levels of the active sites following the exfoliation procedure [retention site density (Nm) = 162.96 mg/g] and the chemical modification with methanol [retention site density (Nm) = 157.1 mg/g]. These findings clarify the improvement in the potential of Mth/EXBEN to eliminate Cd(II). Furthermore, each open site of Mth/EXBEN has the capacity to bind approximately three ions of Cd(II) in a vertically aligned manner. The energetic investigations, encompassing the Gaussian energy (less than 8 kJ/mol) plus the adsorption energy (less than 40 kJ/mol), provide evidence of the physical sequestration of Cd(II). This process may involve the collaborative impacts of dipole binding forces (ranging from 2 to 29 kJ/mol) and hydrogen binding (less than 30 kJ/mol). The measurable thermodynamic functions, particularly entropy, internal energy, and free enthalpy, corroborate the exothermic and spontaneous nature of Cd(II) retention by Mth/EXBEN, as opposed to those by EXBEN and BE.
Collapse
Affiliation(s)
- Mostafa R. Abukhadra
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni Suef
City 62511, Egypt
- Materials
Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City 62511, Egypt
| | - Nourhan Nasser
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni Suef
City 62511, Egypt
- Materials
Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City 62511, Egypt
| | - Ahmed M. El-Sherbeeny
- Industrial
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Wail Al Zoubi
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
29
|
Fujimoto K, Omondi BA, Kawano S, Hidaka Y, Ishida K, Okabe H, Hara K. Ionized acrylamide-based copolymer / terpolymer hydrogels for recovery of positive and negative heavy metal ions. PLoS One 2024; 19:e0298047. [PMID: 38427672 PMCID: PMC10906855 DOI: 10.1371/journal.pone.0298047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/17/2024] [Indexed: 03/03/2024] Open
Abstract
In this study, we explored the effective capture of both cations and anions onto a single adsorbent. Acrylamide (AAm) served as the polymer backbone, onto which co-monomers sodium p-styrenesulfonate (SS) and N,N-dimethylaminopropyl acrylamide (DMAPAA) were grafted, creating ionized polymer hydrogel adsorbents. These adsorbents were engineered for the synergistic separation and recovery of heavy metal cations and anions from concentrated solutions, focusing specifically on industrially significant ions such as Ni2+-, Cu2+, Zn2+ and (Cr2O7)2-. The adsorption and desorption behaviors of the AAm terpolymer hydrogels were investigated across various pH solutions, considering the competition and concentrations of these specific metal ions. Moreover, the study delved into the effects of the internal pH environment within the hydrogel adsorbents, determining its impact on the type of metal adsorbed and the adsorption capacity. Our findings indicated that the adsorption of cations was enhanced with a higher proportion of SS relative to DMAPAA in the hydrogel. In contrast, significant anion capture occurred when the concentration of DMAPAA exceeded that of SS. However, equal ratios of SS and DMAPAA led to a noticeable reduction in the adsorption of both types of substrates, attributed to the counteractive nature of these co-monomers. To enhance the adsorption efficiency, it may be necessary to consider methods for micro-scale separation of the two types of monomers. Additionally, the adsorption capacity was observed to be directly proportional to the swelling capacity of the hydrogels. For complete desorption and separation of the cations and anions from the adsorbent, the application of concentrated NaOH solutions followed by HNO3 was found to be essential. Given the varying concentrations of cation and anion pollutants, often present in heavy metal factory effluents, it is crucial to fine-tune the ratios of DMAPAA and SS during the synthesis process. This adjustment ensures optimized efficiency in the decontamination and recovery of these significant heavy metal ions.
Collapse
Affiliation(s)
- Kentaro Fujimoto
- Department of Applied Quantum Physics and Nuclear Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Brian Adala Omondi
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Research and Education of Environmental Technology, Kyushu University, Fukuoka, Japan
| | - Shinya Kawano
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Research and Education of Environmental Technology, Kyushu University, Fukuoka, Japan
| | - Yoshiki Hidaka
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Research and Education of Environmental Technology, Kyushu University, Fukuoka, Japan
| | - Kenji Ishida
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Research and Education of Environmental Technology, Kyushu University, Fukuoka, Japan
| | - Hirotaka Okabe
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Research and Education of Environmental Technology, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Hara
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Research and Education of Environmental Technology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
30
|
Hou Y, Feng H, He J, Meng F, Sun J, Li X, Wang X, Su Z, Sun C. Terbium alginate encapsulated CsPbI 3@Pb-MOF: a ratiometric fluorescent bead for detection and adsorption of Fe 3. Dalton Trans 2024; 53:2541-2550. [PMID: 38234224 DOI: 10.1039/d3dt04187e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Halide perovskite nanocrystals are innovative luminescent materials for fluorescent probes with high quantum yield and narrow emission bandwidth. However, the limited stability, single-signal response, and separation challenges obstruct their widespread use in water ion detection. Herein, a ratiometric fluorescence sensor based on terbium alginate gel beads (green fluorescent, namely Tb-AG) embedded with powdered CsPbI3@Pb-MOF (red fluorescent) was prepared for fluorescent determination and adsorption of Fe3+. Pb-MOF's protection notably enhances the water stability of CsPbI3, while the energy transfer between CsPbI3@Pb-MOF and Tb3+ elevates the optical performance of CsPbI3@Pb-MOF@Tb-AG. Significantly, Fe3+ markedly suppresses CsPbI3@Pb-MOF red fluorescence at 647 nm, while not noticeably affecting Tb-AG green emission at 528 nm. The sensor exhibited a strong linear response to Fe3+ concentrations ranging from 0 to 90 μM, with a detection limit of 0.44 μM and high selectivity. The CsPbI3@Pb-MOF@Tb-AG-based sensor has been effectively validated through its successful use in detecting Fe3+ in tap and river water samples. Furthermore, CsPbI3@Pb-MOF@Tb-AG demonstrates a notable adsorption capacity of 325.4 mg g-1 Fe3+. Finally, the mechanism of Fe3+ detection and adsorption was determined.
Collapse
Affiliation(s)
- Yangwen Hou
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022 Jilin, China
| | - Hua Feng
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun, Changchun, 130022 Jilin, China.
| | - Jingting He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022 Jilin, China
| | - Fanfei Meng
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun, Changchun, 130022 Jilin, China.
| | - Jing Sun
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun, Changchun, 130022 Jilin, China.
| | - Xiao Li
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun, Changchun, 130022 Jilin, China.
