1
|
Muller T, Bazinet L. Exploring electrodialysis with bipolar membranes for water lentil (duckweed) protein purification: A first investigation into process and membrane characterization with products comparison to chemical acidification. Food Res Int 2025; 212:116526. [PMID: 40382064 DOI: 10.1016/j.foodres.2025.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/20/2025]
Abstract
Water lentils are free-floating aquatic plants which could be an inexpensive source of protein due to their high leaf protein content and very rapid reproduction. However, the extraction and purification of leaf proteins from their matrix is a necessary step for human consumption, as undesired compounds can reduce their functional or sensorial properties. Therefore, in this study, water lentil proteins were purified for the first time using electrodialysis with bipolar membrane (EDBM), a technology that has been developed as an ecofriendly alternative to chemical acidification. The EDBM of water lentils successfully produced a protein concentrate that had a similar protein content (approximately 47.7 g/100 g) and protein extraction yield (around 39.4 %) compared to chemical precipitation. Moreover, EDBM allowed the demineralization of the protein concentrate by-product compared to chemical precipitation, reducing by 74 % its ash content (58.4 vs 15.2 g/100 g) and doubled its protein content (20.5 vs 41.1 g/100 g). However, during the EDBM process, the system's resistance tripled, and protein deposits were observed inside spacers and on bipolar membrane cation-exchange layer. Hence, while EDBM shows great promise, further optimization is necessary to enhance process efficiency.
Collapse
Affiliation(s)
- Tristan Muller
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, and Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, and Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Quebec, QC G1V 0A6, Canada.
| |
Collapse
|
2
|
Deschênes Gagnon R, Langevin MÈ, Lutin F, Bazinet L. Identification of Fouling Occurring during Coupled Electrodialysis and Bipolar Membrane Electrodialysis Treatment for Tofu Whey Protein Recovery. MEMBRANES 2024; 14:88. [PMID: 38668116 PMCID: PMC11052131 DOI: 10.3390/membranes14040088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Tofu whey, a by-product of tofu production, is rich in nutrients such as proteins, minerals, fats, sugars and polyphenols. In a previous work, protein recovery from tofu whey was studied by using a coupled environmental process of ED + EDBM to valorize this by-product. This process allowed protein recovery by reducing the ionic strength of tofu whey during the ED process and acidifying the proteins to their isoelectric point during EDBM. However, membrane fouling was not investigated. The current study focuses on the fouling of membranes at each step of this ED and EDBM process. Despite a reduction in the membrane conductivities and some changes in the mineral composition of the membranes, no scaling was evident after three runs of the process with the same membranes. However, it appeared that the main fouling was due to the presence of isoflavones, the main polyphenols in tofu whey. Indeed, a higher concentration was observed on the AEMs, giving them a yellow coloration, while small amounts were found in the CEMs, and there were no traces on the BPMs. The glycosylated forms of isoflavones were present in higher concentrations than the aglycone forms, probably due to their high amounts of hydroxyl groups, which can interact with the membrane matrices. In addition, the higher concentration of isoflavones on the AEMs seems to be due to a combination of electrostatic interactions, hydrogen bonding, and π-π stacking, whereas only π-π stacking and hydrogen bonds were possible with the CEMs. To the best of our knowledge, this is the first study to investigate the potential fouling of BPMs by polyphenols, report the fouling of IEMs by isoflavones and propose potential interactions.
Collapse
Affiliation(s)
- Rosie Deschênes Gagnon
- Institute of Nutrition and Functional Foods (INAF), Food Science Department, Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM/Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Marie-Ève Langevin
- Eurodia Industrie S.A.S—Zac Saint Martin, Impasse Saint Martin, 84120 Pertuis, France; (M.-È.L.); (F.L.)
| | - Florence Lutin
- Eurodia Industrie S.A.S—Zac Saint Martin, Impasse Saint Martin, 84120 Pertuis, France; (M.-È.L.); (F.L.)
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Food Science Department, Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM/Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Quebec City, QC G1V 0A6, Canada;
| |
Collapse
|
3
|
Asgari H, Ghavipanjeh F, Sabour MR, Emadzadeh D. Fabrication of pore-filling cation-exchange membrane from waste polystyrene and Spunbond Meltblown Spunbond (SMS) non-woven polypropylene fabric as the substrate. Sci Rep 2024; 14:6399. [PMID: 38493214 PMCID: PMC10944457 DOI: 10.1038/s41598-024-56961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Commercial ion-exchange membranes are typically thick, possessing limited mechanical strength, and have relatively high fabrication costs. In this study, we utilize a three-layer polypropylene fabric known as Spunbond Meltblown Spunbond (SMS) as the substrate. This choice ensures that the resulting membrane exhibits high strength and low thickness. SMS substrates with various area densities, including 14.5, 15, 17, 20, 25, and 30 g/m2, were coated with different concentrations of waste polystyrene solution (ranging from 5 × 104 to 9 × 104 mg/l) before undergoing sulfonation using concentrated sulfuric acid. The physicochemical and mechanical properties of the membrane were characterized and compared with those of commercial Neosepta CMX and Nafion-117 cation-exchange membranes. Remarkably, the fabricated membrane exhibited good performance compared to commercial ones. The cation-exchange capacity (2.76 meq/g) and tensile strength (37.15 MPa) were higher, and the electrical resistance (3.603Ω) and the thickness (130 μm) were lower than the commercial membranes.
Collapse
Affiliation(s)
- Hadi Asgari
- Department of Civil Engineering, K.N.Toosi University of Technology, P.O. Box 1969764499, Tehran, Iran
| | - Farideh Ghavipanjeh
- Energy Department, Materials and Energy Research Center, P.O. Box 3177983634, Karaj, Iran.
| | - Mohammad Reza Sabour
- Department of Civil Engineering, K.N.Toosi University of Technology, P.O. Box 1969764499, Tehran, Iran
| | - Daryoush Emadzadeh
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
4
|
Ma L, Roman M, Alhadidi A, Jia M, Martini F, Xue Y, Verliefde A, Gutierrez L, Cornelissen E. Fate of organic micropollutants during brackish water desalination for drinking water production in decentralized capacitive electrodialysis. WATER RESEARCH 2023; 245:120625. [PMID: 37820474 DOI: 10.1016/j.watres.2023.120625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/12/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
Capacitive electrodialysis (CED) is an emerging and promising desalination technology for decentralized drinking water production. Brackish water, often used as a drinking water source, may contain organic micropollutants (OMPs), thus raising environmental and health concerns. This study investigated the transport of OMPs in a fully-functional decentralized CED system for drinking water production under realistic operational conditions. Eighteen environmentally-relevant OMPs (20 µg L-1) with different physicochemical properties (charge, size, hydrophobicity) were selected and added to the feed water. The removal of OMPs was significantly lower than that of salts (∼94%), mainly due to their lower electrical mobility and higher steric hindrance. The removal of negatively-charged OMPs reached 50% and was generally higher than that of positively-charged OMPs (31%), whereas non-charged OMPs were barely transported. Marginal adsorption of OMPs was found under moderate water recovery (50%), in contrast to significant adsorption of charged OMPs under high water recovery (80%). The five-month operation demonstrated that the CED system could reliably produce water with low salt ions and TOC concentrations, meeting the respective WHO requirements. The specific energy consumption of the CED stack under 80% water recovery was 0.54 kWh m-3, which is competitive to state-of-the-art RO, ED, and emerging MCDI in brackish water desalination. Under this condition, the total OPEX was 2.43 € m-3, of which the cost of membrane replacement contributed significantly. Although the CED system proved to be a robust, highly adaptive, and fully automated technology for decentralized drinking water production, it was not highly efficient in removing OMPs, especially non-charged OMPs.
