1
|
Khan MSJ, Alkhadher SAA, Sidek LM, Kamal T, Asiri AM, Khan SB, Zawawi MH, Basri H, Ahmed AN. Metal nanoparticles entrapment in chitosan-carbon black composite hydrogel towards sustainable environmental solutions. Int J Biol Macromol 2025; 296:139717. [PMID: 39798750 DOI: 10.1016/j.ijbiomac.2025.139717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
A catalytic system has been developed, utilizing metal nanoparticles confined within a chitosan‑carbon black composite hydrogel (M-CH/CB), aimed at improving ease of use and recovery in catalytic processes. The M-CH/CBs were characterized by XPS, XRD, SEM, and EDX, the M-CH/CB system demonstrated exceptional catalytic activity in producing hydrogen gas (H2) from water and methanol, and in reducing several hazardous materials including 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2,6-dinitrophenol (2,6-DNP), acridine orange (ArO), methyl orange (MO), congo red (CR), methylene blue (MB), and potassium ferricyanide (PFC). Among the tested nanocatalysts, CH/CB showed the highest efficiency for H₂ production, while Fe0-CH/CB excelled in contaminant reduction (7.0 min). In addition to the synthesis and characterization of the catalytic system, various factors, such as NaBH₄ amount, catalyst quantity, pollutant concentration, and reaction temperature were optimized to maximize its overall efficacy and efficiency. Fe0-CH/CB achieved the best reaction rate of 0.850 min-1 for 4-NP reduction, while CH/CB had a hydrogen generation rate (HGR) of 3500 ml.g-1.min-1. The Fe0-CH/CB was able to achieve the 4-NP reduction percentage of >95 % over 5 times during the recyclability tests. However, a slight decrease in reduction time was observed as the reaction rate dropped to 0.716 min-1 after 5 cycles, but the catalyst remained effective, underscoring its practical potential for environmental remediation, water treatment, and sustainable energy production.
Collapse
Affiliation(s)
| | | | - Lariyah Mohd Sidek
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohd Hafiz Zawawi
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
| | - Hidayah Basri
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
| | - Ali Najah Ahmed
- Department of Engineering, School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, 47500, Malaysia
| |
Collapse
|
2
|
Goudarzi S, Sajjadi M, Ghaffarinejad A. Green preparation of reusable Pd@magnetic lignosulfonate nanocomposite for hydrogen evolution reaction in all pHs. Int J Biol Macromol 2025; 287:138656. [PMID: 39667467 DOI: 10.1016/j.ijbiomac.2024.138656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
In this study, palladium nanoparticles (Pd NPs) were successfully synthesized and supported on a cost-effective, eco-friendly magnetic lignosulfonate matrix using Hibiscus Rosasinensis L. leaf extract as a natural reducing and stabilizing agent (Pd@Fe₃O₄-lignosulfonate). The magnetic lignosulfonate prevented the aggregation of Pd NPs, enhanced the active surface area, and improved the hydrophilicity of the modified carbon paste electrode (CPE), thus boosting hydrogen production efficiency. The Pd@Fe₃O₄-lignosulfonate was incorporated into the CPE at different weight percentages (1.5, 2.5, 5, 10, and 15 %), and employed as an efficient electrocatalyst for the hydrogen evolution reaction (HER) across all pH conditions (0.5 M H₂SO₄, 1 M NaOH, and phosphate buffer at pH 7). Electrochemical techniques such as linear sweep voltammetry (LSV), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), chronoamperometry (CA), and chronopotentiometry (CP) were employed to assess the catalyst's performance. Optimal hydrogen generation was achieved at 10 wt% Pd@Fe₃O₄-lignosulfonate/CPE, yielding an overpotential of -239 mV (vs. RHE) at a current density of 10 mA. cm-2 and a Tafel slope of -62 mV. dec-1 under acidic conditions. This work positions the low-loaded Pd NPs on magnetic lignosulfonate as a viable alternative to traditional noble metal catalysts, contributing to advancements in green chemistry and sustainable energy solutions.
Collapse
Affiliation(s)
- Sheyda Goudarzi
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Mohaddeseh Sajjadi
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| |
Collapse
|
3
|
Shahnaz, Rasool AE, Parveen W. Catalytic degradation of aromatic dyes using triazolidine-thione stabilized nickel nanoparticles. Heliyon 2024; 10:e40623. [PMID: 39759300 PMCID: PMC11699072 DOI: 10.1016/j.heliyon.2024.e40623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 01/07/2025] Open
Abstract
Nanoparticles have been extensively studied for many years due to their important roles in catalysis, metallurgy and high temperature superconductors. But, Nanoparticles are extremely unstable and easily react with other substances. So, to control the size and the shape of nanoparticles they must be stabilized. Organic Ligands have gain more attention for stabilizing Nanoparticles. In the present work, Nickel Nanoparticles have been synthesized by reduction method and then stabilized by synthesized 5-phenyl triazolidine-thione based organic ligand to achieve larger surface area and good catalytic activity. Stabilized Nickel NPs of different ratios were synthesized for analyzing their catalytic performance against dyes that has become one of the most serious environmental problem causing drastic water pollution. The prepared thione stabilized Nickel nanoparticles were confirmed by UV-Visible and Infrared Spectroscopy. UV/Vis analysis displayed the peak at 236 nm which confirms the metallic Ni NPs formation while, in FTIR peak around 720-750 cm-1 is due to the nickel and sulphur bond stretching vibrations. The size, surface morphology and the quality of the stabilized Ni Nanoparticles were analyzed by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) analysis. SEM images showed uneven morphology with variously sized and shaped particles. Large surface area is visible which is advantageous for catalytic degradation of pollutants. The degradation process was studied by using UV-visible Spectroscopy. The catalytic behavior of stabilized nanoparticles was evaluated by using various parameters i.e. time, concentration and size of NPs. These parameters were optimized during degradation process to get maximum degradation in short period of time. Maximum percentage degradation of Methylene blue, Methyl Orange and Rhodamine B dyes were achieved up to 90 %, 88 % and 81 % respectively, in short duration of time. All the three ratios of thione stabilized Ni Nanoparticles showed good degrading performance for all dyes, but 1:2 thione stabilized Ni NPs had shown maximum catalytic performance.