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024 Jilin, China.
| | - Zhongmin Su
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun, Changchun, 130022 Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130021 Jilin, China
| | - Chunyi Sun
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024 Jilin, China.
| |
Collapse
|
31
|
Ahmed AM, Nasser N, Rafea MA, Abukhadra MR. Effective retention of cesium ions from aqueous environment using morphologically modified kaolinite nanostructures: experimental and theoretical studies. RSC Adv 2024; 14:3104-3121. [PMID: 38249663 PMCID: PMC10797332 DOI: 10.1039/d3ra08490f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Kaolinite can undergo a controlled morphological modification process into exfoliated nanosilicate sheets (EXK) and silicate nanotubes (KNTs). The modified structures were assessed as potential effective adsorbents for the retention of Cs+ ions. The impact of the modification process on the retention properties was assessed based on conventional and advanced equilibrium studies, considering the related steric and energetic functions. The synthetic KNTs exhibit a retention capacity of 249.7 mg g-1 as compared to EXK (199.8 mg g-1), which is significantly higher than raw kaolinite (73.8 mg g-1). The kinetic modeling demonstrates the high effectiveness of the pseudo-first-order kinetic model (R2 > 0.9) to illustrate the sequestration reactions of Cs+ ions by K, EXK, and KNTs. The enhancement effect of the modification processes can be illustrated based on the statistical investigations. The presence of active and vacant receptors enhanced greatly from 19.4 mg g-1 for KA to 40.8 mg g-1 for EXK and 46.9 mg g-1 for KNTs at 298 K. This validates the significant impact of the modification procedures on the specific surface area, reaction interface, and reacting chemical groups' exposure. This also appeared in the enhancement of the reactivity of their surfaces to be able to uptake 10 Cs+ ions by KNTs and 5 ions by EXK as compared to 4 ions by kaolinite. The thermodynamic and energetic parameters (Gaussian energy < 8.6 kJ mol-1; uptake energy < 40 kJ mol-1) show that the physical processes are dominant, which have spontaneous and exothermic properties. The synthetic EXK and KNT structures validate the high elimination performance of the retention of Cs+ either in the existence of additional anions or cations.
Collapse
Affiliation(s)
- Ashour M Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Kingdom of Saudi Arabia
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Nourhan Nasser
- Geology Department, Faculty of Science, Beni-Suef University Beni Suef City Egypt +20-1288447189
- Materials Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University Beni Suef City Egypt
| | - M Abdel Rafea
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Kingdom of Saudi Arabia
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University Beni Suef City Egypt +20-1288447189
- Materials Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University Beni Suef City Egypt
| |
Collapse
|
32
|
Bin Jumah MN, Al Othman SI, Alomari AA, Allam AA, Abukhadra MR. Potentiality of chitosan hybridized magnesium doped-hydroxyapatite (CH/Mg·HAP) for enhanced carrying of oxaliplatin: loading, release, kinetics, and cytotoxicity. NEW J CHEM 2024; 48:15008-15024. [DOI: 10.1039/d4nj02648a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Magnesium-enriched hydroxyapatite was synthesized and integrated with chitosan, forming a bio-compatible biocomposite (CH/Mg·HAP) to be applied as a carrier of oxaliplatin (OXN) with enhanced loading, release, and therapeutic activities.
Collapse
Affiliation(s)
- May N. Bin Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sarah I. Al Othman
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Awatif Abdulaziz Alomari
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A. Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Kingdom of Saudi Arabia
| | - Mostafa R. Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| |
Collapse
|
33
|
Umair M, Huma Zafar S, Cheema M, Usman M. New insights into the environmental application of hybrid nanoparticles in metal contaminated agroecosystem: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119553. [PMID: 37976639 DOI: 10.1016/j.jenvman.2023.119553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Heavy metals (HMs) contamination in agricultural soils is a major constraint to provide safe food to society. Cultivation of food crops on these soils, channels the HMs into the food chain and causes serious human health and socioeconomic problems. Multiple conventional and non-conventional remedial options are already in practice with variable success rates, but nanotechnology has proved its success due to higher efficiency. It also led the hypothesis to use hybrid nanoparticles (HNPs) with extended benefits to remediate the HMs and supplement nutrients to enhance the crop yield in the contaminated environments. Hybrid nanoparticles are defined as exclusive chemical conjugates of inorganic and/or organic nanomaterials that are combinations of two or more organic components, two or more inorganic components, or at least one of both types of components. HNPs of different elements like essential nutrients, beneficial nutrients and carbon-based nanoparticles are used for the remediation of metals contaminated soil and the production of metal free crops. Characterizing features of HNPs including particle size, surface area, reactivity, and solubility affect the efficacy of these HNPs in the contaminated environment. Hybrid nanoparticles have great potential to remove the HMs ions from soil solution and restrict their ingress into the root tissues. Furthermore, HNPs of essential nutrients not only compete with heavy metal uptake by plants but also fulfill the need of nutrients. This review provides a comprehensive overview of the challenges associated with application of HNPs in contaminated soils, environmental implications, their remediation ability, and factors affecting their dynamics in environmental matrices.
Collapse
Affiliation(s)
- Muhammad Umair
- Agricultural Research Station, Bahawalpur, 63100, Punjab, Pakistan; Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | - Sehrish Huma Zafar
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Punjab, Pakistan.
