1
|
Tomasi IT, Ferreira RM, Boaventura RAR, Botelho CMS. Natural coagulants from chestnut shells: A sustainable approach for textile wastewater treatment. CHEMOSPHERE 2025; 376:144286. [PMID: 40056815 DOI: 10.1016/j.chemosphere.2025.144286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
The textile industry contributes to 2-10% of global greenhouse gas emissions, water extraction, and biodiversity loss, consuming 93 billion cubic meters of water annually with low reuse rates. Coagulation/flocculation is commonly used for industrial wastewater treatment, typically using conventional coagulants. Recently, interest in natural alternatives, particularly tannin-based coagulants, has grown. Given Portugal's role as a major chestnut producer and textile exporter, this study developed chestnut shell-based coagulants for textile wastewater treatment. Ethanolamine (ETA) and diethanolamine (DEA) were tested in the Mannich reaction, but only ETA produced a coagulant with a positive zeta potential and higher charge density. Five coagulants (CE_1-CE_5) were synthesized using different ETA/tannin and formaldehyde (FA)/tannin ratios. Lower ETA concentrations (7.5 mol L-1) produced the coagulant with the highest charge density and zeta potential. Further testing of FA/tannin ratios (3.5, 6, and 7.5) showed that lower FA levels reduced color removal efficiency and increased toxicity. Comparing synthetic and real textile effluent performance, natural coagulants showed superior color removal, while FeCl3 was more effective for organic matter and nitrogen removal. All coagulants removed phosphorus, with CE_2 achieving nearly 70% removal. Toxicity tests revealed that only CE_5 inhibited V. fischeri bacteria by over 70%. Formaldehyde leaching into treated water was minimal (0.17-0.3 mg L-1), below WHO limits (2.6 mg L-1), but concentrations in sludge were higher, especially in CE_3 and Tanfloc. These findings highlight chestnut shells as a promising source for producing natural, effective coagulants.
Collapse
Affiliation(s)
- Isabella T Tomasi
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Ricardo M Ferreira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Rui A R Boaventura
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Cidália M S Botelho
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
2
|
Tomasi IT, Santos I, Gozubuyuk E, Santos O, Boaventura RAR, Botelho CMS. A sustainable solution for aquaculture wastewater treatment: Evaluation of tannin-based and conventional coagulants. CHEMOSPHERE 2025; 377:144320. [PMID: 40101675 DOI: 10.1016/j.chemosphere.2025.144320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/16/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
The global population faces increasing challenges in securing fresh water and food production. Aquaculture, a key source for obtaining protein, contributes significantly to environmental pollution, releasing suspended solids, organic matter, nitrogen, and phosphorus into water bodies. Some wastewater treatment methods can be expensive due to high equipment, energy, reagents, and maintenance costs, prompting the search for more sustainable alternatives. This study evaluates the performance of tannin-based coagulants from Castanea sativa shells (CS) for treating the recirculating water in an aquaculture plant. Two tannin-based coagulants, C1 and C2, were produced using ethanolamine (ETA) and NH4Cl, respectively. The efficiency in removing color, turbidity, organic matter, nitrogen, and phosphorus was compared to a commercial tannin-based coagulant (Tanfloc SG) and chemical ones (FeCl3 and Al2(SO4)3). Coagulant C2, at 10 mg L-1, removed 90 % of turbidity and 32 % of phosphorus, outperforming the Al-based coagulants (20 mg L-1). Moreover, CS-based coagulants reduced natural organic matter (NOM), expressed as UV absorbance at 254 nm, and dissolved organic carbon (DOC), though none significantly reduced the nitrogen levels. Toxicity tests indicated low bacterial inhibition, with C1 and C2 showing inhibition rates of 8-10 %. The sludge produced was rich in calcium (97-1500 mg g-1), magnesium (408-638 mg g-1), and potassium (347-894 mg g-1), making it suitable as a soil conditioner, though further research is necessary. Tannin-based coagulants, particularly from chestnut shells, offer a promising, sustainable solution for the post-treatment of the effluent from an aquaponics system on a fish farm while reducing organic sludge production.
Collapse
Affiliation(s)
- Isabella T Tomasi
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Inês Santos
- Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Eren Gozubuyuk
- Chemical Engineering Department, Faculty of Engineering, Ege University, Erzene neighborhood, 172, Bornova, 35040, Izmır, Turkey
| | - Ounísia Santos
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; School of Technology and Management, Polytechnic Institute of Leiria, Campus 2, Morro do Lena-Alto do Vieiro, 2411-901, Leiria, Portugal
| | - Rui A R Boaventura
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Cidália M S Botelho
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
3
|
Li H, Liu H, Qi B, Zhai L, Ding J, Qiu D. Co-application of polyethylene oxide (PEO), biochar, and seaweed fertilizer improves desert soil properties. Sci Rep 2025; 15:1658. [PMID: 39794458 PMCID: PMC11724060 DOI: 10.1038/s41598-025-85915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
Improving water retention, erosion resistance and nutrients in desert areas is essential for ecological sustainability. This study evaluated the effects of biochar, polyethylene oxide (PEO), and seaweed fertilizer on the properties of desert sandy soil, focusing on water retention, erosion resistance, and soil nutrients. The sandy soil used in the study was taken from the Tengger Desert in Gansu, China, and an orthogonal experimental design was used to select three different proportions of biochar, PEO, and seaweed fertilizer. Compared with the control, applying of these three substances decreased bulk density by 5.8-9.6%, increased porosity by 8.3-14%, and increased water-holding capacity by 2.2-6.7%. The erosion rate decreased by more than 99%, and water-stable aggregates increased by 9.7-37.4%. Soil nutrients showed varying degrees of increase, and seed germination increased by 26.7%. The results of the principal component analysis showed that B6P0.6S2 had the best overall improvement effect. Therefore, a ratio of 6% biochar, 0.6% PEO, and 2% seaweed fertilizer is recommended to improve the properties of sandy desert soils. Overall, biochar, PEO, and seaweed fertilizer can improve the physical properties of desert sandy soil, enhance soil nutrients, and create a stable and suitable environment for plant growth.
Collapse
Affiliation(s)
- Haoying Li
- School of Prospecting and Surveying, Changchun Institute of Technology, No. 3066 Tongzhi Street, Changchun, 130021, Jilin, China
| | - Huanan Liu
- School of Prospecting and Surveying, Changchun Institute of Technology, No. 3066 Tongzhi Street, Changchun, 130021, Jilin, China.
| | - Bo Qi
- School of Prospecting and Surveying, Changchun Institute of Technology, No. 3066 Tongzhi Street, Changchun, 130021, Jilin, China
| | - Lianghao Zhai
- School of Prospecting and Surveying, Changchun Institute of Technology, No. 3066 Tongzhi Street, Changchun, 130021, Jilin, China
| | - Jiashun Ding
- School of Prospecting and Surveying, Changchun Institute of Technology, No. 3066 Tongzhi Street, Changchun, 130021, Jilin, China
| | - Dan Qiu
- School of Emergency and Management, Changchun Institute of Technology, No. 3066 Tongzhi Street, Changchun, 130021, Jilin, China
| |
Collapse
|
4
|
Garimella A, Ghosh SB, Bandyopadhyay-Ghosh S. Biomaterials for bone tissue engineering: achievements to date and future directions. Biomed Mater 2024; 20:012001. [PMID: 39577395 DOI: 10.1088/1748-605x/ad967c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Advancement in medicine and technology has resulted into prevention of countless deaths and increased life span. However, it is important to note that, the modern lifestyle has altered the food habits, witnessed increased life-style stresses and road accidents leading to several health complications and one of the primary victims is the bone health. More often than ever, healthcare professionals encounter cases of massive bone fracture, bone loss and generation of critical sized bone defects. Surgical interventions, through the use of bone grafting techniques are necessary in such cases. Natural bone grafts (allografts, autografts and xenografts) however, have major drawbacks in terms of delayed rehabilitation, lack of appropriate donors, infection and morbidity that shifted the focus of several investigators to the direction of synthetic bone grafts. By employing biomaterials that are based on bone tissue engineering (BTE), synthetic bone grafts provide a more biologically acceptable approach to establishing the phases of bone healing. In BTE, various materials are utilized to support and enhance bone regeneration. Biodegradable polymers like poly-(lactic acid), poly-(glycolic acid), and poly-(ϵ-caprolactone) are commonly used for their customizable mechanical properties and ability to degrade over time, allowing for natural bone growth. PEG is employed in hydrogels to promote cell adhesion and growth. Ceramics, such as hydroxyapatite and beta-tricalcium phosphate (β-TCP) mimic natural bone mineral and support bone cell attachment, withβ-TCP gradually resorbing as new bone forms. Composite materials, including polymer-ceramic and polymer-glasses, combine the benefits of both polymers and ceramics/glasses to offer enhanced mechanical and biological properties. Natural biomaterials like collagen, gelatin, and chitosan provide a natural matrix for cell attachment and tissue formation, with chitosan also offering antimicrobial properties. Hybrid materials such as decellularized bone matrix retain natural bone structure and biological factors, while functionalized scaffolds incorporate growth factors or bioactive molecules to further stimulate bone healing and integration. The current review article provides the critical insights on several biomaterials that could yield to revolutionary improvements in orthopedic medical fields. The introduction section of this article focuses on the statistical information on the requirements of various bone scaffolds globally and its impact on economy. In the later section, anatomy of the human bone, defects and diseases pertaining to human bone, and limitations of natural bone scaffolds and synthetic bone scaffolds were detailed. Biopolymers, bioceramics, and biometals-based biomaterials were discussed in further depth in the sections that followed. The article then concludes with a summary addressing the current trends and the future prospects of potential bone transplants.