Collapse
Affiliation(s)
- Shahnaz
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Attiya-E Rasool
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Warda Parveen
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Jiang R, Xiao M, Zhu HY, Zhao DX, Zang X, Fu YQ, Zhu JQ, Wang Q, Liu H. Sustainable chitosan-based materials as heterogeneous catalyst for application in wastewater treatment and water purification: An up-to-date review. Int J Biol Macromol 2024; 273:133043. [PMID: 38857728 DOI: 10.1016/j.ijbiomac.2024.133043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/30/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Water pollution is one of serious environmental issues due to the rapid development of industrial and agricultural sectors, and clean water resources have been receiving increasing attention. Recently, more and more studies have witnessed significant development of catalysts (metal oxides, metal sulfides, metal-organic frameworks, zero-valent metal, etc.) for wastewater treatment and water purification. Sustainable and clean catalysts immobilized into chitosan-based materials (Cat@CSbMs) are considered one of the most appealing subclasses of functional materials due to their high catalytic activity, high adsorption capacities, non-toxicity and relative stability. This review provides a summary of various upgrading renewable Cat@CSbMs (such as cocatalyst, photocatalyst, and Fenton-like reagent, etc.). As for engineering applications, further researches of Cat@CSbMs should focus on treating complex wastewater containing both heavy metals and organic pollutants, as well as developing continuous flow treatment methods for industrial wastewater using Cat@CSbMs. In conclusion, this review abridges the gap between different approaches for upgrading renewable and clean Cat@CSbMs and their future applications. This will contribute to the development of cleaner and sustainable Cat@CSbMs for wastewater treatment and water purification.
Collapse
Affiliation(s)
- Ru Jiang
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Mei Xiao
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Hua-Yue Zhu
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Dan-Xia Zhao
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Xiao Zang
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yong-Qian Fu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Jian-Qiang Zhu
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China.
| | - Huan Liu
- School of Engineering, The University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, British Columbia V1V 1V7, Canada
| |
Collapse
|
5
|
Shehroz H, Ali S, Bibi G, Khan T, Jamil S, Khan SR, Hashaam M, Naz S. Comparative investigation of the catalytic application of α/β/γ-MnO 2 nanoparticles synthesized by green and chemical approaches. ENVIRONMENTAL TECHNOLOGY 2024; 45:1081-1091. [PMID: 36288459 DOI: 10.1080/09593330.2022.2137437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Three phases (α, β, and γ) of manganese dioxide (MnO2) are successfully stabilized in a single entity for the first time. For this purpose, Citrullus colocynthis (bitter apple) extract is used as a natural surfactant in green synthesis. MnO2 nanoparticles were synthesized in the presence and absence of plant extracts under the same conditions. The morphology of both products is analysed by SEM and STEM to understand the role of plant extract in controlling the morphology of particles. The crystallinity and composition are analysed by XRD and confirmed that the product is composed of multiple phases α, β, and γ. The reduction of dyes and nitroarenes is studied using MnO2 nanoparticles (green and chemical products) as catalysts. The apparent rate constant, a percentage reduction, time reduction and reduced concentration compare the activities of both catalysts. After comparative data analysis, the catalytic reduction of picric acid is found fastest among all the substrates. All the results are analysed based on structure, functional group and affinity towards catalysts.
Collapse
Affiliation(s)
- Hamza Shehroz
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sarmed Ali
- Faculty of Engineering, Østfold University College, Halden, Norway
| | - Guria Bibi
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Tahreem Khan
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Saba Jamil
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Shanza Rauf Khan
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Hashaam
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Saman Naz
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Yu Y, Liu C, Gu S, Wei Y, Li L, Qu Q. Upcycling spent palladium-based catalysts into high value-added catalysts via electronic regulation of Escherichia coli to high-efficiently reduce hexavalent chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122660. [PMID: 37778189 DOI: 10.1016/j.envpol.2023.122660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Upgrading and recycling Palladium (Pd) from spent catalysts may address Pd resource shortages and environmental problems. In this paper, Escherichia coli (E. coli) was used as an electron transfer intermediate to upcycle spent Pd-based catalysts into high-perform hexavalent chromium bio-catalysts. The results showed that Pd (0) nanoparticles (NPs) combined with the bacterial surface changed the electron transfer by enhancing the cell conductivity, thus promoting the removal rate of Pd(II). The recovery efficiency of Pd exceeded 98.6%. Notably, E. coli heightened the adsorption of H• and HCOO• via electron transfer of the Pd NPs electron-rich centre, resulting in a higher catalytic performance of the recycled spent catalysed the reduction of 20 ppm Cr(VI) under mild conditions within 18 min, in which maintained above 98% catalytic activity after recycling five times. This efficiency was found to be higher than that of the reported Pd-based catalysts. Hence, an electron transfer mechanism for E. coli recovery Pd-based catalyst under electron donor adjusting is proposed. These findings provide an important method for recovering Pd NPs from spent catalysts and are crucial to effectively reuse Pd resources.
Collapse
Affiliation(s)
- Yang Yu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Chang Liu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Shaojia Gu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Yuhui Wei
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650504, China.
| | - Qing Qu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
7
|
Krishnaprasanth A, Mannu P, Mahalingam S, Pattappan D, Kandasami A, Lai YT, Masuda Y, Chang HW, Chen MY, Yeh PH, Dong CL. Novel GdTaO 4 phase for efficient photocatalytic degradation of organic dye under visible light irradiation: An X-ray spectroscopic investigation. CHEMOSPHERE 2023; 340:139834. [PMID: 37625493 DOI: 10.1016/j.chemosphere.2023.139834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
The novel GdTaO4 phase exhibits good photocatalytic activity under visible light irradiation and holds great promise for the removal of organic dyes from industrial wastes. The GdTaO4 samples were synthesized using the hydrothermal and calcination process with different weight ratios of gadolinium nitrate hydrate (G) and tantalum pentachloride (T), and their structural studies confirmed the formation of the GdTaO4 (GT) phase. Among the samples, GT-4 (with a weight ratio of 4:1) exhibited the highest photocatalytic activity for the degradation of Methyl Orange (MO) dye under visible light irradiation. To enhance the photocatalytic performance, H2O2 was used as a green additive, and the photocatalytic abilities were examined by varying dye types and concentrations. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) revealed the local atomic and electronic structures around Ta and Gd and highlighted the contribution of Gd3+ to the GT system, which is a crucial factor in supporting the enhanced photocatalytic performance. Moreover, in-situ XAS at Gd M5-edge and O K-edge were examined under illumination/dark conditions to explore the electronic structures of photo-excited electron transition in the photocatalytic process. The analytical results provided strong evidence correlating the electronic structure and photocatalytic property of the GT. This study demonstrates that GdTaO4 exhibits good photocatalytic activity under visible light irradiation, making it a promising new Ta-based photocatalyst for the effective removal of organic dyes from industrial wastes.