Collapse
Affiliation(s)
- Lingshan Ma
- Particle and Interfacial Technology Group (PaInT), Ghent University, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Belgium.
| | - Malgorzata Roman
- Particle and Interfacial Technology Group (PaInT), Ghent University, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Belgium; European Centre of Excellence for Sustainable Water Technology (Wetsus), the Netherlands
| | | | - Mingsheng Jia
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Belgium; Center for Microbial Ecology and Technology (CMET), Ghent University, Belgium
| | | | - Yu Xue
- Particle and Interfacial Technology Group (PaInT), Ghent University, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Belgium
| | - Arne Verliefde
- Particle and Interfacial Technology Group (PaInT), Ghent University, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Belgium
| | - Leonardo Gutierrez
- Particle and Interfacial Technology Group (PaInT), Ghent University, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Belgium; Facultad del Mar y Medio Ambiente, Universidad del Pacifico, Ecuador
| | - Emile Cornelissen
- Particle and Interfacial Technology Group (PaInT), Ghent University, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Belgium; KWR Watercycle Research Institute, the Netherlands
| |
Collapse
|
5
|
Min KJ, An HJ, Park KY. Cadmium-treatment efficiency and membrane fouling during electrodialysis of wastewater discharged from zinc smelting. CHEMOSPHERE 2023; 332:138881. [PMID: 37164203 DOI: 10.1016/j.chemosphere.2023.138881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Zinc smelting wastewater contains high concentrations of Cd. Here, the treatment efficiency of Cd using electrodialysis was evaluated. In addition, scale accumulation of ion-exchange membrane (IEM) was analyzed, and fouling control was studied. The results showed that spacers effectively improved the limiting current density but accelerated foulant accumulation. The Cd-treatment efficiency improved to 85.4% without a spacer. Dissolved organic carbon (DOC) and hydrophobic DOC levels in diluted water decreased by 0.65 mg L-1 and 2.1 mg L-1, respectively; in contrast, hydrophilic DOC level increased by 1.45 mg L-1. Some of the hydrophobic DOC in the diluted water was converted to hydrophilic DOC and subsequently to low-molecular-weight (LMW) DOC. DOC level in the concentrated water did not change substantially, but the LMW fraction of the hydrophilic DOC increased. In the cation-exchange membrane, a material composed of calcium sulfate accumulated in the bottom layer, and hydroxides of divalent and trivalent ions accumulated on top of it. In contrast, the anion-exchange membrane was fouled by humic substances. In terms of fouling control, physical and acid cleaning of IEMs was more effective than the reversal operation.
Collapse
Affiliation(s)
- Kyung Jin Min
- Department of Tech Center for Research Facilities, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| | - Hyo Jin An
- Department of Civil and Environmental Engineering, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| | - Ki Young Park
- Department of Civil and Environmental Engineering, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Baklouti L, Larchet C, Hamdi A, Hamdi N, Baraket L, Dammak L. Research on Membranes and Their Associated Processes at the Université Paris-Est Créteil: Progress Report, Perspectives, and National and International Collaborations. MEMBRANES 2023; 13:252. [PMID: 36837755 PMCID: PMC9959974 DOI: 10.3390/membranes13020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Research on membranes and their associated processes was initiated in 1970 at the University of Paris XII/IUT de Créteil, which became in 2010 the University Paris-Est Créteil (UPEC). This research initially focused on the development and applications of pervaporation membranes, then concerned the metrology of ion-exchange membranes, then expanded to dialysis processes using these membranes, and recently opened to composite membranes and their applications in production or purification processes. Both experimental and fundamental aspects have been developed in parallel. This evolution has been reinforced by an opening to the French and European industries, and to the international scene, especially to the Krasnodar Membrane Institute (Kuban State University-Russia) and to the Department of Chemistry, (Qassim University-Saudi Arabia). Here, we first presented the history of this research activity, then developed the main research axes carried out at UPEC over the 2012-2022 period; then, we gave the main results obtained, and finally, showed the cross contribution of the developed collaborations. We avoided a chronological presentation of these activities and grouped them by theme: composite membranes and ion-exchange membranes. For composite membranes, we have detailed three applications: highly selective lithium-ion extraction, bleach production, and water and industrial effluent treatments. For ion-exchange membranes, we focused on their characterization methods, their use in Neutralization Dialysis for brackish water demineralization, and their fouling and antifouling processes. It appears that the research activities on membranes within UPEC are very dynamic and fruitful, and benefit from scientific exchanges with our Russian partners, which contributed to the development of strong membrane activity on water treatment within Qassim University. Finally, four main perspectives of this research activity were given: the design of autonomous and energy self-sufficient processes, refinement of characterization by Electrochemical Scanning Microscopy, functional membrane separators, and green membrane preparation and use.
Collapse
Affiliation(s)
- Lassaad Baklouti
- Department of Chemistry, College of Sciences and Arts at Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Christian Larchet
- ICMPE, CNRS, Université Paris-Est Créteil, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Abdelwaheb Hamdi
- Department of Chemistry, College of Sciences and Arts at Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Naceur Hamdi
- Department of Chemistry, College of Sciences and Arts at Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Leila Baraket
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha P.O. Box 1988, Saudi Arabia
| | - Lasâad Dammak
- ICMPE, CNRS, Université Paris-Est Créteil, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
7
|
Marzouk-Trifi I, Baklouti L, Dammak L. Investigation of Calcium and Magnesium Removal by Donnan Dialysis According to the Doehlert Design for Softening Different Water Types. MEMBRANES 2023; 13:203. [PMID: 36837706 PMCID: PMC9965841 DOI: 10.3390/membranes13020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
In this study, calcium and magnesium were removed from Tunisian dam, lake, and tap water using Donnan Dialysis (DD) according to the Doehlert design. Three cation-exchange membranes (CMV, CMX, and CMS) were used in a preliminary investigation to establish the upper and lower bounds of each parameter and to more precisely pinpoint the optimal value. The concentration of compensating sodium ions [Na+] in the receiver compartment, the concentration of calcium [Ca2+] and magnesium [Mg2+] in the feed compartment, and the membrane nature were the experimental parameters. The findings indicate that the CMV membrane offers the highest elimination rate of calcium and magnesium. The Full Factorial Design makes it possible to determine how the experimental factors affect the removal of calcium and magnesium by DD. All parameters used had a favorable impact on the response; however, the calcium and magnesium concentration were the most significant ones. The Doehlert design's Response Surface Methodology (RSM) was used to determine the optimum conditions ([Mg2+] = 90 mg·L-1, [Ca2+] = 88 mg·L-1, [Na+] = 0.68 mol·L-1) allowing a 90.6% hardness removal rate with the CMV membrane. Finally, we used Donnan Dialysis to remove calcium and magnesium from the three different types of natural water: Dam, Lake, and Tap water. The results indicate that, when compared to lake water and tap water, the removal of calcium and magnesium from dam water is the best. This can be linked to the water matrix's complexity. Therefore, using Donnan Dialysis to decrease natural waters hardness was revealed to be suitable.