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, A2H 5G4, Newfoundland, Canada.
| | - Muhammad Usman
- College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
34
|
Sayed IR, Alfassam HE, El-Sayed MI, Abd El-Gaied IM, Allam AA, Abukhadra MR. Synthesis and characterization of chitosan hybridized zinc phosphate/hydroxyapatite core shell nanostructure and its potentiality as delivery system of oxaliplatin drug. Int J Biol Macromol 2024; 254:127734. [PMID: 37913876 DOI: 10.1016/j.ijbiomac.2023.127734] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/17/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
An advanced form of zinc phosphate/hydroxyapatite nanorods with a core-shell structure (ZPh/HPANRs) was made and then hybridized with chitosan polymeric chains to make a safe biocomposite (CH@ZPh/HPANRs) that improves the delivery structure of traditional oxaliplatin (OXPN) chemotherapy during the treatment of colorectal cancer cells. The qualifications of CH@ZPh/HPANRs in comparison with ZPh/HPANRs as a carrier for OXPN were followed based on loading, release, and cytotoxicity. CH@ZPh/HPANRs composite exhibits a notably higher OXPN loading capacity (321.75 mg/g) than ZPh/HPANRs (127.2 mg/g). The OXPN encapsulation processes into CH@ZPh/HPANRs display the isotherm behavior of the Langmuir model (R2 = 0.99) and the kinetic assumptions of pseudo-first-order kinetics (R2 > 0.89). The steric studies reflect a strong increment in the quantities of the free sites after the chitosan hybridization steps (Nm = 34.6 mg/g) as compared to pure ZPh/HPANRs (Nm = 18.7 mg/g). Also, the capacity of each site was enhanced to be loaded by 10 OXPN molecules (n = 9.3) in a vertical orientation. The OXPN loading energy into CH@ZPh/HPANRs (<40 KJ/mol) reflects physical loading reactions involving van der Waals forces and hydrogen bonding. The OXPN release profiles of CH@ZPh/HPANRs exhibit slow and controlled properties for about 140 h at pH 7.4 and 80 h at pH 5.5. The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and a complex erosion/diffusion release mechanism. The free CH@ZPh/HPANRs particles display a considerable cytotoxic effect on the HCT-116 cancer cells (9.53 % cell viability), and their OXPN-loaded product shows a strong cytotoxic effect (1.83 % cell viability).
Collapse
Affiliation(s)
- Islam R Sayed
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Haifa E Alfassam
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Mohamed I El-Sayed
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | | | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt.
| |
Collapse
|
35
|
Allah AF, Abdel-Khalek AA, El-Sherbeeny AM, Al Zoubi W, Abukhadra MR. Synthesis and Characterization of Iron-Rich Glauconite Nanorods by a Facile Sonochemical Method for Instantaneous and Eco-friendly Elimination of Malachite Green Dye from Aquatic Environments. ACS OMEGA 2023; 8:49347-49361. [PMID: 38162761 PMCID: PMC10753568 DOI: 10.1021/acsomega.3c07870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Novel glauconite nanorods (GNRs) were synthesized by the sonication-induced chemical expansion and scrolling process of natural glauconite. The synthetic nanostructure was characterized by different analytical techniques as a superior adsorbent for the malachite green dye (MG). The synthetic GNRs were detected as porous nanorods with an average length of 150 nm to 5 μm, an average diameter of 25 to 200 nm, and a specific surface area of 123.7 m2/g. As an adsorbent for MG, the synthetic GNRs showed superior uptake capacity up to 1265.6 mg/g at the saturation stage, which is higher than most of the recently developed highly adsorbent dyes. The adsorption behavior and mechanistic properties were depicted by using modern and traditional equilibrium modeling. The kinetic assumption of the pseudo-first-order model (R2 > 0.94) and the classic isotherm of the Langmuir equilibrium model (R2 > 0.97) were used to describe the adsorption reactions. The steric investigation demonstrates that each active site on the surface of GNRs can adsorb up to three MG molecules (n = 2.19-2.48) in vertical orientation involving multimolecular mechanisms. Also, the determined active site density (577.89 mg/g) demonstrates the enrichment of the surface of GNRs with numerous adsorption receptors with strong affinity for the MG dye. The energetic study, including Gaussian energy (6.27-7.97 kJ/mol) and adsorption energy (9.45-10.43 kJ/mol), revealed that GNRs had physically adsorbed the dye, which might involve electrostatic attraction, hydrogen bonding, van der Waals forces, and dipole forces. The internal energy, enthalpy, and entropy determined the exothermic and spontaneous uptake of MG.
Collapse
Affiliation(s)
- Aya Fadl Allah
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 62511, Egypt
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef
City 62514, Egypt
| | - Ahmed A. Abdel-Khalek
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef
City 62514, Egypt
| | - Ahmed M. El-Sherbeeny
- Industrial
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Wail Al Zoubi
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mostafa R. Abukhadra
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni-Suef City 62511, Egypt
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef
City 62511, Egypt
| |
Collapse
|
36
|
Nasser N, Rady A, Al Zoubi W, Allam AA, Abukhadra MR. Advanced Equilibrium Modeling for the Synergetic Effect of β-Cyclodextrin Integration on the Adsorption Efficiency of Methyl Parathion by β-Cyclodextrin/Exfoliated Kaolinite Nanocomposite. ACS OMEGA 2023; 8:48166-48180. [PMID: 38144066 PMCID: PMC10733953 DOI: 10.1021/acsomega.3c07088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
Exfoliated kaolinite nanosheets (EXK) and their hybridization with β-cyclodextrin (β-CD/EXK) were evaluated as potential-enhanced adsorbents of methyl parathion (MP) in synergetic investigations to determine the effects of the different modification procedures. The adsorption behaviors were described on the basis of the energetic steric and energetic factors of the specific advanced equilibrium models (monolayer model of one energy). The functionalization process with β-CD enhanced the adsorption behaviors of MP considerably to 350.6 mg/g in comparison to EXK (291.7 mg/g) and natural kaolinite (K) (244.7 mg/g). The steric studies revealed a remarkable improvement in the quantities of the existing receptors after exfoliation (Nm = 134.4 mg/g) followed by β-CD hybridization (Nm = 162.3 mg/g) as compared to K (75.7 mg/g), which was reflected in the determined adsorption capacities of MP. Additionally, each active free site of β-CD/EXK can adsorb about 3 molecules of MP, which occur in a vertical orientation by types of multimolecular mechanisms. The energetic investigations of Gaussian energy (<8.6 kJ/mol) and adsorption energy (<40 kJ/mol) validate the physical adsorption of MP, which might involve the cooperation of dipole bonding forces, van der Waals, and hydrogen bonding. The properties and entropy values, free enthalpy, and intern energy as the investigated thermodynamic functions declared the exothermic and spontaneous behaviors of the MP adsorption.