Collapse
Affiliation(s)
| | - Pandian Mannu
- Research Center for X-ray Science & Department of Physics, Tamkang University, Tamsui, 25137, Taiwan
| | - Seetha Mahalingam
- Department of Physics, Kongunadu Arts and Science College, Coimbatore, 641 029, India.
| | - Dhanaprabhu Pattappan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC
| | - Asokan Kandasami
- Department of Physics & Centre for Interdisciplinary Research, University of Petroleum and Energy Studies (UPES) Dehradun, Uttarakhand, 248007, India
| | - Yi-Ting Lai
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC
| | - Yoshitake Masuda
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Nagoya, 463 8560, Japan
| | - Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli, 360302, Taiwan; Pesticide Analysis Center, National United University, Miaoli, 360302, Taiwan
| | - Mei-Yu Chen
- Research Center for X-ray Science & Department of Physics, Tamkang University, Tamsui, 25137, Taiwan
| | - Ping-Hung Yeh
- Research Center for X-ray Science & Department of Physics, Tamkang University, Tamsui, 25137, Taiwan
| | - Chung-Li Dong
- Research Center for X-ray Science & Department of Physics, Tamkang University, Tamsui, 25137, Taiwan.
| |
Collapse
|
8
|
Keypour H, Kouhdareh J, Rabiei K, Karakaya İ, Karimi-Nami R, Alavinia S. Pd nanoparticles decorated on a porous Co(BDC-NH 2) MOF as an effective heterogeneous catalyst for dye reduction. NANOSCALE ADVANCES 2023; 5:5570-5579. [PMID: 37822910 PMCID: PMC10563842 DOI: 10.1039/d3na00379e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/05/2023] [Indexed: 10/13/2023]
Abstract
Herein, a new catalytic nanocomposite [Co(BDC-NH2)-Pd NPs] composed of a Co(BDC-NH2) MOF has been developed. The catalyst was prepared by modifying the synthesized porous Co(BDC-NH2) MOF with decorated Pd nanoparticles. This nanocatalyst was used as a heterogeneous catalyst in the reductive degradation of organic dyes Rhodamine B and methyl orange with NaBH4. The kinetic and thermodynamic parameters of the reactions were evaluated. The results showed that the low catalyst content could successfully catalyze the dye reduction reaction quickly (1 min). The metal-organic frameworks unique porous morphology of the Co(BDC-NH2) MOF appears to increase dye adsorption and achieve effective dye reduction. Additionally, recyclability studies of the catalyst confirmed that it could be recovered and reused for 10 consecutive reaction cycles with negligible Pd leaching and reduction in catalytic activity.
Collapse
Affiliation(s)
- Hassan Keypour
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Jamal Kouhdareh
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Khadijeh Rabiei
- Department of Chemistry, Faculty of Science, Qom University of Technology Qom Iran
| | - İdris Karakaya
- Department of Chemistry, College of Basic Sciences, Gebze Technical University 41400 Gebze Turkey
| | - Rahman Karimi-Nami
- Department of Chemistry, Faculty of Science, University of Maragheh Maragheh 55181-83111 Iran
| | - Sedigheh Alavinia
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| |
Collapse
|
9
|
Alamier WM, D Y Oteef M, Bakry AM, Hasan N, Ismail KS, Awad FS. Green Synthesis of Silver Nanoparticles Using Acacia ehrenbergiana Plant Cortex Extract for Efficient Removal of Rhodamine B Cationic Dye from Wastewater and the Evaluation of Antimicrobial Activity. ACS OMEGA 2023; 8:18901-18914. [PMID: 37273622 PMCID: PMC10233848 DOI: 10.1021/acsomega.3c01292] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
Silver nanoparticles (Ag-NPs) exhibit vast potential in numerous applications, such as wastewater treatment and catalysis. In this study, we report the green synthesis of Ag-NPs using Acacia ehrenbergiana plant cortex extract to reduce cationic Rhodamine B (RhB) dye and for antibacterial and antifungal applications. The green synthesis of Ag-NPs involves three main phases: activation, growth, and termination. The shape and morphologies of the prepared Ag-NPs were studied through different analytical techniques. The results confirmed the successful preparation of Ag-NPs with a particle size distribution ranging from 1 to 40 nm. The Ag-NPs were used as a heterogeneous catalyst to reduce RhB dye from aqueous solutions in the presence of sodium borohydride (NaBH4). The results showed that 96% of catalytic reduction can be accomplished within 32 min using 20 μL of 0.05% Ag-NPs aqueous suspension in 100 μL of 1 mM RhB solution, 2 mL of deionized water, and 1 mL of 10 mM NaBH4 solution. The results followed a zero-order chemical kinetic (R2 = 0.98) with reaction rate constant k as 0.059 mol L-1 s-1. Furthermore, the Ag-NPs were used as antibacterial and antifungal agents against 16 Gram-positive and Gram-negative bacteria as well as 1 fungus. The green synthesis of Ag-NPs is environmentally friendly and inexpensive, as well as yields highly stabilized nanoparticles by phytochemicals. The substantial results of catalytic reductions and antimicrobial activity reflect the novelty of the prepared Ag-NPs. These nanoparticles entrench the dye and effectively remove the microorganisms from polluted water.