Collapse
Affiliation(s)
- Ikhlass Marzouk-Trifi
- Laboratoire de Recherche Dessalement ET Traitement Des Eaux, Faculté Des Sciences de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
| | - Lassaad Baklouti
- Department of Chemistry, College of Sciences and Arts at ArRass, Qassim University, Arras 51921, Saudi Arabia
| | - Lasâad Dammak
- Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
8
|
Solonchenko K, Kirichenko A, Kirichenko K. Stability of Ion Exchange Membranes in Electrodialysis. MEMBRANES 2022; 13:52. [PMID: 36676859 PMCID: PMC9866250 DOI: 10.3390/membranes13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
During electrodialysis the ion exchange membranes are affected by such factors as passage of electric current, heating, tangential flow of solution and exposure to chemical agents. It can potentially cause the degradation of ion exchange groups and of polymeric backbone, worsening the performance of the process and necessitating the replacement of the membranes. This article aims to review how the composition and the structure of ion exchange membranes change during the electrodialysis or the studies imitating it.
Collapse
Affiliation(s)
- Ksenia Solonchenko
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Anna Kirichenko
- Department of Electric Engineering, Thermotechnics, Renewable Energy Sources, Faculty of Energetics, Kuban State Agrarian University named after I.T. Trubilin, 13 Kalinina St., 350004 Krasnodar, Russia
| | - Ksenia Kirichenko
- Physical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| |
Collapse
|
9
|
Tsygurina K, Pasechnaya E, Chuprynina D, Melkonyan K, Rusinova T, Nikonenko V, Pismenskaya N. Electrodialysis Tartrate Stabilization of Wine Materials: Fouling and a New Approach to the Cleaning of Aliphatic Anion-Exchange Membranes. MEMBRANES 2022; 12:1187. [PMID: 36557094 PMCID: PMC9785266 DOI: 10.3390/membranes12121187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Electrodialysis (ED) is an attractive method of tartrate stabilization of wine due to its rapidity and reagentlessness. At the same time, fouling of ion-exchange membranes by the components of wine materials is still an unsolved problem. The effect of ethanol, polyphenols (mainly anthocyanins and proanthocyanidins) and saccharides (fructose) on the fouling of aliphatic ion-exchange membranes CJMA-6 and CJMC-5 (manufactured by Hefei Chemjoy Polymer Materials Co. Ltd., Hefei, China) was analyzed using model solutions. It was shown that the mechanism and consequences of fouling are different in the absence of an electric field and during electrodialysis. In particular, a layer of colloidal particles is deposited on the surface of the CJMA-6 anion-exchange membrane in underlimiting current modes. Its thickness increases with increasing current density, apparently due to the implementation of a trap mechanism involving tartaric acid anions, as well as protons, which are products of water splitting and "acid dissociation". A successful attempt was made to clean CJMA-6 in operando by pumping a water-alcohol solution of KCl through the desalination compartment and changing electric field direction. It has been established that such a cleaning process suppresses the subsequent biofouling of ion-exchange membranes. In addition, selective recovery of polyphenols with high antioxidant activity is possible.
Collapse
Affiliation(s)
- Kseniia Tsygurina
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
| | | | - Daria Chuprynina
- Department of Analytical Chemistry, Kuban State University, 350040 Krasnodar, Russia
| | - Karina Melkonyan
- Central Research Laboratory, Kuban State Medical University, 350040 Krasnodar, Russia
| | - Tatyana Rusinova
- Central Research Laboratory, Kuban State Medical University, 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
| | | |
Collapse
|
10
|
Impact of Phenol on Membranes during Bipolar Membrane Electrodialysis for High Salinity Pesticide Wastewater Treatment. SEPARATIONS 2022. [DOI: 10.3390/separations9090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To achieve a cleaner production, pesticide wastewater with concentrated NaCl can be treated by using a bipolar membrane electrodialysis (BMED) and converted to NaOH and HCl, which minimizes acid and alkali consumption in a pesticide production process. However, ion-exchange membranes (IEMs) are vulnerable to fouling by phenolic substances present in the concentrated NaCl solutions. This work aimed to understand the performance and fouling mechanism of BMED from phenol during the desalination of NaCl and explore an effective cleaning method. The results firstly showed that for the NaCl solutions with higher phenol concentrations, the selectivity of the IEMs was reduced after processing six successive batches of BMED, which led to reverse migration of ions, organics leakage, and an obvious increase in the energy consumption and the concentration of generated acid and alkali. Secondly, IEMs characterization analysis detected that the structure of the IEMs was deformed, while phenol fouling deposits were observed on the surface and interior of the IEMs, especially for the anion exchange membranes (AEMs). Then, the results of soaking tests proved that the phenol could bring about swelling-like degradation to the AEMs and 0.1 wt.% NaOH solution was studied to be the optimized cleaning agent since the performance of the fouled IEMs in the short-running process could be recovered after 5 h of in situ cleaning that removed the phenol fouling deposits efficiently. Finally, the results of a long-running BMED operation treating NaCl solution containing 10 g/L phenol concentration showed that the IEMs were severely fouled, and the fouling was firstly due to the swelling-like mechanism during the initial 12 successive batches, and then should belong to the blockage-like mechanism during the following 20 successive batches. The seriously fouled IEMs could no longer be recovered even after a deep in situ cleaning. This research proves that under appropriate pretreatment or operating conditions, the BMED process is an alternative way of treating wastewater with high salinity and the presence of phenol molecules.