Collapse
Affiliation(s)
- Nourhan Nasser
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni Suef
City 62511, Egypt
- Materials
Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City 62511, Egypt
| | - Ahmed Rady
- Department
of Zology, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Wail Al Zoubi
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ahmed A. Allam
- Zoology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 62511, Egypt
| | - Mostafa R. Abukhadra
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni Suef
City 62511, Egypt
- Materials
Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University, Beni Suef City 62511, Egypt
| |
Collapse
|
37
|
Adel Sayed M, Mohamed A, Ahmed SA, El-Sherbeeny AM, Al Zoubi W, Abukhadra MR. Advanced Equilibrium Studies for the Synergetic Impact of Polyaniline on the Adsorption of Rhodamine B Dye by Polyaniline/Coal Composite. ACS OMEGA 2023; 8:47210-47223. [PMID: 38107958 PMCID: PMC10720286 DOI: 10.1021/acsomega.3c07355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
The synergetic improvement effect of the polyaniline (PANI) hybridization process on the adsorption of rhodamine B dye (RB) by PANI/coal hybrid material (PANI/C) has been evaluated using both traditional equilibrium modeling and advanced isotherm investigations. The composite was prepared by polymerizing polyaniline in the presence of coal fractions with a surface area of 27.7 m2/g. The PANI/C hybrid has an improved capacity to adsorb RB dye (423.5 mg/g) in comparison to coal particles (254.3 mg/g). The maintained increase in the elimination properties of PANI/C has been illustrated using the steric characteristics of active site density (Nm) as well as the total number of adsorbed RB on a single active site (n). However, the incorporation of PANI did not yield any substantial impact on the existing active sites' quantity, but the hybridization processes greatly influenced the selectivity and affinity of each active site, in addition to the aggregation characteristics of the dye as it interacts with the composite's surface. Whereas raw coal can only adsorb three molecules of RB, each active site throughout the PANI/C surface can adsorb approximately eight RB molecules. This is also evidence of RB dye adsorption in a vertical arrangement, which involves multimolecular processes. The Gaussian energy (4.01-5.59 kJ/mol) and adsorption energy (-4.34-4.68 kJ/mol) revealed the controllable impact of physical mechanisms. These mechanisms may include van der Waals forces, dipole-dipole interactions, and hydrogen bonds (<30 kJ/mol). The thermodynamic functions, such as enthalpy, internal energy, and entropy, that have been assessed provide evidence supporting the exothermic and spontaneous nature of the RB uptake processes by PANI/C.
Collapse
Affiliation(s)
- Mohamed Adel Sayed
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, 62514 Beni Suef City, Egypt
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef City, Egypt
| | - Abdelrahman Mohamed
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, 62514 Beni Suef City, Egypt
| | - Sayed A. Ahmed
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, 62514 Beni Suef City, Egypt
- Basic
Science Department, Faculty of Engineering, Nahda University, Beni Suef 62764, Egypt
| | - Ahmed M. El-Sherbeeny
- Industrial
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Wail Al Zoubi
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mostafa R. Abukhadra
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef City, Egypt
- Geology Department,
Faculty of Science, Beni-Suef University, Beni Suef62521, Egypt
| |
Collapse
|
38
|
Jiang X, Zhou Y, Chen H, Zhang R, Yu J, Wang S, Jiang F, Bai H, Yang X. A novel hydrangea-like magnetic composite Fe 3O 4@MnO 2@ZIF-67 for efficient selective adsorption of Pd(II) from metallurgical wastewater. CHEMOSPHERE 2023; 344:140432. [PMID: 37832882 DOI: 10.1016/j.chemosphere.2023.140432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
The selective adsorption of palladium from wastewater is a feasible solution to solving palladium pollution and resource scarcity. Because traditional solvent extraction methods often involve the use of considerable amounts of organic solvents, research is focused on investigating adsorption techniques that can selectively remove palladium from wastewater. In this paper, the magnetic composite Fe3O4@MnO2@ZIF-67 was synthesized and its performance for the adsorption of Pd(II) in acidic water was investigated. Fe3O4@MnO2@ZIF-67 was characterized by various analytical methods such as TEM, SEM, EDS, BET, XRD, FTIR, zeta potential analysis, VSM, and TGA. The effects of palladium ion concentration, contact time, pH, and temperature on adsorption were evaluated. The kinetics were shown to follow the pseudo-second-order kinetic model and Elovich model, and the rate-limiting step was chemisorption. Thermodynamic studies showed that increasing the temperature promoted the adsorption of Pd(II), and the maximum uptake capacity of Fe3O4@MnO2@ZIF-67 for Pd(II) was 531.91 mg g-1. Interestingly, Fe3O4@MnO2@ZIF-67 exhibited superior selectivity for Pd(II) in the presence of Ir(IV), Pt(IV), and Rh(III). The adsorbent can be used repeatedly for selective adsorption of palladium. Even at the fifth cycle, the uptake rate of Pd(II) remained as high as 83.1%, and it showed a favorable adsorption capacity and selectivity for Pd(II) in real metallurgical wastewater. The adsorption mechanism was analyzed by SEM, FTIR, XRD, XPS, and DFT calculations, which indicated that electrostatic interactions and coordination with nitrogen-containing groups were involved. Fe3O4@MnO2@ZIF-67 is a promising adsorbent for the efficient adsorption and selective separation of palladium ions.
Collapse
Affiliation(s)
- Xue Jiang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Yu Zhou
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Haiou Chen
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Ru Zhang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Junhui Yu
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Shixiong Wang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Fengzhi Jiang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Huiping Bai
- School of Materials and Energy, Key Laboratory of Micro/Nano Materials and Technology, Yunnan University, Kunming, 650091, China.
| | - Xiangjun Yang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
39
|
Wang F, Zheng Y, Wei X, Lan D, Zhu J, Chen Y, Wo Z, Wu T. Controlled synthesis of Fe 3O 4/MnO 2 (3 1 0)/ZIF-67 composite with enhanced synergetic effects for the highly selective and efficient adsorption of Cu (II) from simulated copperplating effluents. ENVIRONMENTAL RESEARCH 2023; 237:116940. [PMID: 37619624 DOI: 10.1016/j.envres.2023.116940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
This study designed a composite material with internal synergistic effects among multiple components to achieve highly selective adsorption of Cu (II). Through controlled synthesis, the Fe3O4/MnO2(3 1 0)/ZIF-67 composite was successfully fabricated, leading to significant improvement in adsorption selectivity, capacity, and adsorption rate. The experimental results showed that the composite is of outstanding selectivity in the adsorption of Cu (II), with a partition coefficient K of Cu (II) that was 2.2-5.3 times higher than that of other coexisting ions. Moreover, the composite exhibited a remarkable adsorption capacity of 1261.0 mg g-1 and a fast adsorption rate of 840.7 mg g-1 h-1 at 298 K. Additionally, its magnetic property facilitated easy separation from wastewater, thereby enhancing its potential for commercial applications. The synergetic effect mechanism was analyzed through characterizations and DFT calculations. Furthermore, the recyclability of the composite was investigated, which showed that after seven cycles, the adsorption efficiency remained at 85% of its initial efficiency. It can be concluded that Fe3O4/MnO2(3 1 0)/ZIF-67 has potential to address challenges posed by heavy metal pollution in copperplating effluents.