Collapse
Affiliation(s)
- Adithya Garimella
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sanchita Bandyopadhyay-Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
5
|
He W, Luo J, Huang J, Tang C, Yang Z. Two-stage injection of polymer and microsand during ballasted flocculation for treating kaolin waters with or without humic acid: Floc evolutional characteristics, performance and mechanisms. WATER RESEARCH 2024; 259:121846. [PMID: 38820733 DOI: 10.1016/j.watres.2024.121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Ballasted flocculation is regarded as a most promising water treatment technology in aspects of retrofit and high-rate applications. To deep understand the incorporation behaviors of ballasting agent into ballasted floc growth, two distinct injection modes (namely a two-stage injection of polyacrylamide (PAM) alone, and a two-stage injection of both PAM and microsand) were developed in this study. Then, ballasted flocculation tests of kaolin and kaolin-HA (humic acid) waters were conducted at varying split ratios for fixed total dosages of both PAM and microsand. The experimental results showed that for either two-stage injection mode, the higher the second percentage of each split ratio, the greater the average size of maturated flocs at the second sub-stage of maturation. Meanwhile, the turbidity and UV254 values of settled water became lower at 30 and 180 s of sedimentation, suggesting that varying split ratios significantly affected the kinetics of ballasted floc growth. Moreover, it was suggested that the selection of either two-stage injection mode or corresponding split ratios played a more pronounced role in the HA removal than the total dosage of PAM. This suggestion was supported by SEM, FTIR and XPS analyses for surface morphological details, functional groups and chemical states of maturated flocs eventually formed in the kaolin-HA water through both two-stage injection modes. Accordingly, newly-established conceptual models of ballasted floc growth were proposed to explore the potential influencing mechanisms of varying split ratios on the ballasted flocculation performance. At each sub-stage of maturation, an appropriate dosage ratio between PAM and microsand was of great importance to effectively incorporate microsand particles into ballasted floc formation, besides the hydrolyzed produces of AS coagulant formed at the coagulation stage of ballasted flocculation. This study is expected to provide valuable insights for making ballasted flocculation more effective, economical and sustainable in water treatment engineering.
Collapse
Affiliation(s)
- Weipeng He
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency (Ministry of Education), College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Jiacheng Luo
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency (Ministry of Education), College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Jinguo Huang
- Changsha Public Engineering Construction Center, Changsha 410023, PR China
| | - Chen Tang
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency (Ministry of Education), College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Zhen Yang
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency (Ministry of Education), College of Civil Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
6
|
Zamani-Babgohari F, Irannejad A, Kalantari Pour M, Khayati GR. Synthesis of carboxymethyl starch co (polyacrylamide/ polyacrylic acid) hydrogel for removing methylene blue dye from aqueous solution. Int J Biol Macromol 2024; 269:132053. [PMID: 38704075 DOI: 10.1016/j.ijbiomac.2024.132053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Natural polysaccharides, notably starch, have garnered attention for their accessibility, cost-effectiveness, and biodegradability. Modifying starch to carboxymethyl starch enhances its solubility, swelling capacity, and adsorption efficiency. This research examines the synthesis of an effective hydrogel adsorbent based on carboxymethyl starch for the elimination of methylene blue from aqueous solutions. The hydrogel was synthesized using polyacrylamide and polyacrylic acid as monomers, ammonium persulfate as the initiator, and N,N'-methylenebisacrylamide as the cross-linker. Through FESEM, swelling morphology was evaluated in both distilled water and methylene blue dye. The adsorption data elucidated that the adsorption capacity of the hydrogel significantly depends on the dosage of the adsorbent, pH, and concentration of the MB dye. At a pH of 7 and a dye concentration of 250 mg/L, the hydrogel exhibited an impressive 95 % removal rate for methylene blue. The results indicate that the adsorption process follows pseudo-second-order kinetics and conforms well to the Langmuir adsorption isotherm, indicating a maximum adsorption capacity of 1700 mg/g. According to the pseudo-second-order kinetic model and FTIR analysis, methylene blue chemisorbs to the adsorbent material. Hydrogel absorbents regulate adsorption through both intra-particle diffusion and liquid film diffusion. These results highlight the potential of the new hydrogel absorber for water purification.
Collapse
Affiliation(s)
- Fatemeh Zamani-Babgohari
- Department of Materials Engineering and Metallurgy, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ahmad Irannejad
- Department of Materials Engineering and Metallurgy, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Maryam Kalantari Pour
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Gholam Reza Khayati
- Department of Materials Engineering and Metallurgy, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
7
|
Blancho F, Lapointe M, Quevedo AC, Kannan K, Tufenkji N. Demonstrating scale-up of a novel water treatment process using super-bridging agents. WATER RESEARCH 2024; 254:121301. [PMID: 38417265 DOI: 10.1016/j.watres.2024.121301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Fiber-based materials have emerged as a promising option to increase the efficiency of water treatment plants while reducing their environmental impacts, notably by reducing the use of unsustainable chemicals and the size of the settling tank. Cellulose fiber-based super-bridging agents are sustainable, reusable, and versatile materials that considerably improve floc separation in conventional settling tanks or via alternative screening separation methods. In this study, the effectiveness of fiber-based materials for wastewater treatment was evaluated at lab-scale (0.25 L) and at pilot-scale (20 L) for two separation methods, namely settling and screening. For the fiber-based method, the performance of floc separation during settling was slightly affected by an 80x upscaling factor. A small decrease in turbidity removal from 93 and 86 % was observed for the jar and pilot tests, respectively. By contrast, the turbidity removal of the conventional treatment, i.e., no fibers with a settling separation, was largely affected by the upscaling with turbidity removals of 84 and 49 % for jar and pilot tests, respectively. Therefore, results are suggesting that fiber-based super-bridging agents could be implemented in full-scale water treatment plants. Moreover, the tested fibers increase the robustness of treatment by providing better floc removal than conventional treatment under several challenging conditions such as low settling time and screening with coarse screen mesh size. Furthermore, at both lab-scale and pilot-scale, the use of fiber-based materials reduced the demand for coagulant and flocculant, potentially lowering the operational costs of water treatment plants and reducing the accumulation of metal-based coagulants and synthetic polymers in sludge. Acute toxicity tests using the model organism Daphnia magna show that the cellulose fibers introduce insignificant toxicity at the optimized fiber concentration. Although dedicated mechanistic studies are required at various scales to understand in detail the influence of fibers on water treatment (coagulation/flocculation time, floc formation, floc size distribution velocity gradient, etc.), the efficacy and scalability of the fiber-based approach, along with its minimal environmental impact, position it as a viable and sustainable option for existing and future wastewater treatment plants.