Collapse
Affiliation(s)
- Waleed M. Alamier
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Mohammed D Y Oteef
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Ayyob M. Bakry
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Nazim Hasan
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Khatib Sayeed Ismail
- Department
of Biology, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Fathi S. Awad
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
10
|
Kumar K, Anand SR, Kori M, Mishra N, Shrivastava S. A study on the synthesis and characterization of Schiff base stabilized silver nanoparticles against propionic bacteria. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
11
|
Jaleh B, Mousavi SS, Sajjadi M, Eslamipanah M, Maryaki MJ, Orooji Y, Varma RS. Synthesis of bentonite/Ag nanocomposite by laser ablation in air and its application in remediation. CHEMOSPHERE 2023; 315:137668. [PMID: 36581123 DOI: 10.1016/j.chemosphere.2022.137668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In this research, a simple, green, and efficient approach is described to produce novel bentonite/Ag nanocomposite wherein the preparation of Ag nanoparticles (Ag NPs) deployed the laser ablation method in air; Ag NPs are deposited on the bentonite via the magnetic stirring method. The structural and morphological characterization of the as-prepared bentonite/Ag nanocomposite (denoted as B/Ag30, 30 min being the laser ablation time) is accomplished using different methods. Additionally, the catalytic assessment of the ensued composite exhibited excellent catalytic reduction/degradation activity for common aqueous pollutants namely methyl orange (MO), congo red (CR) and 4-nitrophenol (4-NP) utilizing NaBH4 as reductant. Furthermore, the recycling tests displayed the high stability/reusability of B/Ag30 nanocomposite for at least 4 runs with retention of catalytic prowess.
Collapse
Affiliation(s)
- Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174, Hamedan, Iran.
| | | | - Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Motahar Jafari Maryaki
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; Research & Development Department, Shandong Advanced Materials Industry Association, Jinan 250200, Shandong, China.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
12
|
Banu R, Bhagavanth Reddy G, Ayodhya D, Ramakrishna D, Kotu GM. Biogenic Pd-nanoparticles from Lantana trifolia seeds extract: Synthesis, characterization, and catalytic reduction of textile dyes. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
13
|
Kateshiya MR, Desai ML, Malek NI, Kailasa SK. Advances in Ultra-small Fluorescence Nanoprobes for Detection of Metal Ions, Drugs, Pesticides and Biomarkers. J Fluoresc 2022; 33:775-798. [PMID: 36538145 DOI: 10.1007/s10895-022-03115-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Identification of trace level chemical species (drugs, pesticides, metal ions and biomarkers) plays key role in environmental monitoring. Recently, fluorescence assay has shown significant advances in detecting of trace level drugs, pesticides, metal ions and biomarkers in real samples. Ultra-small nanostructure materials (metal nanoclusters (NCs), quantum dots (QDs) and carbon dots (CDs)) have been integrated with fluorescence spectrometer for sensitive and selective analysis of trace level target analytes in various samples including environmental and biological samples. This review summarizes the properties of metal NCs and ligand chemistry for the fabrication of metal NCs. We also briefly summarized the synthetic routes for the preparation of QDs and CDs. Advances of ultra-small fluorescent nanosensors (NCs, QDs and CDs) for sensing of metal ions, drugs, pesticides and biomarkers in various sample matrices are briefly discussed. Additionally, we discuss the recent challenges and future perspectives of ultra-small materials as fluorescent sensors for assaying of wide variety of target analytes in real samples.
Collapse
|
14
|
Efficient reduction of organic pollutants by novel magnetic Bi2S3/NiCo2O4 MOF- derived composite: Exprimental and DFT investigation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Palladium nanospheres incorporated polythiophene nanocomposite: Investigation of potency promising antimicrobial efficacy. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Farrokhi Z, Sadjadi S, Raouf F, Bahri-Laleh N. Novel bio-based Pd/chitosan-perlite composite bead as an efficient catalyst for rapid decolorization of azo dye. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Vaidh S, Parekh D, Patel D, Vishwakarma GS. Leachate treatment potential of nanomaterial based assemblies: a systematic review on recent development. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:3285-3300. [PMID: 35704411 DOI: 10.2166/wst.2022.168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid development of the population has brought about a serious problem of waste generation and management. Open dumping and land filling are two of the preferred options for waste management and treatment. As a consequence of this, the accumulation of leachates has become one of the concerns for environmental sustainability. In this regard, various treatment methodologies have been developed in recent decades. Among them, the nanomaterial-based approaches are the emerging ones in the current scenario due to their various unique properties. Furthermore, nanomaterial-based assemblies (i.e., nanomaterials combined with microbes, chemical catalysts, enzymes, and so on) have been introduced as a novel modification for leachate treatment. This work, therefore, has been dedicated to comprehensively reviewing all nanomaterial based leachate treatment techniques. In this regard, the first part of this review will discuss the nano catalyst, nano adsorbent along with their synthesis and mechanistic view of pollutant removal potential. In the second part, the nanomaterial-based microbial conjugates applied in the leachate treatments have been discussed. Apart from this, various other nanomaterial-based methods have been discussed in the third part of the review. Hence this review is providing an insight of all the recent developments pertaining to the nano material based leachate treatment techniques.
Collapse
Affiliation(s)
- Sachin Vaidh
- Department of Biological Science and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India E-mail:
| | - Dharni Parekh
- Department of Biological Science and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India E-mail:
| | - Dhara Patel
- Department of Biological Science and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India E-mail:
| | - Gajendra Singh Vishwakarma
- Department of Biological Science and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India E-mail:
| |
Collapse
|
18
|
Khosravi F, Gholinejad M, Sansano JM, Luque R. Bimetallic Fe‐Cu Metal Organic Frameworks for room temperature catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Faezeh Khosravi
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Mohammad Gholinejad
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
- Research Center for Basic Sciences & Modern Technologies (RBST) Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Jose M. Sansano
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO‐CINQA) Universidad de Alicante Alicante Spain
| | - Rafael Luque
- Departamento de Química Orgánica Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C‐3) Córdoba Spain
- People’s Friendship University of Russia (RUDN University) Moscow Russian Federation
| |
Collapse
|
19
|
Bakhsh EM, Khan MSJ, Akhtar K, Khan SB, Asiri AM. Chitosan hydrogel wrapped bimetallic nanoparticles based efficient catalysts for the catalytic removal of organic pollutants and hydrogen production. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Esraa M. Bakhsh
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | | | - Kalsoom Akhtar
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research King Abdulaziz University Jeddah Saudi Arabia
| | - Abdullah M. Asiri
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
20
|
Palladium nanoparticles embedded over chitosan/γMnO2 composite hybrid microspheres as heterogeneous nanocatalyst for effective reduction of nitroarenes and organic dyes in water. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Halligudra G, Paramesh CC, Mudike R, Ningegowda M, Rangappa D, Shivaramu PD. Pd II on Guanidine-Functionalized Fe 3O 4 Nanoparticles as an Efficient Heterogeneous Catalyst for Suzuki-Miyaura Cross-Coupling and Reduction of Nitroarenes in Aqueous Media. ACS OMEGA 2021; 6:34416-34428. [PMID: 34963927 PMCID: PMC8697406 DOI: 10.1021/acsomega.1c04528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/26/2021] [Indexed: 05/27/2023]
Abstract
This paper presents guanidine-functionalized Fe3O4 magnetic nanoparticle-supported palladium (II) (Fe3O4@Guanidine-Pd) as an effective catalyst for Suzuki-Miyaura cross-coupling of aryl halides using phenylboronic acids and also for selective reduction of nitroarenes to their corresponding amines. Fe3O4@Guanidine-Pd synthesized is well characterized using FT-IR spectroscopy, XRD, SEM, TEM, EDX, thermal gravimetric analysis, XPS, inductively coupled plasma-optical emission spectroscopy, and vibrating sample magnetometry analysis. The prepared Fe3O4@Guanidine-Pd showed effective catalytic performance in the Suzuki-Miyaura coupling reactions by converting aryl halides to their corresponding biaryl derivatives in an aqueous environment in a shorter reaction time and with a meagerly small amount of catalyst (0.22 mol %). Also, the prepared Fe3O4@Guanidine-Pd effectively reduced nitroarenes to their corresponding amino derivatives in aqueous media at room temperature with a high turnover number and turnover frequency with the least amount of catalyst (0.13 mol %). The most prominent feature of Fe3O4@Guanidine-Pd as a catalyst is the ease of separation of the catalyst from the reaction mixture after the reaction with the help of an external magnet with good recovery yield and also reuse of the recovered catalyst for a few cycles without significant loss in its catalytic activity.