Collapse
Affiliation(s)
- Fan Wang
- New Materials Institute, University of Nottingham, Ningbo, 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Yueying Zheng
- New Materials Institute, University of Nottingham, Ningbo, 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Xinggang Wei
- SAILARK Digital Technology Co. Ltd, Shanghai, 200000, China
| | - Dawei Lan
- New Materials Institute, University of Nottingham, Ningbo, 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Jintao Zhu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Yingjie Chen
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Ziquan Wo
- Department of Material Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou City, 515000, China
| | - Tao Wu
- New Materials Institute, University of Nottingham, Ningbo, 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, Ningbo, 315100, China; Zhejiang - Canada Joint Laboratory on Green Chemicals and Energy, China.
| |
Collapse
|
40
|
Shao Z, Xing C, Xue M, Fang Y, Li P. Selective removal of Pb(II) from yellow rice wine using magnetic carbon-based adsorbent. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6929-6939. [PMID: 37308807 DOI: 10.1002/jsfa.12776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND The non-distilled property and prolonged production period of yellow rice wine have significantly increased the metal residue problem, posing a threat to human health. In this study, a magnetic carbon-based adsorbent, named magnetic nitrogen-doped carbon (M-NC), was developed for the selective removal of lead(II) (Pb(II)) from yellow rice wine. RESULTS The results showed that the uniformly structured M-NC could be easily separated from the solution, exhibiting a high Pb(II) adsorption capacity of 121.86 mg g-1 . The proposed adsorption treatment showed significant Pb(II) removal efficiencies (91.42-98.90%) for yellow rice wines in 15 min without affecting their taste, odor, and physicochemical characteristics of the wines. The adsorption mechanism studied by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) analyses indicated that the selective removal of Pb(II) could be attributed to the electrostatic interaction and covalent interaction between the empty orbital of Pb(II) and the π electrons of the N species on M-NC. Additionally, the M-NC showed no significant cytotoxicity on the Caco-2 cell lines. CONCLUSION Selective removal of Pb(II) from yellow rice wine was achieved using magnetic carbon-based adsorbent. This facile and recyclable adsorption operation could potentially address the challenge of toxic metal pollution in liquid foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiying Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Changrui Xing
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Mei Xue
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
41
|
Zaidalkilani AT, Farhan AM, Sayed IR, El-Sherbeeny AM, Al Zoubi W, Al-Farga A, Abukhadra MR. Steric and Energetic Studies on the Synergetic Enhancement Effect of Integrated Polyaniline on the Adsorption Properties of Toxic Basic and Acidic Dyes by Polyaniline/Zeolite-A Composite. Molecules 2023; 28:7168. [PMID: 37894656 PMCID: PMC10609255 DOI: 10.3390/molecules28207168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The synergetic enhancement effect of the polyaniline (PANI) integration process on the adsorption properties of the PANI/zeolite-A composite (PANI/ZA) as an adsorbent for malachite green and Congo red synthetic dyes was evaluated based on classic equilibrium modelling in addition to the steric and energetic parameters of advanced isotherm studies. The PANI/ZA composite displays enhanced adsorption capacities for both methylene blue (270.9 mg/g) and Congo red (235.5 mg/g) as compared to ZA particles (methylene blue (179.6 mg/g) and Congo red (140.3 mg/g)). The reported enhancement was illustrated based on the steric parameters of active site density (Nm) and the number of adsorbed dyes per active site (n). The integration of PANI strongly induced the quantities of the existing active sites that have enhanced affinities towards both methylene blue (109.2 mg/g) and Congo red (92.9 mg/g) as compared to the present sites on the surface of ZA. Every site on the surface of PANI/ZA can adsorb about four methylene blue molecules and five Congo red molecules, signifying the vertical orientation of their adsorbed ions and their uptake by multi-molecular mechanisms. The energetic investigation of the methylene blue (-10.26 to -16.8 kJ/mol) and Congo red (-9.38 to -16.49 kJ/mol) adsorption reactions by PANI/ZA suggested the operation of physical mechanisms during their uptake by PANI/ZA. These mechanisms might involve van der Waals forces, dipole bonding forces, and hydrogen bonding (<30 kJ/mol). The evaluated thermodynamic functions, including enthalpy, internal energy, and entropy, validate the exothermic and spontaneous behaviours of the methylene blue and Congo red uptake processes by PANI/ZA.
