1
|
Li S, Yang Y, Niu J, Zheng H, Zhang W, Leong YK, Chang JS, Lai B. Activation of PAA at the Fe-N x Sites by Boron Nitride Quantum Dots Enhanced Charge Transfer Generates High-Valent Metal-Oxo Species for Antibiotics Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21871-21881. [PMID: 39606938 PMCID: PMC11709145 DOI: 10.1021/acs.est.4c08224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Advanced oxidation processes (AOPs) based on peracetic acid (PAA) offer a promising strategy to address antibiotic wastewater pollution. In this study, Fe-doped graphitic carbon nitride (g-C3N4) nanomaterials were used to construct Fe-Nx sites, and the electronic structure was tuned by boron nitride quantum dots (BNQDs), thereby optimizing PAA activation for the degradation of antibiotics. The BNQDs-modified Fe-doped g-C3N4 catalyst (BNQDs-FCN) achieved an excellent reaction rate constant of 0.0843 min-1, marking a 21.6-fold improvement over the carbon nitride (CN)-based PAA system. DFT calculations further corroborate the superior adsorption capacity of the Fe-Nx sites for PAA, facilitating its activation. Charge transfer mechanisms, with PAA serving as an electron acceptor, were identified as the source of high-valent iron-oxo species. Moreover, the BNQDs-FCN system preferentially targets oxygen-containing functional groups in antibiotic structures, elucidating the selective attack patterns of these highly electrophilic species. This research not only elucidates the pivotal role of high-valent iron-oxo species in pollutant degradation within the PAA-AOPs framework but also pioneers a wastewater treatment system characterized by excellent degradation efficiency coupled with low ecological risk, thereby laying the groundwork for applications in wastewater management and beyond.
Collapse
Affiliation(s)
- Shuo Li
- College
of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China
| | - Yalun Yang
- College
of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Junfeng Niu
- College
of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Heshan Zheng
- College
of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China
| | - Wen Zhang
- John
A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yoong Kit Leong
- Department
of Chemical and Materials Engineering, Tunghai
University, Taichung 407, Taiwan
- Research
Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department
of Chemical and Materials Engineering, Tunghai
University, Taichung 407, Taiwan
- Research
Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
- Department
of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 320 Taiwan
| | - Bo Lai
- Department
of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Chen Z, Cai H, Huang F, Wang Z, Chen Y, Liu Z, Xie P. Degradation of β-lactam antibiotics by Fe(III)/HSO 3- system and their quantitative structure-activity relationship. ENVIRONMENTAL RESEARCH 2024; 259:119577. [PMID: 38986801 DOI: 10.1016/j.envres.2024.119577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
β-lactam antibiotics, extensively used worldwide, pose significant risks to human health and ecological safety due to their accumulation in the environment. Recent studies have demonstrated the efficacy of transition metal-activated sulfite systems, like Fe(Ⅲ)/HSO3-, in removing PPCPs from water. However, research on their capability to degrade β-lactam antibiotics remains sparse. This paper evaluates the degradation of 14 types of β-lactam antibiotics in Fe(Ⅲ)/HSO3- system and establishes a QSAR model correlating molecular descriptors with degradation rates using the MLR method. Using cefazolin as a case study, this research predicts degradation pathways through NPA charge and Fukui function analysis, corroborated by UPLC-MS product analysis. The investigation further explores the influence of variables such as HSO3- dosage, substrate concentration, Fe(Ⅲ) dosage, initial pH and the presence of common seen water matrices including humic acid and bicarbonate on the degradation efficiency. Optimal conditions for cefazolin degradation in Fe(Ⅲ)/HSO3- system were determined to be 93.3 μM HSO3-, 8.12 μM Fe(Ⅲ) and an initial pH of 3.61, under which the interaction of Fe(Ⅲ) dosage with initial pH was found to significantly affect the degradation efficiency. This study not only provides a novel degradation approach for β-lactam antibiotics but also expands the theoretical application horizon of the Fe(Ⅲ)/HSO3- system.