Collapse
|
11
|
Tiago G, Cristóvão MB, Marques AP, Huertas R, Merino-Garcia I, Pereira VJ, Crespo JG, Velizarov S. A Study on Biofouling and Cleaning of Anion Exchange Membranes for Reverse Electrodialysis. MEMBRANES 2022; 12:membranes12070697. [PMID: 35877900 PMCID: PMC9316569 DOI: 10.3390/membranes12070697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022]
Abstract
This study covers the modification, (bio)fouling characterization, use, and cleaning of commercial heterogeneous anion exchange membranes (AEMs) to evaluate their feasibility for reverse electrodialysis (RED) applications. A surface modification with poly (acrylic) acid resulted in an improved monovalent perm-selectivity (decreased sulfate membrane transport rate). Moreover, we evaluated the (bio)fouling potential of the membrane using sodium dodecyl sulfate (SDS), sodium dodecyl benzenesulfonate (SDBS), and Aeromonas hydrophila as model organic foulants and a biofoulant, respectively. A detailed characterization of the AEMs (water contact angle, ion exchange capacity (IEC), scanning electron microscopy (SEM), cyclic voltammetry (CV), and Fourier Transform Infrared (FTIR) spectra) was carried out, verifying that the presence of such foulants reduces IEC and the maximum current obtained by CV. However, only SDS and SDBS affected the contact angle values. Cleaning of the biofouled membranes using a sodium hypochlorite aqueous solution allows for (partially) recovering their initial properties. Furthermore, this work includes a fouling characterization using real surface and sea water matrixes, confirming the presence of several types of fouling microorganisms in natural streams. A lower adhesion of microorganisms (measured in terms of total bacteria counts) was observed for the modified membranes compared to the unmodified ones. Finally, we propose a cleaning strategy to mitigate biofouling in AEMs that could be easily applied in RED systems for an enhanced long-term process performance.
Collapse
Affiliation(s)
- Gonçalo Tiago
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (G.T.); (M.B.C.); (R.H.); (J.G.C.)
| | - Maria Beatriz Cristóvão
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (G.T.); (M.B.C.); (R.H.); (J.G.C.)
- IBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (A.P.M.); (V.J.P.)
| | - Ana Paula Marques
- IBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (A.P.M.); (V.J.P.)
| | - Rosa Huertas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (G.T.); (M.B.C.); (R.H.); (J.G.C.)
- IBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (A.P.M.); (V.J.P.)
| | - Ivan Merino-Garcia
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros, s/n, 39005 Santander, Spain;
| | - Vanessa Jorge Pereira
- IBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (A.P.M.); (V.J.P.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - João Goulão Crespo
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (G.T.); (M.B.C.); (R.H.); (J.G.C.)
| | - Svetlozar Velizarov
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (G.T.); (M.B.C.); (R.H.); (J.G.C.)
- Correspondence:
| |
Collapse
|
12
|
Apel PY, Velizarov S, Volkov AV, Eliseeva TV, Nikonenko VV, Parshina AV, Pismenskaya ND, Popov KI, Yaroslavtsev AB. Fouling and Membrane Degradation in Electromembrane and Baromembrane Processes. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622020032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
A review on ion-exchange nanofiber membranes: properties, structure and application in electrochemical (waste)water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Merino-Garcia I, Velizarov S. New insights into the definition of membrane cleaning strategies to diminish the fouling impact in ion exchange membrane separation processes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119445] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Jiang S, Sun H, Wang H, Ladewig BP, Yao Z. A comprehensive review on the synthesis and applications of ion exchange membranes. CHEMOSPHERE 2021; 282:130817. [PMID: 34091294 DOI: 10.1016/j.chemosphere.2021.130817] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Ion exchange membranes (IEMs) are undergoing prosperous development in recent years. More than 30,000 papers which are indexed by Science Citation Index Expanded (SCIE) have been published on IEMs during the past twenty years (2001-2020). Especially, more than 3000 papers are published in the year of 2020, revealing researchers' great interest in this area. This paper firstly reviews the different types (e.g., cation exchange membrane, anion exchange membrane, proton exchange membrane, bipolar membrane) and electrochemical properties (e.g., permselectivity, electrical resistance/ionic conductivity) of IEMs and the corresponding working principles, followed by membrane synthesis methods, including the common solution casting method. Especially, as a promising future direction, green synthesis is critically discussed. IEMs are extensively applied in various applications, which can be generalized into two big categories, where the water-based category mainly includes electrodialysis, diffusion dialysis and membrane capacitive deionization, while the energy-based category mainly includes reverse electrodialysis, fuel cells, redox flow battery and electrolysis for hydrogen production. These applications are comprehensively discussed in this paper. This review may open new possibilities for the future development of IEMs.
Collapse
Affiliation(s)
- Shanxue Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Bradley P Ladewig
- Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom; Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
16
|
Pismenskaya N, Bdiri M, Sarapulova V, Kozmai A, Fouilloux J, Baklouti L, Larchet C, Renard E, Dammak L. A Review on Ion-Exchange Membranes Fouling during Electrodialysis Process in Food Industry, Part 2: Influence on Transport Properties and Electrochemical Characteristics, Cleaning and Its Consequences. MEMBRANES 2021; 11:membranes11110811. [PMID: 34832040 PMCID: PMC8623251 DOI: 10.3390/membranes11110811] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Ion-exchange membranes (IEMs) are increasingly used in dialysis and electrodialysis processes for the extraction, fractionation and concentration of valuable components, as well as reagent-free control of liquid media pH in the food industry. Fouling of IEMs is specific compared to that observed in the case of reverse or direct osmosis, ultrafiltration, microfiltration, and other membrane processes. This specificity is determined by the high concentration of fixed groups in IEMs, as well as by the phenomena inherent only in electromembrane processes, i.e., induced by an electric field. This review analyzes modern scientific publications on the effect of foulants (mainly typical for the dairy, wine and fruit juice industries) on the structural, transport, mass transfer, and electrochemical characteristics of cation-exchange and anion-exchange membranes. The relationship between the nature of the foulant and the structure, physicochemical, transport properties and behavior of ion-exchange membranes in an electric field is analyzed using experimental data (ion exchange capacity, water content, conductivity, diffusion permeability, limiting current density, water splitting, electroconvection, etc.) and modern mathematical models. The implications of traditional chemical cleaning are taken into account in this analysis and modern non-destructive membrane cleaning methods are discussed. Finally, challenges for the near future were identified.
Collapse
Affiliation(s)
- Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia; (N.P.); (V.S.); (A.K.)
| | - Myriam Bdiri
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (M.B.); (J.F.); (C.L.); (E.R.)
| | - Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia; (N.P.); (V.S.); (A.K.)
| | - Anton Kozmai
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia; (N.P.); (V.S.); (A.K.)
| | - Julie Fouilloux
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (M.B.); (J.F.); (C.L.); (E.R.)
| | - Lassaad Baklouti
- Department of Chemistry, College of Sciences and Arts at Al Rass, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Christian Larchet
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (M.B.); (J.F.); (C.L.); (E.R.)
| | - Estelle Renard
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (M.B.); (J.F.); (C.L.); (E.R.)
| | - Lasâad Dammak
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (M.B.); (J.F.); (C.L.); (E.R.)