Collapse
Affiliation(s)
- Florent Blancho
- Department of Chemical Engineering, McGill University, Quebec H3A 0C5, Canada
| | - Mathieu Lapointe
- Department of Construction Engineering, École de technologie supérieure - University of Québec, Québec H3C 1K3, Canada.
| | - Ana C Quevedo
- Department of Chemical Engineering, McGill University, Quebec H3A 0C5, Canada
| | - Krishnaveni Kannan
- Department of Chemical Engineering, McGill University, Quebec H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Quebec H3A 0C5, Canada.
| |
Collapse
|
8
|
Rafique A, Bulbul YE, Raza ZA, Oksuz AU. Development of aminolyzed polylactic acid-based porous films for pH-responsive sustained drug delivery devices. Int J Biol Macromol 2024; 266:130947. [PMID: 38521313 DOI: 10.1016/j.ijbiomac.2024.130947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Biomaterial-based drug-carrying systems have scored enormous focus in the biomedical sector. Poly(lactic acid) (PLA) is a versatile material in this context. A porous and hydrophilic PLA surface can do this job better. We aimed to synthesize pH-responsive PLA-based porous films for uptaking and releasing amikacin sulfate in the aqueous media. The native PLA lacks functional/polar sites for the said purpose. So, we tended to aminolyze it for tailored physicochemical and surface properties. The amino (-NH2) group density on the treated films was examined using the ninhydrin assay. Electron microscopic analyses indicated the retention of porous morphology after aminolysis. Surface wettability and FTIR results expressed that the resultant films became hydrophilic after aminolysis. The thermal analysis expressed reasonable thermal stability of the aminolyzed films. The prepared films expressed pH-responsive behaviour for loading and releasing amikacin sulfate drug at pH 5.5 and 7.4, respectively. The drug release data best-fitted the first-order kinetic model based on Akaike information and model selection criteria. The prepared PLA-based aminolyzed films qualified as potential candidates for pH-responsive drug delivery applications. This study could be the first report on pH-responsive amikacin sulfate uptake and release on the swellable aminolyzed PLA-based porous films for effective drug delivery application.
Collapse
Affiliation(s)
- Ammara Rafique
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan; Department of Chemistry, Suleyman Demirel University, Faculty of Engineering and Natural Sciences, 32220 Isparta, Turkey
| | - Y Emre Bulbul
- Department of Chemistry, Suleyman Demirel University, Faculty of Engineering and Natural Sciences, 32220 Isparta, Turkey
| | - Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan.
| | - Aysegul Uygun Oksuz
- Department of Chemistry, Suleyman Demirel University, Faculty of Engineering and Natural Sciences, 32220 Isparta, Turkey.
| |
Collapse
|
9
|
Gao Z, Ju B, Tang B, Ma W, Niu W, Zhang S. Residue-Free and Recyclable Starch-Based Flocculants for Dye Wastewater Flocculation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38297996 DOI: 10.1021/acs.langmuir.3c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Flocculants are crucial agents in wastewater treatment because they can remove oppositely charged impurities effectively and swiftly. However, flocculation also inevitably causes secondary contamination due to the residual properties, nonreusability, and nondegradability of traditional flocculant molecules. Herein, an ecofriendly starch-based flocculant, i.e., 2,4-bis(dimethylamino)-[1,3,5]-triazine-6-starch, was synthesized via a preactivation-etherification strategy. The large molecular weight property of the flocculant produced by this method enhances the intermolecular hydrophobic association, achieving complete phase separation of all flocculant molecules from water and residue-free flocculation for the first time. Importantly, a large molecular weight tertiary amine starch-based flocculant (LMTS) exhibits a remarkable flocculation capacity of over 1800 mg·g-1 for dye wastewater, which is significantly higher than that of traditional polyacrylamide and polyaluminum chloride flocculants. Furthermore, the LMTS flocculant could be recycled by pH adjustment, and its structural stability ensured sustained reusability. This high-performance residue-free biomass-based flocculant offers a green advance for wastewater treatment.
Collapse
Affiliation(s)
- Zhaoyong Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
10
|
Wang L, Zhang X, Zhang X, Hu X, Yang J, Zhang H. Mechanism analysis of a novel natural cationic modified dextran flocculant and its application in the treatment of blue algal blooms. Int J Biol Macromol 2024; 254:128002. [PMID: 37949280 DOI: 10.1016/j.ijbiomac.2023.128002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Blue algae, a type of harmful microalgae, are responsible for causing harmful algal blooms that result in severe environmental issues. To address this problem, a biopolysaccharide-based flocculant was developed for treating blue algae blooms. This flocculant was created by modifying high molecular weight dextran using the natural cationic monomer betaine (Dex-Bet), making it environmentally friendly. Various techniques were used to characterize the prepared Dex-Bet flocculant, including infrared spectroscopy (FTIR), nuclear magnetic resonance hydrogen spectroscopy (1H NMR), X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The effectiveness of the Dex-Bet flocculant was evaluated using kaolin-simulated wastewater. The results showed that the treated supernatant had a transmittance of up to 98.25 %. Zeta potential analysis revealed that the main mechanisms of flocculation were charge neutralization, charge patching, and adsorption bridging. The application of Dex-Bet in treating blue-green algae resulted in a maximum removal rate of 98.2 %. This study provides a potential flocculant for blue algae bloom treatment.
Collapse
Affiliation(s)
- Lei Wang
- School of Food and biological engineering, HeFei University of Technology, Hefei 230009, PR China
| | - Xinyu Zhang
- School of Food and biological engineering, HeFei University of Technology, Hefei 230009, PR China
| | - Xin Zhang
- School of Food and biological engineering, HeFei University of Technology, Hefei 230009, PR China
| | - Xueqin Hu
- School of Food and biological engineering, HeFei University of Technology, Hefei 230009, PR China
| | - Jingwen Yang
- School of Food and biological engineering, HeFei University of Technology, Hefei 230009, PR China.
| | - Hongbin Zhang
- School of Food and biological engineering, HeFei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
11
|
Goli T, Jathan Y, Yang Y, Pagilla KR, Marchand EA. Pilot-scale demonstration of dissolved organic nitrogen removal from an advanced water reclamation facility using enhanced coagulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162864. [PMID: 36931510 DOI: 10.1016/j.scitotenv.2023.162864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
Most wastewater treatment facilities that satisfy stricter discharge restrictions for nutrients, remove dissolved inorganic nitrogen (DIN) species efficiently, leaving dissolved organic nitrogen (DON) to be present at a higher proportion (up to 85 %) of total nitrogen (TN) in the effluent. Discharged DON promotes algae growth in receiving water bodies and is a growing concern in effluent potable reuse applications considering its potential to form hazardous nitrogenous disinfection byproducts (N-DBPs). Enhanced coagulation is an established process in the advanced water treatment train for most potable reuse applications. However, so far, no information has been collected at the pilot scale to address DON removal efficiency and process implications by enhanced coagulation under real conditions. This study performed a comprehensive evaluation of DON removal from the effluent of the Truckee Meadows Water Reclamation Facility (TMWRF) by enhanced coagulation over the course of 11 months at the pilot scale. Three different coagulants (aluminum sulfate (alum), poly‑aluminum chloride (PACl), ferric chloride (FC)) and a cationic polymer coagulant aid (Clarifloc) were used. Optimum doses for each coagulant and polymer and ideal pH were determined by jar tests and applied at the pilot. Alum (24 mg/L) resulted in highly variable DON removal (6 % - 40 %, 21 % on average), which was enhanced by the addition of polymer, leading to 32 % DON removal on average. PACl (40 mg/L) and FC (100 mg/L) resulted in more consistent DON removal (on average 45 % and 57 %, respectively); however, polymer addition exerted minimal enhancement for these coagulants. Overall, enhanced coagulation effectively reduced DON in the tertiary effluent at the pilot scale. The treatment showed auxiliary benefits, including dissolved organic carbon (DOC) and orthophosphate removal.