Collapse
Affiliation(s)
- Zhenbin Chen
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety & Pollution Control, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haohan Cai
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety & Pollution Control, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feng Huang
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety & Pollution Control, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety & Pollution Control, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Pengchao Xie
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety & Pollution Control, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
3
|
Yang Z, Li Y, Wang X, Li J, Wang J, Zhang G. Facet-dependent activation of oxalic acid over hematite nanocrystals under the irradiation of visible light for efficient degradation of pollutants. J Environ Sci (China) 2024; 142:204-214. [PMID: 38527885 DOI: 10.1016/j.jes.2023.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 03/27/2024]
Abstract
Naturally occurring hematite has been widely studied in the Fenton-like system for water pollutant remediation due to its abundance and non-toxicity. However, its inadequate catalytic activity results in difficulty in effectively degrading pollutants in the catalytic degradation system that it constitutes. Thus, we constructed a photochemical system composed of hematite with {001} facet of high activity facet and low-cost and non-toxic oxalic acid (OA) for the removal of various types of pollutants. The removal rate for the degradation of metronidazole, tetracycline hydrochloride, Rhodamine B, and hexavalent chromium by hematite nanoplate with the exposed {001} facet activating OA under visible light irradiation was 4.75, 2.25, 2.33, and 2.74 times than that by the exposed {110} facet, respectively. Density functional theory (DFT) calculation proved that the OA molecule was more easily adsorbed on the {001} facet of hematite than that on the {110} facet, which would favor the formation of the more Fe(III)-OA complex and reactive species. In addition, the reactive site of metronidazole for the attraction of radicals was identified on the basis of the DFT calculation on the molecular occupied orbitals, and the possible degradation pathway for metronidazole included carbon chain fracture, hydroxyethyl-cleavage, denitrogenation, and hydroxylation. Thus, this finding may offer a valuable direction in designing an efficient iron-based catalyst based on facet engineering for the improved activity of Fenton-like systems such as OA activation.
Collapse
Affiliation(s)
- Zhixiong Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaotian Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Jiaming Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Jiquan Wang
- Hubei Engineering Consulting Co., Ltd., Wuhan 430071, China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
4
|
Feng Y, Liang Y, Ding C, Jiang Y, Jin H, Rong S, Wu J, He S, Xia C, Xue L. Sustainable design of photo-Fenton-like oxidation process in actual livestock wastewater through the highly dispersed FeCl 3 anchoring on a g-C 3N 4 substrate. WATER RESEARCH 2024; 259:121889. [PMID: 38852389 DOI: 10.1016/j.watres.2024.121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Photocatalytic technology emerges as a promising solution for the sustainable treatment of contaminated wastewater. However, the practical implementation of designed photocatalysts often faces challenges due to the intricate 'high carbon footprint' process and limited outdoor laboratory investigations. Herein, a simple yet versatile impregnation approach is proposed to anchor highly dispersed FeCl3 on a g-C3N4 substrate (Fe-C3N4) with minimal energy consumption and post-processing. Fe-C3N4 enhances photocatalytic reactivity for antibiotic degradation via a synergistic photo-Fenton-like oxidation technique, efficiently removing antibiotic pollutants from actual livestock wastewater. The Fe-C3N4 catalyst exhibited consistent degradation performance over five cycles in laboratory conditions, maintaining a degradation efficiency exceeding 90 % for tetracycline hydrochloride (TCHCl). Furthermore, we engineered a straightforward Fe-C3N4Na2SiO3 reactor for treating livestock wastewater, achieving an 81.8 % removal of TCHCl in outdoor field tests conducted in the winter and summer in China. The Fe-C3N4 catalyst demonstrated high feasibility in treating antibiotic-contaminated livestock wastewater under year-round climatic conditions, leveraging synergistic effects. The stabilization of Fe-C3N4 for the degradation of antibiotic-containing wastewater under sunlight represents a significant advancement in the practical application of photocatalysts, marking a crucial milestone from experimental conception to implementation. Acute toxicity estimation suggested that intermediates/products generated exhibited lower toxicity compared to TCHCl, indicating their practical applicability. Density functional theory (DFT) analysis successfully predicted significant electron transfer between Fe-C3N4 and TCHCl, indicating efficient interfacial interactions on the TCHCl surface. To ensure the environmental sustainability of Fe-C3N4, a life cycle assessment (LCA) was conducted to compared this photocatalyst with other commonly used emerging photocatalysts. The results demonstrated that Fe-C3N4 exhibits a two orders of magnitude lower CO2 equivalent emission compared to the ZnO photocatalyst, indicating a cost-effective and efficient synergistic photo-Fenton-like catalytic approach. This low-cost photocatalyst, moving from the laboratory to real-world wastewater applications, provides a powerful and more sustainable solution for the efficient treatment of wastewater containing antibiotics from livestock farming.