Collapse
Affiliation(s)
- Ayah T. Zaidalkilani
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Amna M. Farhan
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Islam R. Sayed
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Ahmed M. El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ammar Al-Farga
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mostafa R. Abukhadra
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| |
Collapse
|
42
|
Okasha AT, Abdel-Khalek AA, Rudayni HA, Al Zoubi W, Alfassam HE, Allam AA, Abukhadra MR. Synthesis and characterization of Mg-hydroxyapatite and its cellulose hybridized structure as enhanced bio-carrier of oxaliplatin drug; equilibrium and release kinetics. RSC Adv 2023; 13:30151-30167. [PMID: 37849691 PMCID: PMC10577681 DOI: 10.1039/d3ra04268e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
An advanced form of magnesium-doped hydroxyapatite (Mg HAP) was synthesized and hybridized with cellulose fibers, producing a safe biocomposite (CF/Mg HAP) as an enhanced delivery structure of traditional oxaliplatin (OXPN) chemotherapy drug during the treatment stages of colorectal cancer. The qualifications of CF/Mg HAP as a carrier for OXPN were followed based on loading, release, and cytotoxicity as compared to Mg HAP. The CF/Mg HAP composite exhibits a notably higher OXPN encapsulation capacity (256.2 mg g-1) than the Mg HAP phase (148.9 mg g-1). The OXPN encapsulation process into CF/Mg HAP displays the isotherm behavior of the Langmuir model (R2 = 0.99) and the kinetic assumptions of pseudo-first-order kinetics (R2 > 0.95). The steric studies reflect a strong increment in the quantities of the free sites after the cellulose hybridization steps (Nm = 178.58 mg g-1) as compared to pure Mg HAP (Nm = 69.39 mg g-1). Also, the capacity of each site was enhanced to be loaded by 2 OXPN molecules (n = 1.43) in a vertical orientation. The OXPN encapsulation energy into CF/Mg HAP (<40 kJ mol-1) reflects physical encapsulation reactions involving van der Waals forces and hydrogen bonding. The OXPN release profiles of CF/Mg HAP exhibit slow and controlled properties for about 100 h, either at pH 5.5 or pH 7.4. The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and a complex erosion/diffusion release mechanism. The free CF/Mg HAP particles display a considerable cytotoxic effect on the HCT-116 cancer cells (21.82% cell viability), and their OXPN-loaded product shows a strong cytotoxic effect (1.85% cell viability).
Collapse
Affiliation(s)
- Alaa T Okasha
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Ahmed A Abdel-Khalek
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University Riyadh 11623 Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Haifa E Alfassam
- Princess Nourah Bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Geology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| |
Collapse
|
43
|
Li N, Hou J, Ou R, Yeo L, Choudhury NR, Zhang H. Stimuli-Responsive Ion Adsorbents for Sustainable Separation Applications. ACS NANO 2023; 17:17699-17720. [PMID: 37695744 DOI: 10.1021/acsnano.3c04942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Stimuli-responsive ion absorbents (SRIAs) with reversible ion adsorption and desorption properties have recently attracted immense attention due to their outstanding functionalities for sustainable separation applications. Over the past decade, a series of SRIAs that respond to single or multiple external stimuli (e.g., pH, gas, temperature, light, magnetic, and voltage) have been reported to achieve excellent ion adsorption capacity and selectivity while simultaneously allowing for their reusability. In contrast to traditional adsorbents that are mainly regenerated through chemical additives, SRIAs allow for reduced chemical and even chemical-free regeneration capacities, thereby enabling environmentally friendly and energy-efficient separation technologies. In this review, we systematically summarize the materials and strategies reported to date for synthesizing single-, dual-, and multiresponsive ion adsorbents. Following a discourse on the fundamental mechanisms that govern their adsorption and desorption under various external stimuli, we provide a concise discussion of the regeneration capacity and application of these responsive ion adsorbents for sustainable water desalination, toxic ion removal, and valuable ion extract and recovery. Finally, we discuss the challenges in developing and deploying these promising multifunctional responsive ion adsorbents together with strategies to overcome these limitations and provide prospects for their future.
Collapse
Affiliation(s)
- Nicole Li
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Ranwen Ou
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Leslie Yeo
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
44
|
Alfassam HE, Ashraf MT, Al Othman SI, Al-Waili MA, Allam AA, Abukhadra MR. Insight into the Physiochemical and Cytotoxic Properties of β-cyclodextrin Hybridized Zeoilitic Diatomite as an Enhanced Carrier of Oxaliplatin Drug: Loading, Release, and Equilibrium Studies. J Inorg Organomet Polym Mater 2023; 33:2984-3001. [DOI: 10.1007/s10904-023-02731-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 01/04/2025]
|
45
|
Abukhadra MR, Okasha AT, Al Othman SI, Alfassam HE, Alenazi NA, AlHammadi AA, Allam AA. Synthesis and Characterization of Mg-Hydroxyapatite and Its β-Cyclodextrin Composite as Enhanced Bio-Carrier of 5-Fluorouracil Drug; Equilibrium and Release Kinetics. ACS OMEGA 2023; 8:30247-30261. [PMID: 37636978 PMCID: PMC10448682 DOI: 10.1021/acsomega.3c02982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
An advanced form of magnesium-doped hydroxyapatite (Mg·HAP) was integrated in composite with β-cyclodextrin producing a safe biocomposite (β-CD/HAP) as an enhanced delivery structure of traditional 5-fluorouracil (5-FU) chemotherapy during the treatment stages of colorectal cancer cells. The qualifications of β-CD/HAP as a carrier for 5-FU were followed based on the loading, release, and cytotoxicity as compared to Mg·HAP. β-CD/HAP composite exhibits notably higher 5-FU encapsulation capacity (272.3 mg/g) than Mg·HAP phase (164.9 mg/g). The 5-FU encapsulation processes into β-CD/HAP display the isotherm behavior of the Freundlich model (R2 = 0.99) and kinetic assumptions of pseudo-first order kinetic (R2 > 0.95). The steric studies reflect a strong increment in the quantities of the free sites after the β-CD integration steps (Nm = 61.2 mg/g) as compared to pure Mg·HAP (Nm = 42.4 mg/g). Also, the capacity of each site was enhanced to be loaded by 5 of 5-FU molecules (n = 4.45) in a vertical orientation. The 5-FU encapsulation energy into β-CD/HAP (<40 kJ/mol) reflects physical encapsulation reactions involving van der Waals forces and hydrogen bonding. The 5-FU release profiles of β-CD/HAP exhibit slow and controlled properties for about 80 h either in gastric fluid (pH 1.2) or in intestinal fluid (pH 7.4). The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and complex erosion/diffusion release mechanism. The free β-CD/HAP particles display a considerable cytotoxic effect on the HCT-116 cancer cells (33.62% cell viability) and its 5-FU-loaded product shows a strong cytotoxic effect (2.91% cell viability).