Collapse
Affiliation(s)
- Tayebeh Goli
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV 89557, USA
| | - Yasha Jathan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV 89557, USA
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV 89557, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV 89557, USA
| | - Eric A Marchand
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV 89557, USA.
| |
Collapse
|
12
|
Jiang M, Chen R, Cao B, Wang F. The performance of temperature and acid-modified sludge in removing lead and cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27741-4. [PMID: 37233926 DOI: 10.1007/s11356-023-27741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
In the present study, the aluminum-containing wastewater treatment residue was modified at 400 °C and 2.5 mol/L HCl and used in the removal of Pb and Cd from an aqueous solution for the first time. The modified sludge was characterized by SEM, XRD, FTIR, and BET. Under the optimized conditions, including pH 6, adsorbent dose 3 g/L, Pb/Cd reaction time 120 and 180 min, and Pb/Cd concentration 400 and 100 mg/L, Pb/Cd adsorption capacity was obtained as 90.72 and 21.39 mg/g, respectively. The adsorption process of sludge before and after modification is more consistent with the quasi-second-order kinetics, and the correlation coefficients R2 are all above 0.99. The fitting of data with the Langmuir isotherm and pseudo-second-order kinetics showed that the adsorption process is monolayer and chemical in nature. The adsorption reaction included ion exchange, electrostatic interaction, surface complexation, cation-π interaction, co-precipitation, and physical adsorption. This work implies that the modified sludge has greater potential in the removal of Pb and Cd from wastewater relative to raw sludge.
Collapse
Affiliation(s)
- Meiyang Jiang
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, 210096, China
| | - Ruixin Chen
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, 210096, China
| | - Benyi Cao
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Fei Wang
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
13
|
Mohamed Hatta NS, Lau SW, Chua HB, Takeo M, Sen TK, Mubarak NM, Khalid M, Zairin DA. Parametric and kinetic studies of activated sludge dewatering by cationic chitosan-like bioflocculant BF01314 produced from Citrobacter youngae. ENVIRONMENTAL RESEARCH 2023; 224:115527. [PMID: 36822539 DOI: 10.1016/j.envres.2023.115527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Bacterial strains belonging to Citrobacter spp. were reported to produce polysaccharides consisting of N-acetylglucosamine and glucosamine like chitosan, with high flocculation activity. In this work, the flocculation dewatering performance of activated sludge conditioned by a novel cationic chitosan-like bioflocculant (BF) named BF01314, produced from Citrobacter youngae GTC 01314, was evaluated under the influences of flocculant dosage, pH, and temperature. At BF dosage as low as 0.5 kg/t DS, the sludge dewaterability was significantly enhanced in comparison to the raw (untreated) sludge, featuring well-flocculated characteristic (reduction in CST from 22.0 s to 9.4 s) and good sludge filterability with reduced resistance (reduction in SRF by one order from 7.42 × 1011 to 9.59 × 1010 m/kg) and increased compactness of sludge (increase in CSC from 15.2 to 23.2%). Besides, the BF demonstrated comparable high sludge dewatering performance within the pH range between 2 and 8, and temperature range between 25 °C and 80 °C. Comparison between the BF, the pristine chitosan and the commercial cationic copolymer MF 7861 demonstrated equivalent performance with enhanced dewaterability at the dosage between 2.0 and 3.0 kg/t DS. Besides, the BF demonstrated strong flocculation activity (>99%) when added to the sludge suspension using moderate to high flocculation speeds (100-200 rpm) with at least 3-min mixing time. The BF's reaction in sludge flocculation was best fitted with a pseudo first-order kinetic model. Electrostatic charge patching and polymer bridging mechanisms are believed to be the dominant mechanistic phenomena during the BF's sludge conditioning process (coagulation-flocculation).
Collapse
Affiliation(s)
- Nur Syahirah Mohamed Hatta
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Shiew Wei Lau
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Han Bing Chua
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Masahiro Takeo
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Tushar Kanti Sen
- Chemical Engineering Department, King Faisal University, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam.
| | - Mohammad Khalid
- Graphene and Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Uttaranchal University, Dehradun, 248007 Uttarakhand, India
| | - Danial Aminin Zairin
- Graphene and Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
14
|
Liang Y, Deng L, Feng Z, Ouyang Q, Wu X, Quan W, Zhu Y, Ye H, Wu K, Luo H. A Chitosan-Based Flocculation Method for Efficient Recovery of High-Purity B-Phycoerythrin from a Low Concentration of Phycobilin in Wastewater. Molecules 2023; 28:molecules28083600. [PMID: 37110834 PMCID: PMC10143359 DOI: 10.3390/molecules28083600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Increasing the yield and purity of B-phycoerythrin (B-PE) can improve the economic state of microalgae industrial processing. One method of cost reduction involves the recovery of remaining B-PE from wastewater. In this study, we developed a chitosan (CS)-based flocculation technique for the efficient recovery of B-PE from a low concentration of phycobilin in wastewater. We investigated the effects of the molecular weight of chitosan, B-PE/CS mass ratio, and solution pH on the flocculation efficiency of CS and the effects of phosphate buffer concentration and pH on the recovery rate of B-PE. The maximum flocculation efficiency of CS, recovery rate, and purity index of B-PE were 97.19% ± 0.59%, 72.07% ± 1.37%, and 3.20 ± 0.025 (drug grade), respectively. The structural stability and activity of B-PE were maintained during the recovery process. Economic evaluation revealed that our CS-based flocculation method is more economical than the ammonium sulfate precipitation method is. Furthermore, the bridging effect and electrostatic interaction play important roles in B-PE/CS complex flocculation process. Hence, our study provides an efficient and economical method to recover high-purity B-PE from a low concentration of phycobilin in wastewater, which promoted the application of B-PE as a natural pigment protein in food and chemical applications.
Collapse
Affiliation(s)
- Yingye Liang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Luming Deng
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhenhui Feng
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Qianqian Ouyang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Zhanjiang Engineering Research Center for Algae High-Value Utilization, Zhanjiang 524023, China
| | - Xia Wu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Zhanjiang Engineering Research Center for Algae High-Value Utilization, Zhanjiang 524023, China
| | - Weiyan Quan
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Zhanjiang Engineering Research Center for Algae High-Value Utilization, Zhanjiang 524023, China
| | - Yuzhen Zhu
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Zhanjiang Engineering Research Center for Algae High-Value Utilization, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Hua Ye
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
| | - Kefeng Wu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Hui Luo
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Zhanjiang Engineering Research Center for Algae High-Value Utilization, Zhanjiang 524023, China
| |
Collapse
|
15
|
Cui J, Niu X, Zhang D, Ma J, Zhu X, Zheng X, Lin Z, Fu M. The novel chitosan-amphoteric starch dual flocculants for enhanced removal of Microcystis aeruginosa and algal organic matter. Carbohydr Polym 2023; 304:120474. [PMID: 36641191 DOI: 10.1016/j.carbpol.2022.120474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
A novel flocculation strategy for simultaneously removing Microcystis aeruginosa and algal organic matter (AOM) was proposed using chitosan-amphoteric starch (C-A) dual flocculants in an efficient, cost-effective and ecologically friendly way, providing new insights for harmful algal blooms (HABs) control. A dual-functional starch-based flocculant, amphoteric starch (AS) with high anion degree of substitution (DSA) and cation degree of substitution (DSC), was prepared using a cationic moiety of 3-chloro-2-hydroxypropyltrimethylammonium chloride (CTA) coupled with an anion moiety of chloroacetic acid onto the backbone of starch simultaneously. In combination of the results of FTIR, XPS, 1H NMR, 13C NMR, GPC, EA, TGA and SEM, it was evidenced that the successfully synthesized AS with excellent structural characteristics contributed to the enhanced flocculation of M. aeruginosa. Furthermore, the novel C-A dual flocculants could achieve not only the removal of >99.3 % of M. aeruginosa, but also the efficacious flocculation of algal organic matter (AOM) at optimal concentration of (0.8:24) mg/L, within a wide pH range of 3-11. The analysis of zeta potential and cellular morphology revealed that the dual effects of both enhanced charge neutralization and notable netting-bridging played a vital role in efficient M. aeruginosa removal.