- Correspondence: ; Tel.: +33-145171786
| |
Collapse
|
17
|
Dammak L, Fouilloux J, Bdiri M, Larchet C, Renard E, Baklouti L, Sarapulova V, Kozmai A, Pismenskaya N. A Review on Ion-Exchange Membrane Fouling during the Electrodialysis Process in the Food Industry, Part 1: Types, Effects, Characterization Methods, Fouling Mechanisms and Interactions. MEMBRANES 2021; 11:789. [PMID: 34677555 PMCID: PMC8539029 DOI: 10.3390/membranes11100789] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Electrodialysis (ED) was first established for water desalination and is still highly recommended in this field for its high water recovery, long lifetime and acceptable electricity consumption. Today, thanks to technological progress in ED processes and the emergence of new ion-exchange membranes (IEMs), ED has been extended to many other applications in the food industry. This expansion of uses has also generated several problems such as IEMs' lifetime limitation due to different ageing phenomena (because of organic and/or mineral compounds). The current commercial IEMs show excellent performance in ED processes; however, organic foulants such as proteins, surfactants, polyphenols or other natural organic matters can adhere on their surface (especially when using anion-exchange membranes: AEMs) forming a colloid layer or can infiltrate the membrane matrix, which leads to the increase in electrical resistance, resulting in higher energy consumption, lower water recovery, loss of membrane permselectivity and current efficiency as well as lifetime limitation. If these aspects are not sufficiently controlled and mastered, the use and the efficiency of ED processes will be limited since, it will no longer be competitive or profitable compared to other separation methods. In this work we reviewed a significant amount of recent scientific publications, research and reviews studying the phenomena of IEM fouling during the ED process in food industry with a special focus on the last decade. We first classified the different types of fouling according to the most commonly used classifications. Then, the fouling effects, the characterization methods and techniques as well as the different fouling mechanisms and interactions as well as their influence on IEM matrix and fixed groups were presented, analyzed, discussed and illustrated.
Collapse
Affiliation(s)
- Lasâad Dammak
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Julie Fouilloux
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Myriam Bdiri
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Christian Larchet
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Estelle Renard
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil, CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France; (J.F.); (M.B.); (C.L.); (E.R.)
| | - Lassaad Baklouti
- Department of Chemistry, College of Sciences and Arts at Al Rass, Qassim University, Ar Rass 51921, Saudi Arabia;
| | - Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| | - Anton Kozmai
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| | - Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 149, Stavropol’skaya Str., 350040 Krasnodar, Russia; (V.S.); (A.K.); (N.P.)
| |
Collapse
|
18
|
Julian H, Khoiruddin K, Julies N, Edwina V, Wenten I. Pineapple juice acidity removal using electrodeionization (EDI). J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Du H, Xie L, Liu J, Xu S. Concentration of mixed acid by electrodialysis for the intensification of absorption process in acrylic acid production. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Pan J, Wei B, Xie H, Feng J, Liao S, Li X, Yu Y. Hexyl-modified series-connected bipyridine and DABCO di-cations functionalized anion exchange membranes for electrodialysis desalination. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Identification of Anthocyanins and Their Fouling Mechanisms during Non-Thermal Nanofiltration of Blueberry Aqueous Extracts. MEMBRANES 2021; 11:membranes11030200. [PMID: 33809170 PMCID: PMC7999962 DOI: 10.3390/membranes11030200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Organic fouling in the nanofiltration (NF) process, which is a non-thermal technology to recover active components, is a critical problem limiting its applications. This study seeks to identify the anthocyanins on the NF membrane and explore their fouling mechanisms during concentration of blueberry extracts. Seven kinds of monomeric anthocyanins in foulants-delphinidin-3-O-galactoside, delphinidin-3-O-glucoside, delphinidin-3-O-arabinoside, cyanidin-3-O-galactoside, petunidin-3-O-galactoside, peonidin-3-O-glucoside, and malvidin-3-O-glucoside-were identified. Moreover, chalcone, myricetin derivative, and an unknown substance with [M+H]+ at m/z 261.1309, which is the fragment ion corresponding to the break of glycoside bond of anthocyanins, were obtained. Interactions between anthocyanins and membrane made from polyamide were principally governed by the CH-π and π-π stacking of aromatic rings, the establishment of hydrogen bonds, and electrostatic interaction. This study will be helpful to further control fouling and choice of cleaning agents in concentration of anthocyanins-rich extracts.
Collapse
|
22
|
Enhancing mechanistic models with neural differential equations to predict electrodialysis fouling. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Yang J, Zhang Y, Bu Y, Chen B, Li J. Fate of typical organic halogen compounds during electrodialysis process and improvement of their recoveries. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Perreault V, Sarapulova V, Tsygurina K, Pismenskaya N, Bazinet L. Understanding of Adsorption and Desorption Mechanisms of Anthocyanins and Proanthocyanidins on Heterogeneous and Homogeneous Cation-Exchange Membranes. MEMBRANES 2021; 11:136. [PMID: 33669193 PMCID: PMC7919792 DOI: 10.3390/membranes11020136] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/01/2023]
Abstract
The presence of membrane fouling is the main drawback in membrane processes, and it is related to the premature use and high cost for the replacement of membranes. Polyphenols in cranberry juice are associated with ion-exchange membrane fouling, and it results in a loss of these beneficial compounds in the juice when treated by membrane processes such as electrodialysis. In the present work, four heterogeneous or pseudohomogeneous cation-exchange membranes (CSE-fg, MK-40, CEM Type-II, and CJMC-5), different in terms of the polymer matrix (aromatic, aliphatic), exchange capacity, size, and location of meso and macropores, were studied to understand the impact of the membrane structure and physico-chemical properties on adsorption and desorption of phenolic compounds (anthocyanins and proanthocyanidins) from cranberry juice. It appeared from these results that MK-40, CEM Type-II, and CSE-fg were more prone to fouling due to their high ion-exchange capacity, their thickness, and the presence of meso and macropores in their structure. Indeed, electrostatic interactions occurred between fixed groups of membranes and polyphenolic ions. Desorption of the entire membrane and cryogenic grinding with pH adjusted to 10 allowed a better recovery of anthocyanins and proanthocyanidins (PACs), respectively, since hydroxide ions competed with polyphenols and membrane that induced desorption of polyphenols. In the future, this new knowledge will become the basis for a more sensible choice of membranes and for the development of protocols for extending their life cycle.