Collapse
Affiliation(s)
- Guddappa Halligudra
- Department
of Applied Sciences, Center for Postgraduate Studies, Visvesvaraya Technological University, Bengaluru Region, Muddenahalli, Chikkaballapur District 562 101, India
| | - Chitrabanu C. Paramesh
- Department
of Applied Sciences, Center for Postgraduate Studies, Visvesvaraya Technological University, Bengaluru Region, Muddenahalli, Chikkaballapur District 562 101, India
| | - Ravi Mudike
- Department
of Applied Sciences, Center for Postgraduate Studies, Visvesvaraya Technological University, Bengaluru Region, Muddenahalli, Chikkaballapur District 562 101, India
- Solar
Resource Assessment Division, National Institute
of Solar Energy, Gwal Pahari, Gurugram 122 003, Haryana, India
| | - Mallesha Ningegowda
- SRI
RAM CHEM, R & D Centre, Plot No. 31, JCK Industrial Park, Belagola Industrial Area, Mysore 570016, India
| | - Dinesh Rangappa
- Department
of Applied Sciences, Center for Postgraduate Studies, Visvesvaraya Technological University, Bengaluru Region, Muddenahalli, Chikkaballapur District 562 101, India
| | - Prasanna D. Shivaramu
- Department
of Applied Sciences, Center for Postgraduate Studies, Visvesvaraya Technological University, Bengaluru Region, Muddenahalli, Chikkaballapur District 562 101, India
| |
Collapse
|
22
|
Moyo M, Modise SJ, Pakade VE. Application of polymer-coated Macadamia integrifolia nutshell biomass impregnated with palladium for chromium(VI) remediation. Sci Rep 2021; 11:24184. [PMID: 34921191 PMCID: PMC8683406 DOI: 10.1038/s41598-021-03473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022] Open
Abstract
Freely suspended and porous basket restrained granules of palladium nanoparticles supported on polymer-grafted Macadamia nutshell biomass (Pd@Polym-MNS) composite were used for the treatment chromium(VI)-containing water. In the presence of formic acid, the Pd@Polym-MNS demonstrated its activity in the adsorption-reduction-based conversion of noxious chromium(VI) to less toxic chromium(III) with a low activation energy of 13.4 kJ mol-1, ΔH0 (+ 10.8 kJ mol-1), ΔS0 (-270.0 J mol-1 K-1), and ΔG0 (+ 91.3 to + 98.0 kJ mol-1) indicated the exothermic, endergonic and non-spontaneous nature of the catalytic redox reaction. In addition to facilitating easy recovery, rinsing, and reuse, restraining the Pd@Polym-MNS in the basket reactor helped maintain the integrity of the catalysts by preventing violent collisions of suspended granules with the mixing apparatus and the walls of the reaction vessel. Whereas the pseudo-first-order rate constant was recorded as 0.157 min-1 upon initial use, values of the mean and relative standard deviation for the second, third and fourth consecutive uses were found to be 0.219 min-1 and 1.3%, respectively. According to a response surface methodological approach to batch experimentation, the initial concentration of chromium(VI) and catalyst dosage had the greatest impact on the redox reaction rate, accounting for 85.7% and 11.6% of the variability in the value of the pseudo-first-order rate constant, respectively. Mutually beneficial effects of the combinations of high formic acid and low chromium(VI) concentration, high temperature and catalyst dosage as well as high formic acid and catalyst dosage were recorded.