Collapse
Affiliation(s)
- Jingshu Cui
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Jinling Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Xiaoxian Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
16
|
The comparison of adsorption kinetics of polystyrene particles with two polyelectrolytes near the isoelectric points. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
The inhibitory effects of synthetic polyacrylic acid and humic substances on the initial stage of colloidal flocculation induced by polycationic flocculant with low charge density. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Chipakwe V, Karlkvist T, Rosenkranz J, Chehreh Chelgani S. Exploring the effect of a polyacrylic acid-based grinding aid on magnetite-quartz flotation separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
The Synergistic Effects of Al3+ and Chitosan on the Solid–Liquid Separation of Coal Wastewater and Their Mechanism of Action. Polymers (Basel) 2022; 14:polym14193970. [PMID: 36235917 PMCID: PMC9572499 DOI: 10.3390/polym14193970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
It is important to identify an environmentally friendly and efficient flocculant that can replace polyacrylamide for the solid–liquid separation of coal wastewater. In this study, to explore whether chitosan can be used as an environmentally friendly and efficient flocculant for the solid–liquid separation of coal wastewater, AlCl3–chitosan was used to conduct flocculation–sedimentation and dewatering tests under different chitosan dosages and shear-strength conditions for the prepared coal wastewater. Focused beam reflectance was measured to dynamically monitor the number of refractory fine particles, and the settled flocs were photographed and analyzed with microscopy to explore the effect of AlCl3–chitosan on the flocculation settlement effect and floc characteristics. The synergistic mechanisms of AlCl3 and chitosan were investigated using quartz crystal dissipative microbalance and zeta potential measurement. The results showed that the addition of chitosan can significantly improve the flocculation–sedimentation and dewatering effects of coal wastewater. A reasonable dosage under a certain shear strength is conducive to the reduction of fine slime particles, which results in a compact floc structure, increases the floc size, and improves the settling effect. The synergistic effect of AlCl3–chitosan improved the electric neutralization and adsorption bridging abilities of the chitosan, and the mixed solution of AlCl3 and chitosan had stronger adsorption on the carbon surface. This study provides a new approach to the selection of flocculants for coal wastewater treatment.
Collapse
|
20
|
Bucatariu F, Zaharia MM, Petrila LM, Simon F, Mihai M. Sand/polyethyleneimine composite microparticles: Eco-friendly, high selective and efficient heavy metal ion catchers. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Das N, Shende AP, Mandal SK, Ojha N. Biologia Futura: treatment of wastewater and water using tannin-based coagulants. Biol Futur 2022; 73:279-289. [DOI: 10.1007/s42977-022-00128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
|
22
|
Feng L, Adachi Y, Yen Doan TH. Observation of Temporal Change of the Hydrodynamic Layer Thickness of Adsorbed Polyelectrolytes on Spherical Particles by Single-Particle-Tracking method. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Wang L, Lu QM, Zeng T, Yang JW, Hu XQ, Zhang HB. Synthesis and characterization of a cationic dextran-based flocculant and its application in bacterial sedimentation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Saltan F, Saltan GM. Synthesis of a new adsorbent poly(
allylisothiocyanate
‐
co
‐
hydroxyethylmethacrylate‐co‐vinylimidazole
) via photopolymerization: Characterization and investigation of heavy metal adsorption capacity. J Appl Polym Sci 2022. [DOI: 10.1002/app.52639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fehmi Saltan
- Department of Chemistry, Faculty of Science Cankiri Karetkin University Çankırı Turkey
| | - Gözde Murat Saltan
- Department of Chemistry, Faculty of Science and Literature Manisa Celal Bayar University Manisa Turkey
| |
Collapse
|
25
|
Chipakwe V, Karlkvist T, Rosenkranz J, Chelgani SC. Beneficial effects of a polysaccharide-based grinding aid on magnetite flotation: a green approach. Sci Rep 2022; 12:6502. [PMID: 35444247 PMCID: PMC9021246 DOI: 10.1038/s41598-022-10304-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
Grinding is the most energy-intensive step in mineral beneficiation processes. The use of grinding aids (GAs) could be an innovative solution to reduce the high energy consumption associated with size reduction. Surprisingly, little is known about the effects of GAs on downstream mineral beneficiation processes, such as flotation separation. The use of ecofriendly GAs such as polysaccharide-based materials would help multiply the reduction of environmental issues in mineral processing plants. As a practical approach, this work explored the effects of a novel polysaccharide-based grinding aid (PGA) on magnetite's grinding and its reverse flotation. Batch grinding tests indicated that PGA improved grinding performance by reducing energy consumption, narrowing particle size distribution of products, and increasing their surface area compared to grinding without PGA. Flotation tests on pure samples illustrated that PGA has beneficial effects on magnetite depression (with negligible effect on quartz floatability) through reverse flotation separation. Flotation of the artificial mixture ground sample in the presence of PGA confirmed the benefits, giving a maximum Fe recovery and grade of 84.4 and 62.5%, respectively. In the absence of starch (depressant), PGA resulted in a separation efficiency of 56.1% compared to 43.7% without PGA. The PGA adsorption mechanism was mainly via physical interaction based on UV-vis spectra, zeta potential tests, Fourier transform infrared spectroscopy (FT-IR), and stability analyses. In general, the feasibility of using PGA, a natural green polymer, was beneficial for both grinding and reverse flotation separation performance.
Collapse
Affiliation(s)
- Vitalis Chipakwe
- grid.6926.b0000 0001 1014 8699Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Tommy Karlkvist
- grid.6926.b0000 0001 1014 8699Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Jan Rosenkranz
- grid.6926.b0000 0001 1014 8699Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Saeed Chehreh Chelgani
- grid.6926.b0000 0001 1014 8699Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| |
Collapse
|
26
|
Coyne KJ, Wang Y, Johnson G. Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms. Front Microbiol 2022; 13:871177. [PMID: 35464927 PMCID: PMC9022068 DOI: 10.3389/fmicb.2022.871177] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Interactions between bacteria and phytoplankton in aqueous ecosystems are both complex and dynamic, with associations that range from mutualism to parasitism. This review focuses on algicidal interactions, in which bacteria are capable of controlling algal growth through physical association or the production of algicidal compounds. While there is some evidence for bacterial control of algal growth in the field, our understanding of these interactions is largely based on laboratory culture experiments. Here, the range of these algicidal interactions is discussed, including specificity of bacterial control, mechanisms for activity, and insights into the chemical and biochemical analysis of these interactions. The development of algicidal bacteria or compounds derived from bacteria for control of harmful algal blooms is reviewed with a focus on environmentally friendly or sustainable methods of application. Potential avenues for future research and further development and application of bacterial algicides for the control of algal blooms are presented.
Collapse
Affiliation(s)
- Kathryn J. Coyne
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, United States
| | | | | |
Collapse
|
27
|
Lim VH, Vito Brata M, Adachi Y. Effects of Polymer Branching Structure on the Hydrodynamic Adsorbed Layer Thickness Formed on Colloidal Particles. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2022. [DOI: 10.1252/jcej.21we095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Voon Huey Lim
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | | | - Yasuhisa Adachi
- Faculty of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
28
|
Lee KH, Qasim M, Lee KG, Inam MA, Khan IA, Khan R, Wie YM. Use of ballasted flocculation (BF) sludge for the manufacturing of lightweight aggregates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114379. [PMID: 34959062 DOI: 10.1016/j.jenvman.2021.114379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Ballasted flocculation (BF) is an efficient way to remove the turbidity from surface water. The objective of the present study is to optimize the ballast (magnetite), coagulant (poly aluminum chloride) concentration and pH for efficient turbidity removal from surface water. To do this, the sludge produced from an optimized dose of a BF treatment was utilized for the production of lightweight (LW) aggregates by combining it with hard clay and sewage sludge. The LW aggregates were formed by means of rapid sintering in the temperature range of 1000-1200 °C with an exposure time of 10 min. The physical properties of the LW aggregates, in this case the leaching of heavy metals, the bulk density and the microstructure, were investigated. The results indicated that corresponding ballast and coagulant concentrations of 0.75 g/L and 30 mg/L (poly aluminum chloride (PAC)) resulted in the maximum removal efficiency of ≈95%. Using a mixture of BF sludge (30 wt%), dry sewage sludge (20 wt%), and hard clay (50 wt%), aggregates with a density of around 1.0 g/cm3 could be produced. In addition, it was confirmed that the manufactured aggregate was environmentally stable as the elution of heavy metals was suppressed.