Collapse
Affiliation(s)
- Véronique Perreault
- Laboratoire de Transformation Alimentaire et Procédés Électromembranaires (LTAPEM, Laboratory of Food Processing and Electro-Membrane Processes), Food Science Department, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada;
| | - Veronika Sarapulova
- Membrane Institute, Kuban State University, Stavropolskaya 149, 350040 Krasnodar, Russia; (V.S.); (K.T.); (N.P.)
| | - Ksenia Tsygurina
- Membrane Institute, Kuban State University, Stavropolskaya 149, 350040 Krasnodar, Russia; (V.S.); (K.T.); (N.P.)
| | - Natalia Pismenskaya
- Membrane Institute, Kuban State University, Stavropolskaya 149, 350040 Krasnodar, Russia; (V.S.); (K.T.); (N.P.)
| | - Laurent Bazinet
- Laboratoire de Transformation Alimentaire et Procédés Électromembranaires (LTAPEM, Laboratory of Food Processing and Electro-Membrane Processes), Food Science Department, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada;
| |
Collapse
|
25
|
Sarapulova V, Pismenskaya N, Titorova V, Sharafan M, Wang Y, Xu T, Zhang Y, Nikonenko V. Transport Characteristics of CJMAED™ Homogeneous Anion Exchange Membranes in Sodium Chloride and Sodium Sulfate Solutions. Int J Mol Sci 2021; 22:1415. [PMID: 33572516 PMCID: PMC7866833 DOI: 10.3390/ijms22031415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
The interplay between the ion exchange capacity, water content and concentration dependences of conductivity, diffusion permeability, and counterion transport numbers (counterion permselectivity) of CJMA-3, CJMA-6 and CJMA-7 (Hefei Chemjoy Polymer Materials Co. Ltd., China) anion-exchange membranes (AEMs) is analyzed using the application of the microheterogeneous model to experimental data. The structure-properties relationship for these membranes is examined when they are bathed by NaCl and Na2SO4 solutions. These results are compared with the characteristics of the well-studied homogenous Neosepta AMX (ASTOM Corporation, Japan) and heterogeneous AMH-PES (Mega a.s., Czech Republic) anion-exchange membranes. It is found that the CJMA-6 membrane has the highest counterion permselectivity (chlorides, sulfates) among the CJMAED series membranes, very close to that of the AMX membrane. The CJMA-3 membrane has the transport characteristics close to the AMH-PES membrane. The CJMA-7 membrane has the lowest exchange capacity and the highest volume fraction of the intergel spaces filled with an equilibrium electroneutral solution. These properties predetermine the lowest counterion transport number in CJMA-7 among other investigated AEMs, which nevertheless does not fall below 0.87 even in 1.0 eq L-1 solutions of NaCl or Na2SO4. One of the reasons for the decrease in the permselectivity of CJMAED membranes is the extended macropores, which are localized at the ion-exchange material/reinforcing cloth boundaries. In relatively concentrated solutions, the electric current prefers to pass through these well-conductive but nonselective macropores rather than the highly selective but low-conductive elements of the gel phase. It is shown that the counterion permselectivity of the CJMA-7 membrane can be significantly improved by coating its surface with a dense homogeneous ion-exchange film.
Collapse
Affiliation(s)
- Veronika Sarapulova
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (V.S.); (N.P.); (V.T.); (M.S.)
| | - Natalia Pismenskaya
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (V.S.); (N.P.); (V.T.); (M.S.)
| | - Valentina Titorova
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (V.S.); (N.P.); (V.T.); (M.S.)
| | - Mikhail Sharafan
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (V.S.); (N.P.); (V.T.); (M.S.)
| | - Yaoming Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China; (Y.W.); (T.X.)
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China; (Y.W.); (T.X.)
| | - Yang Zhang
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53 Zhenzhou Road, Qingdao 266042, China;
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (V.S.); (N.P.); (V.T.); (M.S.)
| |
Collapse
|
26
|
Review of Membrane Separation Models and Technologies: Processing Complex Food-Based Biomolecular Fractions. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02559-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Hansima MACK, Makehelwala M, Jinadasa KBSN, Wei Y, Nanayakkara KGN, Herath AC, Weerasooriya R. Fouling of ion exchange membranes used in the electrodialysis reversal advanced water treatment: A review. CHEMOSPHERE 2021; 263:127951. [PMID: 33297020 DOI: 10.1016/j.chemosphere.2020.127951] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 06/12/2023]
Abstract
Electrodialysis self-reversal (EDR) technology has attracted in the treatment of water for domestic and industrial uses. The self-reversal consists of a frequent reversal of the direction of current between the EDR-cell electrodes to combat fouling of ion exchange membranes (IEMs). Irrespective of the EDR self-cleaning processes, the role of natural organic matter and their complexing ability with metal ions on IEMs fouling is partially understood. The objective of this review is to identify the research gaps present in the elucidation of IEM fouling routes. The common IEMs' foulants are identified, and several fouling mechanisms are briefly discussed. The effectiveness of self-cleaning mechanisms to reduce IEMs fouling is also be discussed. Dissolved organic carbon (DOC) possesses high chelation which forms metal complexes with di and trivalent cations found in water. The role of ternary complexes, e.g. M2+/3+-DOC and membrane surface, on membrane fouling via surface bridging, are also addressed. Finally, mitigation methods of IEMs membrane fouling are also discussed.
Collapse
Affiliation(s)
- M A C K Hansima
- Post Graduate Institute of Science (PGIS), University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Madhubhashini Makehelwala
- NSF Project, Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka; China-Sri Lanka Joint Research and Demonstration Center for Water Technology, Ministry of Water Supply, Sri Lanka.
| | - K B S N Jinadasa
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Yuansong Wei
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka
| | - K G N Nanayakkara
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Ajith C Herath
- Department of Chemical Sciences, Rajarata University of Sri Lanka, Mihinthale, 50300, Sri Lanka
| | - Rohan Weerasooriya
- National Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka
| |
Collapse
|
28
|
|
29
|
Electrodialytic Desalination of Tobacco Sheet Extract: Membrane Fouling Mechanism and Mitigation Strategies. MEMBRANES 2020; 10:membranes10090245. [PMID: 32967125 PMCID: PMC7559822 DOI: 10.3390/membranes10090245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022]
Abstract
In the papermaking industry (reconstituted tobacco), a large number of tobacco stems, dust, and fines are discharged in the wastewater. This high salinity wastewater rich in ionic constituents and nicotine is difficult to be degraded by conventional biological treatment and is a serious threat that needs to be overcome. Electrodialysis (ED) has proved a feasible technique to remove the inorganic components in the papermaking wastewater. However, the fouling in ion exchange membranes causes deterioration of membranes, which causes a decrease in the flux and an increase in the electrical resistance of the membranes. In this study, the fouling potential of the membranes was analyzed by comparing the properties of the pristine and fouled ion exchange membranes. The physical and chemical properties of the ion exchange membranes were investigated in terms of electrical resistance, water content, and ion exchange capacity, as well as studied by infrared spectroscopy (IR) spectra, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses. The results indicated that the membrane fouling is caused by two different mechanisms. For the anion exchange membranes, the fouling is mainly caused by the charged organic anions. For the cation exchange membrane, the fouling is caused by minerals such as Ca2+ and Mg2+. These metal ions reacted with OH− ions generated by water dissociation and precipitated on the membrane surface. The chemical cleaning with alkaline and acid could mitigate the fouling potential of the ion exchange membranes.