Collapse
Affiliation(s)
- Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yunyi Liang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenman Ding
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yue Jiang
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Hongmei Jin
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shaopeng Rong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Shiying He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
5
|
Mamatali A, Wu D, Xie H, Xiao P. Mesoporous cobalt-manganese layered double hydroxides promote the activation of calcium sulfite for degradation and detoxification of metronidazole. J Colloid Interface Sci 2024; 666:512-528. [PMID: 38613974 DOI: 10.1016/j.jcis.2024.04.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Metronidazole (MNZ), a commonly used antibiotic, poses risks to water bodies and human health due to its potential carcinogenic, mutagenic, and genotoxic effects. In this study, mesoporous cobalt-manganese layered double hydroxides (CoxMny-LDH) with abundant oxygen vacancies (Ov) were successfully synthesized using the co-precipitation method and used to activate calcium sulfite (CaSO3) with slight soluble in water for MNZ degradation. The characterization results revealed that Co2Mn-LDH had higher specific areas and exhibited good crystallinity. Co2Mn-LDH/CaSO3 exhibited the best catalytic performance under optimal conditions, achieving a remarkable MNZ degradation efficiency of up to 98.1 % in only 8 min. Quenching experiments and electron paramagnetic resonance (EPR) tests showed that SO4•- and 1O2 played pivotal roles in the MNZ degradation process by activated CaSO3, while the redox cycles of Co2+/Co3+ and Mn3+/Mn4+ on the catalyst surface accelerated electron transfer, promoting radical generation. Three MNZ degradation routes were put forward based on the density functional theory (DFT) and liquid chromatography-mass spectrometer (LC-MS) analysis. Meanwhile, the toxicity analysis result demonstrated that the toxicity of intermediates post-catalytic reaction was decreased. Furthermore, the Co2Mn-LDH/CaSO3 system displayed excellent stability, reusability, and anti-interference capability, and achieved a comparably high removal efficiency across various organic pollutant water bodies. This study provides valuable insights into the development and optimization of effective heterogeneous catalysts for treating antibiotic-contaminated wastewater.
Collapse
Affiliation(s)
- Akbar Mamatali
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Dedong Wu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, China
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
6
|
Gahrouei AE, Vakili S, Zandifar A, Pourebrahimi S. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs). ENVIRONMENTAL RESEARCH 2024; 252:119029. [PMID: 38685299 DOI: 10.1016/j.envres.2024.119029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Antibiotics released into water sources pose significant risks to both human health and the environment. This comprehensive review meticulously examines the ecotoxicological impacts of three prevalent antibiotics-ciprofloxacin, metronidazole, and sulfamethoxazole-on the ecosystems. Within this framework, our primary focus revolves around the key remediation technologies: adsorption and advanced oxidation processes (AOPs). In this context, an array of adsorbents is explored, spanning diverse classes such as biomass-derived biosorbents, graphene-based adsorbents, MXene-based adsorbents, silica gels, carbon nanotubes, carbon-based adsorbents, metal-organic frameworks (MOFs), carbon nanofibers, biochar, metal oxides, and nanocomposites. On the flip side, the review meticulously examines the main AOPs widely employed in water treatment. This includes a thorough analysis of ozonation (O3), the photo-Fenton process, UV/hydrogen peroxide (UV/H2O2), TiO2 photocatalysis, ozone/UV (O3/UV), radiation-induced AOPs, and sonolysis. Furthermore, the review provides in-depth insights into equilibrium isotherm and kinetic models as well as prospects and challenges inherent in these cutting-edge processes. By doing so, this review aims to empower readers with a profound understanding, enabling them to determine research gaps and pioneer innovative treatment methodologies for water contaminated with antibiotics.
Collapse
Affiliation(s)
- Amirreza Erfani Gahrouei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Sajjad Vakili
- Chemical Engineering Department, Amirkabir University of Technology (AUT), Tehran, Iran.