Collapse
Affiliation(s)
- Mostafa R. Abukhadra
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef City 62511, Egypt
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni Suef City 62511, Egypt
| | - Alaa T. Okasha
- Materials
Technologies and Their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef City 62511, Egypt
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni Suef City 62514, Egypt
| | - Sarah I. Al Othman
- Princess
Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi
Arabia
| | - Haifa E. Alfassam
- Princess
Nourah bint Abdulrahman University, College of Science, Biology Department, Riyadh, Saudi
Arabia
| | - Noof A. Alenazi
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali A. AlHammadi
- Chemical
Engineering Department, Khalifa University
of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Catalysis and Separations, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Ahmed A. Allam
- Zoology
Department, Faculty of Science, Beni-Suef
University, Beni-Suef 62511, Egypt
| |
Collapse
|
46
|
Alqahtani MD, Bin Jumah MN, Al-Hashimi A, Allam AA, Abukhadra MR, Bellucci S. Synthesis and Characterization of Methoxy-Exfoliated Montmorillonite Nanosheets as Potential Carriers of 5-Fluorouracil Drug with Enhanced Loading, Release, and Cytotoxicity Properties. Molecules 2023; 28:5895. [PMID: 37570864 PMCID: PMC10421137 DOI: 10.3390/molecules28155895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Natural bentonite clay (BE) underwent modification steps that involved the exfoliation of its layers into separated nanosheets (EXBE) and further functionalization of these sheets with methanol, forming methoxy-exfoliated bentonite (Mth/EXBE). The synthetically modified products were investigated as enhanced carriers of 5-fluorouracil as compared to raw bentonite. The modification process strongly induced loading properties that increased to 214.4 mg/g (EXBE) and 282.6 mg/g (Mth/EXBE) instead of 124.9 mg/g for bentonite. The loading behaviors were illustrated based on the kinetic (pseudo-first-order model), classic isotherm (Langmuir model), and advanced isotherm modeling (monolayer model of one energy). The Mth/EBE carrier displays significantly higher loading site density (95.9 mg/g) as compared to EXBE (66.2 mg/g) and BE (44.9 mg/g). The loading numbers of 5-Fu in each site of BE, EXBE, and Mth/EXBE (>1) reflect the vertical orientation of these loaded ions involving multi-molecular processes. The loading processes that occurred appeared to be controlled by complex physical and weak chemical mechanisms, considering both Gaussian energy (<8 KJ/mol) as well as loading energy (<40 KJ/mol). The releasing patterns of EXBE and Mth/EXBE exhibit prolonged and continuous properties up to 100 h, with Mth/EXBE displaying much faster behaviors. Based on the release kinetic modeling, the release reactions exhibit non-Fickian transport release properties, validating cooperative diffusion and erosion release mechanisms. The cytotoxicity of 5-Fu is also significantly enhanced by these carriers: 5-Fu/BE (8.6% cell viability), 5-Fu/EXBE (2.21% cell viability), and 5-Fu/Mth/EXBE (0.73% cell viability).
Collapse
Affiliation(s)
- Mashael D. Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - May N. Bin Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdulrahman Al-Hashimi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed A. Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mostafa R. Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Materials Technologies and Their Applications Laboratory, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
47
|
Abukhadra MR, Saad I, Al Othman SI, Alfassam HE, Allam AA. Insight into the synergetic, steric and energetic properties of zeolitization and cellulose fiber functionalization of diatomite during the adsorption of Cd(ii): advanced equilibrium studies. RSC Adv 2023; 13:23601-23618. [PMID: 37555098 PMCID: PMC10405048 DOI: 10.1039/d3ra03939k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
The adsorption potentiality of zeolitized diatomite (ZD) frustules and their cellulose hybridized (C/ZD) product for Cd(ii) ions was assessed in synergetic studies to investigate the impact of the modification processes. The adsorption properties were illustrated based on the steric and energetic parameters of the applied advanced equilibrium modeling (monolayer model of one energy). The cellulose hybridization process increased the adsorption properties of Cd(ii) significantly to 229.4 mg g-1 as compared to ZD (180.8 mg g-1) and raw diatomite (DA) (127.8 mg g-1) during the saturation state. The steric investigation suggested a notable increase in the quantities of the active sites after the zeolitization (Nm = 62.37 mg g-1) and cellulose functionalization (Nm = 98.46 mg g-1), which illustrates enhancement in the Cd(ii) uptake capacity of C/ZD. Moreover, each active site of C/ZD can absorb about 4 ions of Cd(ii) ZD, which occur in a vertical orientation. The energetic studies, including Gaussian energy (<8 kJ mol-1) and retention energy (<8 kJ mol-1), demonstrate the physical uptake of Cd(ii), which might involve cooperating van der Waals forces (4-10 kJ mol-1), hydrophobic bonds (5 kJ mol-1), dipole forces (2-29 kJ mol-1), and hydrogen bonding (<30 kJ mol-1) in addition to zeolitic ion exchange mechanisms (0.6-25 kJ mol-1). The behaviors and values of entropy, internal energy, and free enthalpy as the assessed thermodynamic functions validate the exothermic and spontaneous properties of the Cd(ii) retention by ZD and the C/ZD composite.
Collapse
Affiliation(s)
- Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Materials Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University Beni Suef Egypt
| | - Islam Saad
- Materials Technologies and Their Applications Lab, Faculty of Science, Beni-Suef University Beni Suef Egypt
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt
| | - Sarah I Al Othman
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Haifa E Alfassam
- Princess Nourah bint Abdulrahman University, College of Science, Biology Department Riyadh Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| |
Collapse
|
48
|
Krishnani KK, Boddu VM, Singh RD, Chakraborty P, Verma AK, Brooks L, Pathak H. Plants, animals, and fisheries waste-mediated bioremediation of contaminants of environmental and emerging concern (CEECs)-a circular bioresource utilization approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84999-85045. [PMID: 37400699 DOI: 10.1007/s11356-023-28261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/10/2023] [Indexed: 07/05/2023]
Abstract
The release of contaminants of environmental concern including heavy metals and metalloids, and contaminants of emerging concern including organic micropollutants from processing industries, pharmaceuticals, personal care, and anthropogenic sources, is a growing threat worldwide. Mitigating inorganic and organic contaminants, which can be coined as contaminants of environmental and emerging concern (CEECs), is a big challenge as traditional physicochemical processes are not economically viable for managing mixed contaminants of low concentrations. As a result, low-cost materials must be designed to provide high CEEC removal efficiency. One of the environmentally viable and energy-efficient approaches is biosorption, which involves using biomass or biopolymers isolated from plants or animals to decontaminate heavy metals in contaminated environments using inherent biological mechanisms. Among chemical constituents in plant biomass, cellulose, lignin, hemicellulose, proteins, polysaccharides, phenolic compounds, and animal biomass include polysaccharides and other compounds to bind heavy metals covalently and non-covalently. These functional groups include carboxyl, hydroxyl, carbonyl, amide, amine, and sulfhydryl. Cation-exchange capacities of these bioadsorbents can be improved by applying chemical modifications. The relevance of chemical constituents and bioactives in biosorbents derived from agricultural production such as food and fodder crops, bioenergy and cash crops, fruit and vegetable crops, medicinal and aromatic plants, plantation trees, aquatic and terrestrial weeds, and animal production such as dairy, goatery, poultry, duckery, and fisheries is highlighted in this comprehensive review for sequestering and bioremediation of CEECs, including as many as ten different heavy metals and metalloids co-contaminated with other organic micropollutants in circular bioresource utilization and one-health concepts.