Collapse
|
30
|
A Review on Ion-exchange Membranes Fouling and Antifouling During Electrodialysis Used in Food Industry: Cleanings and Strategies of Prevention. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00178-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Sarapulova VV, Klevtsova AV, Pismenskaya ND. Electrostatic Interactions of Ion-Exchange Materials with Anthocyanins in the Processes of Their Sorption and Electrodialysis Extraction from Liquid Media. MEMBRANES AND MEMBRANE TECHNOLOGIES 2020. [DOI: 10.1134/s2517751620040101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Sarapulova V, Pismenskaya N, Butylskii D, Titorova V, Wang Y, Xu T, Zhang Y, Nikonenko V. Transport and Electrochemical Characteristics of CJMCED Homogeneous Cation Exchange Membranes in Sodium Chloride, Calcium Chloride, and Sodium Sulfate Solutions. MEMBRANES 2020; 10:E165. [PMID: 32722470 PMCID: PMC7463934 DOI: 10.3390/membranes10080165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/29/2022]
Abstract
Recently developed and produced by Hefei Chemjoy Polymer Material Co. Ltd., homogeneous CJMC-3 and CJMC-5 cation-exchange membranes (CJMCED) are characterized. The membrane conductivity in NaCl, Na2SO4, and CaCl2 solutions, permeability in respect to the NaCl and CaCl2 diffusion, transport numbers, current-voltage curves (CVC), and the difference in the pH (DpH) of the NaCl solution at the desalination compartment output and input are examined for these membranes in comparison with a well-studied commercial Neosepta CMX cation-exchange membrane produced by Astom Corporation, Japan. It is found that the conductivity, CVC (at relatively low voltages), and water splitting rate (characterized by DpH) for both CJMCED membranes are rather close to these characteristics for the CMX membrane. However, the diffusion permeability of the CJMCED membranes is significantly higher than that of the CMX membrane. This is due to the essentially more porous structure of the CJMCED membranes; the latter reduces the counterion permselectivity of these membranes, while allowing much easier transport of large ions, such as anthocyanins present in natural dyes of fruit and berry juices. The new membranes are promising for use in electrodialysis demineralization of brackish water and natural food solutions.
Collapse
Affiliation(s)
- Veronika Sarapulova
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia; (V.S.); (D.B.); (V.T.); (V.N.)
| | - Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia; (V.S.); (D.B.); (V.T.); (V.N.)
| | - Dmitrii Butylskii
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia; (V.S.); (D.B.); (V.T.); (V.N.)
| | - Valentina Titorova
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia; (V.S.); (D.B.); (V.T.); (V.N.)
| | - Yaoming Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China; (Y.W.); (T.X.)
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China; (Y.W.); (T.X.)
| | - Yang Zhang
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53 Zhenzhou Road, Qingdao 266042, China;
| | - Victor Nikonenko
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia; (V.S.); (D.B.); (V.T.); (V.N.)
| |
Collapse
|
33
|
Skolotneva E, Trellu C, Cretin M, Mareev S. A 2D Convection-Diffusion Model of Anodic Oxidation of Organic Compounds Mediated by Hydroxyl Radicals Using Porous Reactive Electrochemical Membrane. MEMBRANES 2020; 10:membranes10050102. [PMID: 32429328 PMCID: PMC7280982 DOI: 10.3390/membranes10050102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022]
Abstract
In recent years, electrochemical methods utilizing reactive electrochemical membranes (REM) have been considered as a promising technology for efficient degradation and mineralization of organic compounds in natural, industrial and municipal wastewaters. In this paper, we propose a two-dimensional (2D) convection-diffusion-reaction model concerning the transport and reaction of organic species with hydroxyl radicals generated at a TiOx REM operated in flow-through mode. It allows the determination of unknown parameters of the system by treatment of experimental data and predicts the behavior of the electrolysis setup. There is a good agreement in the calculated and experimental degradation rate of a model pollutant at different permeate fluxes and current densities. The model also provides an understanding of the current density distribution over an electrically heterogeneous surface and its effect on the distribution profile of hydroxyl radicals and diluted species. It was shown that the percentage of the removal of paracetamol increases with decreasing the pore radius and/or increasing the porosity. The effect becomes more pronounced as the current density increases. The model highlights how convection, diffusion and reaction limitations have to be taken into consideration for understanding the effectiveness of the process.
Collapse
Affiliation(s)
- Ekaterina Skolotneva
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya str., 350040 Krasnodar, Russia;
| | - Clement Trellu
- Laboratoire Géomatériaux et Environnement (EA 4508), Université Gustave Eiffel, 77454 Marne la Vallée, France;
| | - Marc Cretin
- Institut Europeen des Membranes, IEM-UMR 5635, ENSCM, CNRS, Univ Montpellier, 34095 Montpellier, France;
| | - Semyon Mareev
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya str., 350040 Krasnodar, Russia;
- Correspondence: ; Tel.: +7-861-519-9573
| |
Collapse
|
34
|
Bdiri M, Perreault V, Mikhaylin S, Larchet C, Hellal F, Bazinet L, Dammak L. Identification of phenolic compounds and their fouling mechanisms in ion-exchange membranes used at an industrial scale for wine tartaric stabilization by electrodialysis. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115995] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Ion Exchange Dialysis for Aluminium Transport through a Face-Centred Central Composite Design Approach. Processes (Basel) 2020. [DOI: 10.3390/pr8020160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An ion exchange dialysis (IED) is used in the recovery of aluminium from residue. In this paper, the face-centred central composite design (FC-CCD) of the response surface methodology (RSM) and desirability approach is used for experimental design, modelling and process optimization of a counter flow IED system. The feed concentration, feed flowrate, sweep flowrate and sweep concentration were selected as the process variables, with the Al transport across a Nafion 117 membrane as the target response. A total of 30 experimental runs were conducted with six centre points. The response obtained was analysed by analysis of variance (ANOVA) and fitted to a second-order polynomial model using multiple regression analysis. The actual R2 and standard deviation of the model are 0.9548 and 0.2932, respectively. Depending on the time zone of reference (24 h or 32 h), the highest enrichment of >1.50 was achieved. The designed variables were numerically optimized by applying the desirability function to achieve the maximum Al transport. The optimised condition values were found to be a feed concentration of 1600 ppm, feed flowrate of 61.76%, sweep flowrate of 37.50% and sweep concentration of 0.75 N for the 80% target response at 32 h. Overall, the model can be used to effectively predict Al recovery using the designed system.