Collapse
Affiliation(s)
- Malvin Moyo
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, 1911, South Africa
- Department of Applied Chemistry, National University of Science and Technology, Bulawayo, Zimbabwe
| | | | | |
Collapse
|
23
|
Syed A, Zeyad MT, Shahid M, Elgorban AM, Alkhulaifi MM, Ansari IA. Heavy Metals Induced Modulations in Growth, Physiology, Cellular Viability, and Biofilm Formation of an Identified Bacterial Isolate. ACS OMEGA 2021; 6:25076-25088. [PMID: 34604686 PMCID: PMC8482775 DOI: 10.1021/acsomega.1c04396] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 05/17/2023]
Abstract
The release of untreated tannery effluents comprising biotoxic heavy metal (HM) compounds into the ecosystem is one of our society's most serious environmental and health issues. After discharge, HM-containing industrial effluents reach agricultural soils and thus negatively affect the soil microbial diversity. Considering these, we assessed the effect of HMs on identified soil beneficial bacteria. Here, the effects of four heavy metals (HMs), viz., chromium (Cr), cadmium (Cd), nickel (Ni), and lead (Pb), on cellular growth, physiology, cell permeability, and biofilm formation of Enterobacter cloacae MC9 (accession no.: MT672587) were evaluated. HMs in a concentration range of 25-200 μg mL-1 were used throughout the study. Among HMs, Cd in general had the maximum detrimental effect on bacterial physiology. With increasing concentrations of HMs, bacterial activities consistently decreased. For instance, 200 μgCr mL-1 concentration greatly and significantly (p ≤ 0.05) reduced the synthesis of indole-3-acetic acid (IAA) by 70% over control. Furthermore, 200 μg mL-1 Cd maximally and significantly (p ≤ 0.05) reduced the synthesis of 2,3-dihydroxybenzoic acid (2,3-DHBA), salicylic acid (SA), 1-aminocyclopropane 1-carboxylate (ACC) deaminase, and extra polymeric substances (EPSs) of E. cloacae MC9 by 80, 81, 77, and 59%, respectively, over control. While assessing the toxic effect of HMs on the P-solubilizing activity of E. cloacae, the toxicity pattern followed the order Cr (mean value = 94.6 μg mL-1) > Cd (mean value = 127.2 μg mL-1) > Pb (mean value = 132.4 μg mL-1) > Ni (mean value = 140.4 μg mL-1). Furthermore, the colony-forming unit (CFU) count (Log10) of strain MC9 was completely inhibited at 150, 175, and 200 μg mL-1 concentrations of Cr and Cd. The confocal laser scanning microscopic (CLSM) analysis of HM-treated bacterial cells showed an increased number of red-colored dead cells as the concentration of HMs increased from 25 to 200 μg mL-1. Likewise, the biofilm formation ability of strain MC9 was maximally (p ≤ 0.05) inhibited at higher concentrations of Cd. In summary, the present investigation undoubtedly suggests that E. cloacae strain MC9 recovered from the HM-contaminated rhizosphere endowed with multiple activities could play an important role in agricultural practices to augment crop productivity in soils contaminated with HMs. Also, there is an urgent need to control the direct discharge of industrial waste into running water to minimize heavy metal pollution. Furthermore, before the application of HMs in agricultural fields, their appropriate field dosages must be carefully monitored.
Collapse
Affiliation(s)
- Asad Syed
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Tarique Zeyad
- Department
of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Shahid
- Department
of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Abdallah M. Elgorban
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Manal M. Alkhulaifi
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Irfan Aamer Ansari
- Department
of Drug Science and Technology, University
of Turin, Turin 10124, Italy
| |
Collapse
|
24
|
Nasiri A, Khalilzadeh MA, Zareyee D. A novel magnetic starch nanocomposite as a green heterogeneous support for immobilization of Cu nanoparticles and selective catalytic application in eco-friendly media. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1980031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Atefeh Nasiri
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | | | - Daryoush Zareyee
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| |
Collapse
|
25
|
Begum R, Farooqi ZH, Xiao J, Ahmed E, Sharif A, Irfan A. Crosslinked polymer encapsulated palladium nanoparticles for catalytic reduction and Suzuki reactions in aqueous medium. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Shen Q, Xu MH, Wu T, Pan GX, Tang PS. Adsorption behavior of tetracycline on carboxymethyl starch grafted magnetic bentonite. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01839-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Bakhsh EM, Akhtar K, Fagieh TM, Khan SB, Asiri AM. Development of alginate@tin oxide-cobalt oxide nanocomposite based catalyst for the treatment of wastewater. Int J Biol Macromol 2021; 187:386-398. [PMID: 34284055 DOI: 10.1016/j.ijbiomac.2021.07.100] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
In this study, tin oxide‑cobalt oxide nanocatalyst was prepared by a simple method, which grew in spherical particles with an average diameter of 30 nm. Tin oxide-cobalt oxide was further wrapped in alginate polymer hydrogel (Alg@tin oxide-cobalt oxide), and both materials were utilized as nanocatalysts for the catalytic transformation of different pollutants. Tin oxide-cobalt oxide and Alg@tin oxide-cobalt oxide nanocatalysts were tested for the catalytic reduction of 4-nitrophenol, congo red, methyl orange, methylene blue (MB) and potassium ferricyanide in which sodium borohydride was used as a reducing agent. Tin oxide-cobalt oxide and Alg@tin oxide-cobalt oxide nanocatalysts synergistically reduced MB in shorter time (2.0 and 4.0 min) compared to other dyes. The reduction conditions were optimized by changing different parameters. The rate constants for MB reduction were calculated and found to be 1.5714 min-1 and 0.6033 min-1 using tin oxide-cobalt oxide and Alg@tin oxide-cobalt oxide nanocatalysts, respectively. Implementing Alg@tin oxide-cobalt oxide nanocatalyst toward MB reduction in real samples proved its efficacy in sea and well water samples. The catalyst could be easily recovered, recycled and revealed a minimal loss of nanoparticles, which offering a competition and replacement with reputable commercial catalysts.
Collapse
Affiliation(s)
- Esraa M Bakhsh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Kalsoom Akhtar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Taghreed M Fagieh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
28
|
Shafiei N, Nasrollahzadeh M, Baran T, Baran NY, Shokouhimehr M. Pd nanoparticles loaded on modified chitosan-Unye bentonite microcapsules: A reusable nanocatalyst for Sonogashira coupling reaction. Carbohydr Polym 2021; 262:117920. [PMID: 33838799 DOI: 10.1016/j.carbpol.2021.117920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/20/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022]
Abstract
This work investigates the preparation of a catalytic complex of palladium nanoparticles supported on novel Schiff base modified chitosan-Unye bentonite microcapsules (Pd NPs@CS-UN). The complex has been characterized by FT-IR, EDS, XRD, TEM, HRTEM, Raman, ICP-OES and elemental mapping analyses. Pd NPs@CS-UN was used as a catalyst for Sonogashira coupling reactions between aryl halides and acetylenes, employing K2CO3 as the base and EtOH as a green solvent under aerobic conditions in which it showed high efficacy. Pd NPs@CS-UN was regenerated by filtration after the completion of the reaction. This catalytic process has many advantages including simple methodology, high yields, and easy work-up. The catalytic performance does not notably change even after five consecutive runs.