| | - Ali Zandifar
- Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - Sina Pourebrahimi
- Department of Chemical and Materials Engineering, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
7
|
Cui Q, Dong Y, Zou W, Song Z, Zhang W, Zuo Q, Zhao X, Wu F. Understanding the pivotal role of ubiquitous Yellow River suspend sediment in efficiently degrading metronidazole pollutants in water environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172522. [PMID: 38643885 DOI: 10.1016/j.scitotenv.2024.172522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Sulfite-based advanced oxidation technology has received considerable attention for its application in organic pollutants elimination. However, the potential of natural sediments as effective catalysts for sulfite activation has been overlooked. This study investigates a novel process utilizing suspended sediment/sulfite (SS/S(IV)) for degradation of metronidazole (MNZ). Our results demonstrate that MNZ degradation efficiency can reach to 93.1 % within 90 min with 12.0 g SS and 2.0 mM sulfite. The influencing environmental factors, including initial pH, SS dosage, S(IV) concentration, temperature, and co-existing substances were systematically investigated. Quenching experiments and electron paramagnetic resonance analyses results indicate that SO3•- is the primary active substance responsible for MNZ degradation, with involvement of SO4•-, SO5•-, and •OH. X-ray photoelectron spectroscopy and Mössbauer spectra reveal that Fe (III)-silicates play a crucial role in activating S(IV). Furthermore, analysis of degradation intermediates and pathways of MNZ is conducted using liquid chromatography with mass spectrometry (LC -MS). The toxicity of MNZ and its intermediates were also systematically evaluated by the T.E.ST. program and wheat seeds germination test. This study offers valuable insight into the activation of sulfite by natural sediments and could contribute to the development of SS-based advanced oxidation processes (AOPs) for the in-situ remediation of antibiotics-contaminated water environments.
Collapse
Affiliation(s)
- Quantao Cui
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Yuyin Dong
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Weiwei Zou
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Ziyu Song
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Wei Zhang
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, PR China; Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, Henan 467036, PR China; Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, PR China; Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, PR China; Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China.
| | - Qiting Zuo
- Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, PR China; Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, PR China; Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China; School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
8
|
Pang K, Yan J, Zhang N, Fang C, Fu F, Liu X. Spatial Confinement of Co Nanoparticles in N-Doped Carbon Nanorods for Wastewater Purification via CaSO 3 Activation. Inorg Chem 2024; 63:7071-7079. [PMID: 38561240 DOI: 10.1021/acs.inorgchem.4c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Spatial confinement of organic pollutants and reactive oxygen species (e.g., SO4•- and •OH) with ultrashort lifetime inside the scale of chemical theoretical diffusion could provide a greatly promising strategy to overcome the limitation of mass transfer in the heterogeneous Fenton-like oxidation process. Herein, we first reported spatial confinement of cobalt nanoparticles in N-doped carbon nanorods (Co-NCNRs), by encapsulating Co nanoparticles into N-doped carbon nanorods, in activating CaSO3 for antibiotic degradation. Compared to Na2SO3 and NaHSO3, CaSO3 could slowly and persistently discharge SO32- due to its low solubility, thus avoiding the depletion of the generated SO3•- and •OH under the high concentration of sulfite ions. Fully physical characterizations confirmed that the 3D hydrogel was mostly transformed into the nanorod structure of Co-NCNRs at 550 °C. Co atoms were successfully nanoconfined into N-doped carbon nanorods, which contributes to mass transfer and prevents the agglomeration of Co nanoparticles, thus enhancing its catalytic activity and stability in activating CaSO3 for water decontamination. The catalytic performance, kinetic research, influences of inorganic anions, pH, and degradation mechanism of chlortetracycline degradation catalyzed by the Co-NCNRs/CaSO3 system have been studied in detail. This work not only proposed a facile method for synthesis of nanoconfined catalyst but also provided an excellent Co-NCNRs/CaSO3 system for wastewater treatment.
Collapse
Affiliation(s)
- Kun Pang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Jiaying Yan
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Nuonuo Zhang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Chen Fang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Fangyu Fu
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
- School of Sciences, Great Bay University, Dongguan 523000, China
| | - Xiang Liu
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| |
Collapse
|
9
|
Lu F, Lin T, Chen H. Singlet oxygen-mediated fluconazole degradation during the activation of chlorine dioxide with sulfite. WATER RESEARCH 2024; 248:120887. [PMID: 37992637 DOI: 10.1016/j.watres.2023.120887] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Singlet oxygen (1O2)-mediated advanced oxidations have received considerable attention due to their strong capacity to resist the water matrix and high selectivity for organic pollutants. In this study, the activation of chlorine dioxide with sulfite (sulfite/ClO2 process) to effectively produce 1O2 was proposed to degrade fluconazole (FLC) and simultaneously control the formation of disinfection byproducts (DBPs). The results revealed that FLC could be rapidly degraded by 78.6 % within 10 s by the sulfite/ClO2 process. Radical quenching tests and electron paramagnetic resonance (EPR) measurements confirm that 1O2 produced by the cleavage of epoxides formed by the combination of triazole electron-rich groups in FLC with peroxymonosulfate (PMS) was the main active species in the sulfite/ClO2 process. The degradation of FLC was favored under alkaline conditions because of the fast electron transfer rate at higher pH values. The presence of chloride (Cl-), bicarbonate (HCO3-), and humic acid (HA) hindered the degradation of FLC mainly because they compete with PMS for the electron-rich groups produced by the reaction. The degradation intermediates of FLC were identified by UPLC‒MS/MS, and their transformation pathways were deduced by the condensed Fukui function (CFF) theory. Using sulfite/ClO2 as a pretreatment process to treat real potable water, aldehydes, ketones, carboxylic acids and other intermediates may be produced via the carboxylation and carbonylation reactions mediated by 1O2, therefore promoting the formation of DBPs during the following chlorination. This study provided a new perspective that while 1O2 is effectively produced in the sulfite/ClO2 process for contaminant degradation, the formation of DBPs during subsequent chlorination should be cautioned.