Collapse
|
36
|
Effect of Carbon Dioxide Loading on Removal of Heat Stable Salts from Amine Solvent by Electrodialysis. MEMBRANES 2019; 9:membranes9110152. [PMID: 31766157 PMCID: PMC6918454 DOI: 10.3390/membranes9110152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/25/2022]
Abstract
Heat stable salts (HSS) formed and continuously accumulated in the amine-based solvents due to solvent degradation and impurities in the feed gas can dramatically change the efficiency of the amine scrubbing process. HSS can be removed by using different methods including membrane separation such as electrodialysis (ED). In this work, we studied the effect of CO2 loading of the lean 30 wt % monoethanolamine (MEA) solution on the efficiency of HSS removal and MEA loss. In the model MEA solution containing HSS on the level of 48 meq/L, the carbon dioxide concentration was varied from 0.2 down to 0 mole (CO2)/mole (MEA). The reclaiming of model MEA solution was carried out by lab-scale two-stage ED unit when the concentrate stream after the first stage was additionally treated using ED (second stage) that allowed reducing MEA loss. It was shown that the decrease of carbon dioxide content from 0.2 down to 0 mole (CO2)/mole (MEA) resulted in a substantial reduction of both parameters—the MEA loss and the specific power consumption with respect to extracted HSS (from 140 down 37 kJ per 1 g of recovered HSS anions). This can be explained by the drop in the total concentration of ions formed by the interaction of MEA solution with carbon dioxide. However, the change of CO2 loading is associated with additional power consumption towards further solvent regeneration in the column. Based on the preliminary estimations of power consumption required for additional CO2 stripping with the respect to the power consumption of ED stage, it seems that lean solvent CO2 loading of 0.1 mole/mole provides an optimum for the power input at 25.9 MJ/kg(solvent).
Collapse
|
37
|
Preliminary Study on Enzymatic-Based Cleaning of Cation-Exchange Membranes Used in Electrodialysis System in Red Wine Production. MEMBRANES 2019; 9:membranes9090114. [PMID: 31484438 PMCID: PMC6780705 DOI: 10.3390/membranes9090114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/01/2022]
Abstract
The use of enzymatic agents as biological solutions for cleaning ion-exchange membranes fouled by organic compounds during electrodialysis (ED) treatments in the food industry could be an interesting alternative to chemical cleanings implemented at an industrial scale. This paper is focused on testing the cleaning efficiency of three enzyme classes (β-glucanase, protease, and polyphenol oxidase) chosen for their specific actions on polysaccharides, proteins, and phenolic compounds, respectively, fouled on a homogeneous cation-exchange membrane (referred CMX-Sb) used for tartaric stabilization of red wine by ED in industry. First, enzymatic cleaning tests were performed using each enzyme solution separately with two different concentrations (0.1 and 1.0 g/L) at different incubation temperatures (30, 35, 40, 45, and 50 °C). The evolution of membrane parameters (electrical conductivity, ion-exchange capacity, and contact angle) was determined to estimate the efficiency of the membrane′s principal action as well as its side activities. Based on these tests, we determined the optimal operating conditions for optimal recovery of the studied characteristics. Then, cleaning with three successive enzyme solutions or the use of two enzymes simultaneously in an enzyme mixture were tested taking into account the optimal conditions of their enzymatic activity (concentration, temperatures, and pH). This study led to significant results, indicating effective external and internal cleaning by the studied enzymes (a recovery of at least 25% of the electrical conductivity, 14% of the ion-exchange capacity, and 12% of the contact angle), and demonstrated the presence of possible enzyme combinations for the enhancement of the global cleaning efficiency or reducing cleaning durations. These results prove, for the first time, the applicability of enzymatic cleanings to membranes, the inertia of their action towards polymer matrix to the extent that the choice of enzymes is specific to the fouling substrates.
Collapse
|
38
|
Pressure-Induced Deformation of Pillar-Type Profiled Membranes and Its Effects on Flow and Mass Transfer. COMPUTATION 2019. [DOI: 10.3390/computation7020032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In electro-membrane processes, a pressure difference may arise between solutions flowing in alternate channels. This transmembrane pressure (TMP) causes a deformation of the membranes and of the fluid compartments. This, in turn, affects pressure losses and mass transfer rates with respect to undeformed conditions and may result in uneven flow rate and mass flux distributions. These phenomena were analyzed here for round pillar-type profiled membranes by integrated mechanical and fluid dynamics simulations. The analysis involved three steps: (1) A conservatively large value of TMP was imposed, and mechanical simulations were performed to identify the geometry with the minimum pillar density still able to withstand this TMP without collapsing (i.e., without exhibiting contacts between opposite membranes); (2) the geometry thus identified was subject to expansion and compression conditions in a TMP interval including the values expected in practical applications, and for each TMP, the corresponding deformed configuration was predicted; and (3) for each computed deformed configuration, flow and mass transfer were predicted by computational fluid dynamics. Membrane deformation was found to have important effects; friction and mass transfer coefficients generally increased in compressed channels and decreased in expanded channels, while a more complex behavior was obtained for mass transfer coefficients.
Collapse
|
39
|
Nevakshenova EE, Sarapulova VV, Nikonenko VV, Pismenskaya ND. Application of Sodium Chloride Solutions to Regeneration of Anion-Exchange Membranes Used for Improving Grape Juices and Wines. MEMBRANES AND MEMBRANE TECHNOLOGIES 2019. [DOI: 10.1134/s2517751619010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Membrane Deformation and Its Effects on Flow and Mass Transfer in the Electromembrane Processes. Int J Mol Sci 2019; 20:ijms20081840. [PMID: 31013943 PMCID: PMC6515201 DOI: 10.3390/ijms20081840] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 11/26/2022] Open
Abstract
In the membrane processes, a trans-membrane pressure (TMP) may arise due to design features or operating conditions. In most applications, stacks for electrodialysis (ED) or reverse electrodialysis (RED) operate at low TMP (<0.1 bar); however, large stacks with non-parallel flow patterns and/or asymmetric configurations can exhibit higher TMP values, causing membrane deformations and changes in fluid dynamics and transport phenomena. In this work, integrated mechanical and fluid dynamics simulations were performed to investigate the TMP effects on deformation, flow and mass transfer for a profiled membrane-fluid channel system with geometrical and mechanical features and fluid velocities representative of ED/RED conditions. First, a conservatively high value of TMP was assumed, and mechanical simulations were conducted to identify the geometry with the largest pitch to height ratio still able to bear this load without exhibiting a contact between opposite membranes. The selected geometry was then investigated under expansion and compression conditions in a TMP range encompassing most practical applications. Finally, friction and mass transfer coefficients in the deformed channel were predicted by computational fluid dynamics. Significant effects of membrane deformation were observed: friction and mass transfer coefficients increased in the compressed channel, while they decreased (though to a lesser extent) in the expanded channel.
Collapse
|