Collapse
Affiliation(s)
- Nasrin Shafiei
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran.
| | - Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey
| | - Nuray Yılmaz Baran
- Aksaray University, Technical Vocational School, Department of Chemistry Technology, 68100, Aksaray, Turkey
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
29
|
Pi S, Ma F, Cui D, Feng L, Zhou L, Li A. Catalytic reduction of 4-nitrophenol by green silver nanocomposites assembled using microbial extracellular polymer substances. ENVIRONMENTAL RESEARCH 2021; 197:111006. [PMID: 33722525 DOI: 10.1016/j.envres.2021.111006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/26/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Silver (Ag) nanocomposites were prepared via a facile and eco-friendly route using microbial extracellular polymer substances (EPSs) as green substrates for the catalytic reduction of 4-nitrophenol. Batch adsorption experiments demonstrated the binding of microbial EPSs to silver ions (Ag+), which was promoted by UV light, as was evident in the kinetics and thermodynamics analyses. The assembly mechanism of Ag nanocomposites prepared using microbial EPSs in the presence of UV light was investigated using the spectral analysis. The results showed that Ag+ was reduced and transformed into Ag0 by the hemiacetal groups in the microbial EPSs, and that UV light accelerated the nucleation and growth of Ag0 to form Ag nanoparticles (diameter about 12 nm), followed by loading on the surface of microbial EPSs. Catalytic reduction of 4-nitrophenol over Ag nanocomposites was almost completed within 60 s without stirring, and the kinetic rate constant (k) was 49.9 × 10-3 s-1. The recyclability test showed that Ag nanocomposites stably maintained the efficiency of catalytic reduction through five repeated reaction cycles. This work proved that Ag nanocomposites assembled using microbial EPSs have great catalytic activity in the reduction of 4-nitrophenol, providing the green and efficient catalyst for the reduction of organic pollutants in the environment.
Collapse
Affiliation(s)
- Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Di Cui
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, 150076, PR China
| | - Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Lu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
30
|
Mesoporous amine functionalized SiO2 supported Cu nanocatalyst and a kinetic-mechanistic degradation study of azo dyes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Functionalized chitosan as a novel support for stabilizing palladium in Suzuki reactions. Carbohydr Polym 2021; 260:117815. [DOI: 10.1016/j.carbpol.2021.117815] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
|
32
|
Li MH, You MH, Lin MJ. Photochromism and photomagnetism in three cyano-bridged 3d-4f heterobimetallic viologen frameworks. Dalton Trans 2021; 50:4959-4966. [PMID: 33877194 DOI: 10.1039/d0dt04358c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The incorporation of photochromic moieties into coordination polymers is of particular interest because it can endow them with various switching functions such as electrical conductivity, luminescence, and magnetism. In this context, a viologen ligand as a photochromic moiety was incorporated into 3d-4f heterobimetallic hexacyanoferrates, resulting in three novel 3-D photochromic complexes with different metal cations, namely {[Ln(BCEbpy) M(CN)6 (H2O)4]·2H2O}n (denoted as CoDy, CoEu, and FeDy, Ln = Dy, Eu; M = Fe, Co, H2BCEbpy·2Br = N,N'-bis(carboxymethyl)-4,4'-bipyridinium dibromide). And the photoresponsive mechanism has been well discussed based on the solid UV-vis, IR, ESR, photoluminescence, and magnetism data. Moreover, accompanying the photochromic process, these unique complexes exhibit different photomagnetic behaviors upon UV-vis irradiation at RT because of the different ferromagnetic coupling interactions between photogenerated radicals and lanthanide cations.
Collapse
Affiliation(s)
- Meng-Hua Li
- Key Laboratory of Molecule Synthesis and Function Discovery, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, China350116.
| | | | | |
Collapse
|
33
|
Amirsoleimani M, Khalilzadeh MA, Zareyee D. Preparation and catalytic evaluation of a palladium catalyst deposited over modified clinoptilolite (Pd@MCP) for chemoselective N-formylation and N-acylation of amines. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review. Carbohydr Polym 2021; 251:116986. [PMID: 33142558 PMCID: PMC8648070 DOI: 10.1016/j.carbpol.2020.116986] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Natural biopolymers, polymeric organic molecules produced by living organisms and/or renewable resources, are considered greener, sustainable, and eco-friendly materials. Natural polysaccharides comprising cellulose, chitin/chitosan, starch, gum, alginate, and pectin are sustainable materials owing to their outstanding structural features, abundant availability, and nontoxicity, ease of modification, biocompatibility, and promissing potentials. Plentiful polysaccharides have been utilized for making assorted (nano)catalysts in recent years; fabrication of polysaccharides-supported metal/metal oxide (nano)materials is one of the effective strategies in nanotechnology. Water is one of the world's foremost environmental stress concerns. Nanomaterial-adorned polysaccharides-based entities have functioned as novel and more efficient (nano)catalysts or sorbents in eliminating an array of aqueous pollutants and contaminants, including ionic metals and organic/inorganic pollutants from wastewater. This review encompasses recent advancements, trends and challenges for natural biopolymers assembled from renewable resources for exploitation in the production of starch, cellulose, pectin, gum, alginate, chitin and chitosan-derived (nano)materials.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
35
|
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives. CHEMOSPHERE 2021; 263:128005. [PMID: 33297038 PMCID: PMC7880008 DOI: 10.1016/j.chemosphere.2020.128005] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 05/20/2023]
Abstract
The supply of safe drinking and clean water is becoming increasingly challenging proposition throughout the world. The deployment of environmentally sustainable nanomaterials with unique advantages namely high efficiency and selectivity, earth-abundance, recyclability, low-cost of production processes, and stability, has been a priority although several important challenges and constraints still remained unresolved. Carbon nanomaterials namely activated carbon, multi-walled- and single-walled carbon nanotubes, have been developed and applied as adsorbents for wastewater treatment and purification; graphene and graphene oxide-based nanomaterials as well as carbon and graphene quantum dots-derived nanomaterials have shown significant promise for water and wastewater treatment and purification, especially, for industrial- and pharmaceutical-laden wastes. This review encompasses advanced carbonaceous nanomaterials and methodologies that are deployed for the elimination of contaminants and ionic metals in aqueous media, and as novel nanosorbents for wastewater, drinking and ground water treatment. Additionally, recent trends and challenges pertaining to the sustainable carbon and graphene quantum dots-derived nanomaterials and their appliances for treating and purifying wastewater are highlighted.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