Collapse
Affiliation(s)
- Kang Hoon Lee
- Department of Civil &Environmental Engineering, Hanyang University, 222 Seongdong-gu, Seoul, 04763, South Korea.
| | - Muhammad Qasim
- Department of Civil &Environmental Engineering, Hanyang University, 222 Seongdong-gu, Seoul, 04763, South Korea.
| | - Ki Gang Lee
- Department of Materials Engineering, Kyonggi University, Suwon, Gyeonggi-do, 16227, South Korea.
| | - Muhammad Ali Inam
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), H-12 Campus, National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Imtiaz Afzal Khan
- Department of Civil &Environmental Engineering, Hanyang University, 222 Seongdong-gu, Seoul, 04763, South Korea.
| | - Rizwan Khan
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology (QUEST), Nawabshah, 67480, Pakistan.
| | - Young Min Wie
- Department of Materials Engineering, Kyonggi University, Suwon, Gyeonggi-do, 16227, South Korea.
| |
Collapse
|
29
|
Chen Q, Tao Y, Zhang Q, Qi C. The rheological, mechanical and heavy metal leaching properties of cemented paste backfill under the influence of anionic polyacrylamide. CHEMOSPHERE 2022; 286:131630. [PMID: 34315071 DOI: 10.1016/j.chemosphere.2021.131630] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Anionic polyacrylamide (APAM) has widely been employed in backfill mining to accelerate the sedimentation of fine tailings particles and increase the concentration of tailings slurry. However, APAM inevitably remains in thickened tailings, leading to a nonnegligible influence on the rheological, mechanical, and heavy metal leaching properties of tailings-based cemented paste backfill (CPB). In an effort to solve these issues, the influences of APAM on CPB properties were examined in the present study. Experimental tests such as rheology, uniaxial compressive strength (UCS), toxicity leaching, and microscopy were conducted. The results showed that the presence of APAM first significantly increased the yield stress and viscosity of CPB slurry. APAM slightly improved the early UCS of CPB curing for 7 days but hindered the UCS development of samples cured for 28 days. Moreover, the presence of APAM restrained the hydration reaction, reduced the amounts of hydrated products, increased pore size, and loosed the microstructure of the test samples. Finally, the addition of APAM effectively reduced the leaching of Ag and As, while incremented that of Cu and slightly affected the leaching of Ba. In sum, these findings look promising for the safe production and environmental protection of the mining industry.
Collapse
Affiliation(s)
- Qiusong Chen
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China; Sinosteel Maanshan Institute of Mining Research Company Limited, Maanshan, 243000, China
| | - Yunbo Tao
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Qinli Zhang
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
| | - Chongchong Qi
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
30
|
Efficacy of quaternary ammonium groups based polyelectrolytes for the reduction of various pesticide formulations content from synthetic wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Effect of interparticle interactions on the yield stress of thickened flocculated copper mineral tailings slurry. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Doan THY, Lim VH, Adachi Y, Pham TD. Adsorption of Binary Mixture of Highly Positively Charged PTMA5M and Partially Negatively Charged PAA onto PSL Particles Studied by Means of Brownian Motion Particle Tracking and Electrophoresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12204-12212. [PMID: 34609890 DOI: 10.1021/acs.langmuir.1c02160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Effects of ionic strength on the adsorption of highly charged polycationic ((2-dimethylamino)ethyl methacrylate) methyl chloride quaternary salt (PTMA5M) individually as well as in a binary mixture with polyanionic acrylic acid (PAA) onto polystyrene sulfate latex (PSL) particles with negative charges were investigated by means of Brownian movement particle tracking and measurement of electrophoretic mobility. In addition, the adsorption mechanism was confirmed by Fourier transform infrared (FT-IR) and energy-dispersive X-ray (EDX) spectroscopic methods. The hydrodynamic thickness of the adsorbed polyelectrolyte layer (δH) and electrophoretic mobility (EPM) of particles as a function of concentration ratios of the two polyelectrolytes were measured to clarify the effect of negatively charged molecules on the structure of the positively charged adsorbed layer at various ionic strengths. Extremely thick δH was confirmed for the case of excess dosage of polycations. The δH decreased more significantly with the addition of PAA than increasing ionic strength. Interestingly, in the presence of PAA, the adsorbed layer thickness increased more at lower ionic strength than at higher ionic strength. In addition, the initial δH decreases remarkably after a time lapse of 1 h. Contrary to the decrease of the δH, almost all EPM either remained unchanged or increased over time depending on the concentration ratio of the two polyelectrolytes. Constant charge density, desorption of polyanions, and then reconformation of the adsorbed polycationic layer are proposed model components.
Collapse
Affiliation(s)
- Thi Hai Yen Doan
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
| | - Voon Huey Lim
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yasuhisa Adachi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi - 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
| |
Collapse
|
33
|
Analysis of initial stage of colloidal particles flocculation induced by different degree branching polyelectrolytes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Zhang J, Zhao X, Kong Q, Wang X, Lou T. Preparation of chitosan/DADMAC/lignin terpolymer and its application of dye wastewater flocculation. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03863-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Temporal Changes of Adsorbed Layer Thickness and Electrophoresis of Polystyrene Sulfate Latex Particles after Long Incubation of Oppositely Charged Polyelectrolytes with Different Charge Densities. Polymers (Basel) 2021; 13:polym13152394. [PMID: 34371997 PMCID: PMC8348772 DOI: 10.3390/polym13152394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 11/17/2022] Open
Abstract
The different desorption concepts of the two polyelectrolytes PTMA5M and PTMC5M, which have similar molecular weights and differ in the charge density on the polystyrene sulfate latex (PSL) particles by 25 times, and with various charge densities in a long incubation, were systematically investigated based on hydrodynamic adsorbed layer thickness (δH) and electrophoretic mobility (EPM) under two ionic strengths in the present study. Herein, in the case of highly charged polyelectrolyte PTMA5M, desorption continued for 4 h and re-adsorbing proceeded after a longer incubation time higher than 4 h. Meanwhile, in the case of lowly charged polyelectrolyte PTMC5M, an adsorption-desorption equilibrium was suggested to take into account the unchanging of both δH and EPM.
Collapse
|
36
|
Zhang J, Guan G, Lou T, Wang X. Preparation and Flocculation Property of Cationic Chitosan‐DADMAC‐β‐Cyclodextrin Copolymer. STARCH-STARKE 2021. [DOI: 10.1002/star.202100047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jia Zhang
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Guohao Guan
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Tao Lou
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Xuejun Wang
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| |
Collapse
|
37
|
Zhao C, Zhou J, Yan Y, Yang L, Xing G, Li H, Wu P, Wang M, Zheng H. Application of coagulation/flocculation in oily wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142795. [PMID: 33572034 DOI: 10.1016/j.scitotenv.2020.142795] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
Volumes of oily wastewater are inevitably generated by every walk of life. The removal of oil particles from oil-contaminated wastewater which is characterized as huge amounts, intricate composition, and great threats to human health and the ecological environment is a research hotspot in water treatment fields. Due to high treatment costs and undesirable treatment efficiencies, oily wastewater treatment remains a topical and urgent issue. At present, coagulation/flocculation as an indispensable oily wastewater treatment technology receives much attention because it is very well established, economical, practical and relatively efficient. The influencing factors of oil wastewater treatment by coagulation/flocculation have also been summarized in-depth, like dosage, pH, etc. In consideration of its complex composition and treatment difficulty, this paper will also compare the treatment effects of different coagulants/flocculants used alone and combined effects in oily wastewater treatment: inorganic coagulants, organic synthetic polymeric flocculants, natural flocculants and modified polymeric flocculants. Additionally, in this review, the mechanisms of removing oily substance by coagulation/flocculation are emphasized. Given strict emission standards and the refractory nature of oily wastewater, the combination process with coagulation/flocculation, such as electrocoagulation, coagulation-membrane filtration hybrid process, and coagulation/flocculation-flotation can present better application potential and are discussed in this review. To provide a proper choice in practical application, the operating cost of coagulation and several conventional technologies are also compared. Finally, the existing challenges in the treatment of oily wastewater by coagulation are analyzed, and the feasible research direction is proposed.