Collapse
Affiliation(s)
- Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India.
| | - Veera Mallu Boddu
- Homeland Security & Material Management Division (HSMMD), Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Rajkumar Debarjeet Singh
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Puja Chakraborty
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Ajit Kumar Verma
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Lance Brooks
- Homeland Security & Material Management Division (HSMMD), Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Himanshu Pathak
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India
| |
Collapse
|
49
|
Alqahtani MD, Bin Jumah MN, AlZahrani SA, Allam AA, Abukhadra MR, Bellucci S. Insights into the Effect of Chitosan and β-Cyclodextrin Hybridization of Zeolite-A on Its Physicochemical and Cytotoxic Properties as a Bio-Carrier for 5-Fluorouracil: Equilibrium and Release Kinetics Studies. Molecules 2023; 28:5427. [PMID: 37513298 PMCID: PMC10384421 DOI: 10.3390/molecules28145427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Synthetic zeolite-A (ZA) was hybridized with two different biopolymers (chitosan and β-cyclodextrin) producing biocompatible chitosan/zeolite-A (CS/ZA) and β-cyclodextrin/zeolite-A (CD/ZA) biocomposites. The synthetic composites were assessed as bio-carriers of the 5-fluorouracil drug (5-Fu) with enhanced properties, highlighting the impact of the polymer type. The hybridization by the two biopolymers resulted in notable increases in the 5-Fu loading capacities, to 218.2 mg/g (CS/ZA) and 291.3 mg/g (CD/ZA), as compared to ZA (134.2 mg/g). The loading behaviors using ZA as well as CS/ZA and CD/ZA were illustrated based on the classic kinetics properties of pseudo-first-order kinetics (R2 > 0.95) and the traditional Langmuir isotherm (R2 = 0.99). CD/ZA shows a significantly higher active site density (102.7 mg/g) in comparison to CS/ZA (64 mg/g) and ZA (35.8 mg/g). The number of loaded 5-Fu per site of ZA, CS/ZA, and CD/ZA (>1) validates the vertical ordering of the loaded drug ions by multi-molecular processes. These processes are mainly physical mechanisms based on the determined Gaussian energy (<8 kJ/mol) and loading energy (<40 kJ/mol). Both the CS/ZA and CD/ZA 5-Fu release activities display continuous and controlled profiles up to 80 h, with CD/ZA exhibiting much faster release. According to the release kinetics studies, the release processes contain non-Fickian transport release properties, suggesting cooperative diffusion and erosion release mechanisms. The cytotoxicity of 5-Fu is also significantly enhanced by these carriers: 5-Fu/ZA (11.72% cell viability), 5-Fu/CS/ZA (5.43% cell viability), and 5-Fu/CD/ZA (1.83% cell viability).
Collapse
Affiliation(s)
- Mashael D Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - May N Bin Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Saleha A AlZahrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
50
|
Alqahtani MD, Nasser N, Bin Jumah MN, AlZahrani SA, Allam AA, Abukhadra MR, Bellucci S. Synthesis and Characterization of β-Cyclodextrin-Hybridized Exfoliated Kaolinite Single Nanosheets as Potential Carriers of Oxaliplatin with Enhanced Loading, Release, and Cytotoxic Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4958. [PMID: 37512232 PMCID: PMC10381760 DOI: 10.3390/ma16144958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
Natural kaolinite was subjected to a successful exfoliation process into separated kaolinite nanosheets (KNs), followed by hybridization with β-cyclodextrin biopolymer (β-CD), forming an advanced bio-nanocomposite (β-CD/KNs). The synthetic products were evaluated as enhanced delivery structures for oxaliplatin chemotherapy (OXAPN). The hybridization of KNs with β-CD polymer notably enhanced the loading capacity to 355.3 mg/g (β-CD/KNs) as compared to 304.9 mg/g for KNs. The loading of OXAPN into both KNs and β-CD/KNs displayed traditional pseudo-first-order kinetics (R2 > 0.85) and a conventional Langmuir isotherm (R2 = 0.99). The synthetic β-CD/KNs validates a greater occupied effective site density (98.7 mg/g) than KNs (66.3 mg/g). Furthermore, the values of the n steric parameter (4.7 (KNs) and 3.6 (β-CD/KNs)) reveal the vertical orientation of the loaded molecules and the loading of them by multi-molecular mechanisms. These mechanisms are mainly physical processes based on the obtained Gaussian energy (<8 KJ/mol) and loading energy (<40 KJ/mol). The release profiles of both KNs and β-CD/KNs extend for about 120 h, with remarkably faster rates for β-CD/KNs. According to the release kinetic findings, the release of OXAPN displays non-Fickian transport behavior involving the cooperation of diffusion and erosion mechanisms. The KNs and β-CD/KNs as free particles showed considerable cytotoxicity and anticancer properties against HCT-116 cancer cell lines (71.4% cell viability (KNs) and 58.83% cell viability (β-CD/KNs)). Additionally, both KNs and β-CD/KNs significantly enhanced the OXAPN's cytotoxicity (2.04% cell viability (OXAPN/KNs) and 0.86% cell viability (OXAPN/β-CD/KNs).
Collapse
Affiliation(s)
- Mashael D Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nourhan Nasser
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - May N Bin Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Saleha A AlZahrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|