36
|
George S, Sreekumar K. Heterogeneous palladium (II)‐complexed dendronized polymer: A rare palladium catalyst for the one‐pot synthesis of 2‐arylbenzoxazoles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Smitha George
- Department of Applied Chemistry Cochin University of Science and Technology Kochi India
| | | |
Collapse
|
37
|
Ahmed HB, Emam HE. Environmentally exploitable biocide/fluorescent metal marker carbon quantum dots. RSC Adv 2020; 10:42916-42929. [PMID: 35514886 PMCID: PMC9058413 DOI: 10.1039/d0ra06383e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/08/2020] [Indexed: 11/21/2022] Open
Abstract
Carbon quantum dots are currently investigated to act as safe/potent alternatives for metal-based nanostructures to play the role of probes for environmental applications owing to their low toxicity, low cost, chemical inertness, biocompatibility and outstanding optical properties. The synthesis of biocide/fluorescent metal marker carbon quantum dots with hydrophilic character was performed via a quite simple and green technique. The natural biopolymer that was used in this study for the synthesis of carbon quantum dots is fragmented under strong alkaline conditions. Afterwards, under hydrothermal conditions, re-polymerization, aromatization and subsequent oxidation, the carbonic nanostructures were grown and clustered. Dialysis of the so-produced carbonic nanostructures was carried out to obtain highly purified/mono-dispersed carbon quantum dots with a size distribution of 1.5-6.5 nm. The fluorescence intensity of the synthesized carbon quantum dots under hydrothermal conditions for 3 h was affected by dialysis, however, the fluorescence intensity was significantly increased ca. 20 times. The synthesized carbon quantum dots were exploited as fluorescent markers in the detection of Zn2+ and Hg2+. The prepared carbon quantum dots also exhibited excellent antimicrobial potency against Bacillus cereus, Escherichia coli and Candida albicans. The detected minimal inhibitory concentration for the dialyzed CQDs towards the tested pathogens was 350-450 μL mL-1. The presented approach is a simple and green technique for the scaled-up synthesis of biocide/fluorescent marker carbon quantum dots instead of metal-based nanostructures for environmental applications, without using toxic chemicals or organic solvents.
Collapse
Affiliation(s)
- Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University Ain-Helwan Cairo 11795 Egypt +201097411189
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Industries Research Division, National Research Centre, Scopus Affiliation ID 60014618 33 EL Buhouth St., Dokki Giza 12622 Egypt +201008002487
| |
Collapse
|
38
|
Wang H, Wang N, Wang F, Xiao F, Pan D. Spherical montmorillonite-supported molybdenum disulfide nanosheets as a self-sedimentary catalyst for organic pollutants removal. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Guo L, Meng F, Zeng Y, Jia Y, Qian F, Zhang S, Zhong Q. Catalytic ozonation of NO into HNO3 with low concentration ozone over MnO -CeO2/TiO2: Two-phase synergistic effect of TiO2. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Zhang K, Cha JH, Jeon SY, Kirlikovali KO, Ostadhassan M, Rasouli V, Farha OK, Jang HW, Varma RS, Shokouhimehr M. Pd modified prussian blue frameworks: Multiple electron transfer pathways for improving catalytic activity toward hydrogenation of nitroaromatics. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110967] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Yang Y, Wang D, Jiang P, Gao W, Cong R, Yang T. Structure-induced Lewis-base Ga4B2O9 and its superior performance in Knoevenagel condensation reaction. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Falah S, Soleiman‐Beigi M, Kohzadi H. Potassium Natural Asphalt Sulfonate (K‐NAS): Synthesis and characterization as a new recyclable solid basic nanocatalyst and its application in the formation of carbon–carbon bonds. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saeid Falah
- Department of Chemistry, Faculty of Basic Sciences Ilam University P.O. Box 69315‐516 Ilam Iran
| | - Mohammad Soleiman‐Beigi
- Department of Chemistry, Faculty of Basic Sciences Ilam University P.O. Box 69315‐516 Ilam Iran
| | - Homa Kohzadi
- Department of Chemistry, Faculty of Basic Sciences Ilam University P.O. Box 69315‐516 Ilam Iran
| |
Collapse
|
43
|
Smerkova K, Dolezelikova K, Bozdechova L, Heger Z, Zurek L, Adam V. Nanomaterials with active targeting as advanced antimicrobials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1636. [PMID: 32363802 DOI: 10.1002/wnan.1636] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
With a growing health threat of bacterial resistance to antibiotics, the nanomaterials have been extensively studied as an alternative. It is assumed that antimicrobial nanomaterials can affect bacteria by several mechanisms simultaneously and thereby overcome antibiotic resistance. Another promising potential use is employing nanomaterials as nanocarriers for antibiotics in order to overcome bacterial defense mechanisms. The passive targeting of nanomaterials is the often used strategy for bacterial treatment, including intracellular infections of macrophages. Furthermore, the specific targeting enhances the efficacy of antimicrobials and reduces side effects. This review aims to discuss advantages, disadvantages, and challenges of nanomaterials in the context of the targeting strategies for antimicrobials as advanced tools for treatments of bacterial infections. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Kristyna Smerkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Lucie Bozdechova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Center for Zoonoses, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
44
|
Pd nanocatalyst stabilized on amine-modified zeolite: Antibacterial and catalytic activities for environmental pollution remediation in aqueous medium. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116542] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Ao L, Hu X, Xu M, Zhang Q, Huang L. Central-radial bi-porous nanocatalysts with accessible high unit loading and robust magnetic recyclability for 4-nitrophenol reduction. Dalton Trans 2020; 49:4669-4674. [PMID: 32211724 DOI: 10.1039/d0dt00678e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Central-radial bi-porous nanocatalysts were synthesized by derivation from dendritic porous supports with hierarchical inorganic functional layers. The nanostructure exhibited a high unit loading capacity, accessible internal catalytic sites and protective mesoporous shell encapsulation. The nanocatalysts were utilized for efficient and stable heterogeneous catalytic reduction of 4-nitrophenol to 4-aminophenol with robust magnetic recyclability.
Collapse
Affiliation(s)
- Lijiao Ao
- Institute of Biomedical Engineering, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, P. R. China.
| | - Xinjia Hu
- Department of Osteoarthropathy, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518035, P. R. China
| | - Meng Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Qiqing Zhang
- Institute of Biomedical Engineering, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, P. R. China.
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|