Collapse
Affiliation(s)
- Chuanliang Zhao
- School of Civil Engineering, Chang'an University, Xi'an 710061, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junyuan Zhou
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Yi Yan
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Liwei Yang
- School of Civil Engineering, Chang'an University, Xi'an 710061, China.
| | - Guohua Xing
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Huanyu Li
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Pei Wu
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Mingyuan Wang
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
38
|
Ding R, Luo L, Han R, Zhang M, Li T, Tang J, Huang S, Hong J. Rapid Production of a Novel Al(III) Dependent Bioflocculant Isolated From Raoultella ornithinolytica 160-1 and Its Application Combined With Inorganic Salts. Front Microbiol 2021; 11:622365. [PMID: 33510736 PMCID: PMC7835285 DOI: 10.3389/fmicb.2020.622365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022] Open
Abstract
An efficient bioflocculant-producing strain, Raoultella ornithinolytica 160-1, was identified by 16S rRNA and mass spectrometry analyses. Rapid production of bioflocculant EPS-160 was obtained with 10.01 g/(L⋅d) after optimized by response surface methodology. With the aid of Al(III), more than 90% flocculation activity of EPS-160 at 8 mg/L dosage was achieved in 5 min. Thus, this novel Al(III) dependent bioflocculant was used in combined with chemical coagulants AlCl3 to remove kaolin suspensions and wastewater treatment. The results indicated that the addition of EPS-160 in aggregation system not only largely improved the flocculation ability than the individual use of chemical flocculant (over 30 percent), but also overcome the decrease of flocculation activity due to the overdose of AlCl3 and maintained the optimum dosage of AlCl3 in a wide range (11-23 mg/L). The zeta potentials and EPS-160 structure indicated that both charge neutralization and bridging were the flocculation mechanism with kaolin. During the wastewater treatment, this composite flocculants consisted of EPS-160 and AlCl3 also had great performance for turbidity elimination. Moreover, with the properties of high flocculation activity, hyperthermal stability, pH tolerance and non-toxicity, EPS-160 shows great potential applications.
Collapse
Affiliation(s)
- Rui Ding
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Laipeng Luo
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Ruixiang Han
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Meiling Zhang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Tingting Li
- Laboratory Department of Anhui Medical University, Hefei, China
| | - Jihui Tang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shenghai Huang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, China
| |
Collapse
|
39
|
Kurniawan SB, Abdullah SRS, Imron MF, Said NSM, Ismail N‘I, Hasan HA, Othman AR, Purwanti IF. Challenges and Opportunities of Biocoagulant/Bioflocculant Application for Drinking Water and Wastewater Treatment and Its Potential for Sludge Recovery. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9312. [PMID: 33322826 PMCID: PMC7764310 DOI: 10.3390/ijerph17249312] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
The utilization of metal-based conventional coagulants/flocculants to remove suspended solids from drinking water and wastewater is currently leading to new concerns. Alarming issues related to the prolonged effects on human health and further pollution to aquatic environments from the generated nonbiodegradable sludge are becoming trending topics. The utilization of biocoagulants/bioflocculants does not produce chemical residue in the effluent and creates nonharmful, biodegradable sludge. The conventional coagulation-flocculation processes in drinking water and wastewater treatment, including the health and environmental issues related to the utilization of metal-based coagulants/flocculants during the processes, are discussed in this paper. As a counterpoint, the development of biocoagulants/bioflocculants for drinking water and wastewater treatment is intensively reviewed. The characterization, origin, potential sources, and application of this green technology are critically reviewed. This review paper also provides a thorough discussion on the challenges and opportunities regarding the further utilization and application of biocoagulants/bioflocculants in water and wastewater treatment, including the importance of the selection of raw materials, the simplification of extraction processes, the application to different water and wastewater characteristics, the scaling up of this technology to a real industrial scale, and also the potential for sludge recovery by utilizing biocoagulants/bioflocculants in water/wastewater treatment.
Collapse
Affiliation(s)
- Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (N.S.M.S.); (N.I.I.); (H.A.H.); (A.R.O.)
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (N.S.M.S.); (N.I.I.); (H.A.H.); (A.R.O.)
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (N.S.M.S.); (N.I.I.); (H.A.H.); (A.R.O.)
| | - Nur ‘Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (N.S.M.S.); (N.I.I.); (H.A.H.); (A.R.O.)
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (N.S.M.S.); (N.I.I.); (H.A.H.); (A.R.O.)
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (N.S.M.S.); (N.I.I.); (H.A.H.); (A.R.O.)
| | - Ipung Fitri Purwanti
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia;
| |
Collapse
|
40
|
Machado G, Dos Santos CAB, Gomes J, Faria D, Santos F, Lourega R. Chemical modification of tannins from Acacia mearnsii to produce formaldehyde free flocculant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140875. [PMID: 32758742 DOI: 10.1016/j.scitotenv.2020.140875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/14/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Flocculants and coagulants market is expected to grow in a Compound Annual Growth Rate (CAGR) of 5.9% between 2017 and 2022. The development of non-pollutant coagulants/flocculants aiming to replace conventional ones, usually toxic, has been extensively studied and one alternative is the possibility of obtaining tannin-based flocculants, compounds present in many plants and easily extracted. However, in order to use tannins as flocculants, their cationization is necessary, which is normally accomplished by Mannich reaction that requires formaldehyde addition, a toxic compound. In order to fill a gap in the literature, regarding coagulants/flocculants synthesis through green procedures, this paper aims to synthesize a flocculant from tannins with no use of formaldehyde, and optimize this synthesis through a Central Composite Rotatable Design (CCRD). The optimization variables were ammonium hydroxide (NH4OH) to tannin ratio, in the range of 1:1 to 5:1, and reaction time, in the range of 1 to 4 h The evaluation of the synthesized flocculant samples was accomplished by jar tests using a simulated effluent containing humic acid and the effect of reactant ratio and reaction time used in the synthesis was assessed. The flocculant synthesis methodology proposed on this study showed excellent results regarding turbidity and color removal, since 100% of turbidity removal and 89.9% of color removal were achieved. This novel tannin-based flocculant synthesis methodology is a promising technology to replace conventional coagulants/flocculants, once it is environmentally friendly.
Collapse
Affiliation(s)
- Grazielle Machado
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Cláudia A B Dos Santos
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Júlia Gomes
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Douglas Faria
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, Building 96J, 90619-900 Porto Alegre, Brazil
| | - Fernando Santos
- State University of Rio Grande do Sul, 1156 Sete de Setembro Street, 90010-191 Porto Alegre, Brazil
| | - Rogerio Lourega
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, 6681 Ipiranga Avenue, Building 96J, 90619-900 Porto Alegre, Brazil.
| |
Collapse
|
41
|
Brito EL, Filho ED, Nogueira DO, Streck L, Fonseca JL. Dynamic light scattering in concentrated polyacrylamide solutions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Doan THY, Adachi Y. Relaxation of adsorbed layer thickness and electrophoresis of polystyrene latex particles after overshooting of polyelectrolytes with different charge density. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Thi Hai Yen Doan, Pham TD, Yamashita Y, Adachi Y. Adsorption of Poly(acrylic acid) onto Negatively Charged Polystyrene Sulfate Latex Particles by Means of Particle Tracking of Brownian Motion, Electrophoretic Mobility and Fourier Transform Infrared Spectroscopy. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20040045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Microwave assisted copolymerization of sodium alginate and dimethyl diallyl ammonium chloride as flocculant for dye removal. Int J Biol Macromol 2020; 156:585-590. [DOI: 10.1016/j.ijbiomac.2020.04.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
|
45
|
Lapointe M, Farner JM, Hernandez LM, Tufenkji N. Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8719-8727. [PMID: 32543204 DOI: 10.1021/acs.est.0c00712] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The efficacy of plastic particle removal by municipal water treatment plants is currently uncertain, and the mechanisms involved in microplastic (MP) coagulation and flocculation have only been superficially investigated. The removal of pristine versus weathered plastic debris and the impact of plastic particle size on removal remain largely unexplored. In this study, coagulation, flocculation, and settling performances were investigated using pristine and weathered MPs (polyethylene (PE) and polystyrene (PS) microspheres, and polyester (PEST) fibers). Weathering processes that changed the surface chemistry and roughness of MPs impacted MP affinity for coagulants and flocculants. A quartz crystal microbalance with dissipation monitoring was used to identify the mechanisms involved during MP coagulation and flocculation. Measured deposition rates confirmed the relatively low affinity between plastic surfaces and aluminum-based coagulants compared to cationic polyacrylamide (PAM). In every case examined, coagulant efficiency increased when the plastic surface was weathered. Removals of 97 and 99% were measured for PEST and weathered PE, respectively. Larger pristine PE MPs were the most resistant to coagulation and flocculation, with 82% removal observed even under enhanced coagulation conditions. By understanding the interaction mechanisms, the removal of weathered MPs was optimized. Finally, this study explored the use of settled water turbidity as a possible indicator of MP removal.
Collapse
Affiliation(s)
- Mathieu Lapointe
- Department of Chemical Engineering, McGill University, Wong Building, 3610 University, Montréal, Québec, H3A 0C5 Canada
| | - Jeffrey M Farner
- Department of Chemical Engineering, McGill University, Wong Building, 3610 University, Montréal, Québec, H3A 0C5 Canada
| | - Laura M Hernandez
- Department of Chemical Engineering, McGill University, Wong Building, 3610 University, Montréal, Québec, H3A 0C5 Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Wong Building, 3610 University, Montréal, Québec, H3A 0C5 Canada
| |
Collapse
|
46
|
Removal of Chromium(VI) by Chitosan Beads Modified with Sodium Dodecyl Sulfate (SDS). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, chitosan beads modified with sodium dodecyl sulfate (SDS) were successfully synthesized and employed for the removal of chromium(VI) (Cr(VI)). The adsorption performance of the adsorbent (SDS-chitosan beads) was examined by batch experiments. The partition coefficient (PC) as well as the adsorption capacity were evaluated to assess the true performance of the adsorbent in this work. The adsorbent (SDS-chitosan beads) showed a maximum Cr(VI) adsorption capacity of 3.23 mg·g−1 and PC of 9.5 mg·g−1·mM−1 for Cr(VI). The prepared adsorbent was characterized by different techniques such as scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared spectroscopy (FT-IR). We used inductively coupled plasma mass spectrometry (ICP-MS) for the determination of Cr(VI) in solution. The experimental data could be well-fitted by pseudo-second-order kinetic and Langmuir isotherm models. The thermodynamic studies indicated that the adsorption process was favorable under the higher temperature condition. The SDS-modified chitosan beads synthesized in this work represent a promising adsorbent for removing Cr(VI).
Collapse
|
47
|
Lugo-Arias J, Lugo-Arias E, Ovallos-Gazabon D, Arango J, de la Puente M, Silva J. Effectiveness of the mixture of nopal and cassava starch as clarifying substances in water purification: A case study in Colombia. Heliyon 2020; 6:e04296. [PMID: 32637691 PMCID: PMC7327736 DOI: 10.1016/j.heliyon.2020.e04296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/16/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022] Open
Abstract
Aluminum sulfate is one of the most used chemical coagulants in the world, but research has shown that high concentrations of aluminum in the body are associated with neuropathological conditions. Because of this, different alternatives have been evaluated such as natural coagulants, which are considered safe for human health and contain fewer contaminants than chemicals due to their biodegradation properties. The main objective of this study was to evaluate the efficiency of mixing nopal mucilage and cassava starch for turbidity removal in water purification. In this paper, test jars and the treatment equipment (TA-scale FQ-005/PE manufactured by Generatoris SA de CV of Mexico) was applied in order to measure turbidity and pH parameters before and after the process of coagulation-flocculation, which was applied to water from the Magdalena River in Colombia. Samples from two sampling periods were assessed. One was evaluated during the rainy season and the other was evaluated without precipitation (drought) with initial turbidities of 316 NTU and 80 NTU, respectively. It was found that aluminum sulfate as a coagulant reference obtained better turbidity removal results (up to 99%) as compared to nopal (up to 60.4%), and nopal-starch combination of cassava (up to 67%), indicating that this mixture increases the effectiveness of natural coagulants used individually. Our results indicate that this should be considered as an alternative in the water purification process.
Collapse
Affiliation(s)
| | | | | | | | | | - Jesús Silva
- Universidad Peruana de Ciencias Aplicadas, Perú
| |
Collapse
|
48
|
Wang Y, Coyne KJ. Immobilization of algicidal bacterium Shewanella sp. IRI-160 and its application to control harmful dinoflagellates. HARMFUL ALGAE 2020; 94:101798. [PMID: 32414500 DOI: 10.1016/j.hal.2020.101798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Shewanella sp. IRI-160 is an algicidal bacterium isolated from Delaware Inland Bays. It secretes water-soluble compounds that inhibit the growth of dinoflagellates. Previous research indicated that this bacterium does not have a negative impact on other algal species. In this research, Shewanella sp. IRI-160 was immobilized to different porous matrices, including agarose, alginate hydrogel, cellulosic sponge, and polyester foam. The retention of Shewanella sp. IRI-160 on or within these matrices was examined at 4 and 25 °C for 12 days. Results indicated that alginate was superior in terms of cell retention, with >99% of Shewanella cells retained in the matrix after 12 days. Shewanella sp. IRI-160 cells were then immobilized within alginate beads to evaluate algicidal effects on harmful dinoflagellates Karlodinium veneficum and Prorocentrum minimum at bacterial concentrations of 106 to 108 cells mL-1. The effects on dinoflagellates were compared to non-harmful cryptophyte Rhodomonas sp., as well as the effects of free-living bacteria on these species. Results indicated that immobilized Shewanella sp. IRI-160 in alginate beads were as effective as the free-living bacteria to control the growth of K. veneficum and P. minimum, while no negative impacts of immobilized Shewanella sp. IRI-160 on the non-harmful control species Rhodomonas sp. were observed. Overall, this study suggests that immobilized Shewanella sp. IRI-160 may be used as an environmentally friendly approach to prevent or mitigate the blooms of harmful dinoflagellates and provides insight and directions for future studies.
Collapse
Affiliation(s)
- Yanfei Wang
- University of Delaware, 1044 College Drive, Lewes, DE 19958, USA
| | - Kathryn J Coyne
- University of Delaware, 1044 College Drive, Lewes, DE 19958, USA.
| |
Collapse
|
49
|
|
50
|
Removal of Ciprofloxacin with Aluminum-Pillared Kaolin Sodium Alginate Beads (CA-Al-KABs): Kinetics, Isotherms, and BBD Model. WATER 2020. [DOI: 10.3390/w12030905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In recent years, the problem of water pollution caused by antibiotics has attracted wide attention. The common use of antibiotics represents a threat to both human health and environmental safety. The modification of kaolin clay is promising due to its high efficiency, easy operation, and low cost. In this study, a novel material, aluminum-pillared kaolin sodium alginate beads (CA-Al-KABs), was synthesized by gelling and solidification processes. The structure and chemical properties were characterized by various analytical methods. The influencing factors (such as adsorbent dosage, contacting time, pH, ion strength, temperature, and initial concentration) and adsorption mechanism of ciprofloxacin (CIP) were studied. Furthermore, adsorption kinetics, adsorption isotherms, and a Box–Behnken design (BBD) model were conducted. Moreover, CA-Al-KABs’ adsorption efficiency towards other antibiotics were also evaluated. The adsorption experiments showed that the acidic environment (pH = 4) was more favorable for the adsorption of ciprofloxacin. The adsorption kinetics of ciprofloxacin by CA-Al-KABs microspheres were confirmed to be more suitable with the pseudo-first-order kinetics model. The Langmuir isotherm model showed that the maximum adsorption capacity of CA-Al-KABs microspheres to ciprofloxacin was 68.36 mg/g at 308.15 K. The adsorption driving force of CIP near CA-Al-KABs may be the electrostatic attraction. Further, CIP could also form complexes with Ca2+ and Al—Al—OH on CA-Al-KABs, and thus CIP was attracted to the adsorbent. Adsorption thermodynamics showed that the adsorption process was exothermic, feasible, and spontaneous. In addition, the adsorption performance on other antibiotics indicated CA-Al-KABs’ broad application in the treatment of antibiotic wastewater.
Collapse
|