Collapse
Affiliation(s)
- Feiyu Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
10
|
He S, Liu Y, Wang G, Luo L, Tang X, Xiang D, Jiang T, Jing J, Wang L. Heterojunction photocatalyst FeS 2/g-C 3N 5 for activating sulfites to degrade tetracycline: A stable degradation system based on heterogeneous processes. ENVIRONMENTAL RESEARCH 2023; 237:116939. [PMID: 37611781 DOI: 10.1016/j.envres.2023.116939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
The UV/sulfite system is a promising source of •SO4- and/or •OH, but its application is largely limited by the use of UV light due to its high cost and high energy consumption. Graphite carbon nitride (g-C3N5), as a new photocatalytic material, has better visible light absorption capacity and narrower band gap than g-C3N4, which is expected to activate sulfite under visible light to solve this problem. Herein, a novel FeS2/CN heterojunction material based on g-C3N5 was constructed by hydrothermal in-situ synthesis method and successfully activated sulfite, which was confirmed by tetracycline degradation experiments in water. Under optimized conditions, the degradation rate of TC in 1 h reached 96%. The experimental results revealed that the FeS2/CN heterostructure enhances the absorption of visible light and inhibits the recombination of carriers, enabling more electrons and holes to be utilized. Holes play a major role in the degradation reaction, promote the sulfite chain reaction, and effectively regulate the cycle of Fe2+ and Fe3+ in the solution. Iron ion leaching is negligible and the degradation reaction remains stable at pH 5-9.
Collapse
Affiliation(s)
- Siyu He
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Yaoqi Liu
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Guanlong Wang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Lingzhi Luo
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Xiaoyun Tang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Dongmei Xiang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Tingting Jiang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Jiang Jing
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China.
| | - Lei Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen, 518055, China.
| |
Collapse
|
11
|
Lu X, Wang K, Wu D, Xiao P. Rapid degradation and detoxification of metronidazole using calcium sulfite activated by CoCu two-dimensional layered bimetallic hydroxides: Performance, mechanism, and degradation pathway. CHEMOSPHERE 2023; 341:140150. [PMID: 37709064 DOI: 10.1016/j.chemosphere.2023.140150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
In this study, cobalt copper-layered double hydroxides (CoCu-LDHs) were prepared by coprecipitation as catalysts to activate CaSO3 for metronidazole (MNZ) degradation. This is the first report on layered double hydroxides activating sulfite for the degradation of organic pollutants. Meanwhile, to address the issue of self-quenching reactions readily occurring in conventional sulfite advanced oxidation systems and resulting in low oxidant efficiency, CaSO3 with slightly soluble in water was used instead of commonly used Na2SO3, to improve the limitations of traditional systems. The results showed that in the CoCu-LDHs/CaSO3 system, the degradation rate of MNZ reached 98.7% within 5 min, representing a 23.0% increase compared to the CoCu-LDHs/Na2SO3 system. Owing to the excellent catalytic performance exhibited by CoCu-LDHs, characterizations including XRD, FTIR, SEM, TEM, BET and XPS were carried out to investigate this further. The results confirmed the successful synthesis of CoCu-LDH, and the activation mechanism study revealed that Co and Cu were considered to the main elements in activating CaSO3, demonstrating good synergistic effects. In addition, the oxygen vacancies on the catalyst surface also played a positive role in generating radicals and promoting electron transfer. Subsequently, the effects of Co/Cu ratio, catalyst dosage, oxidant concentration, pollutant concentration, pH and coexisting substances on MNZ degradation were investigated. Additionally, based on the LC-MS analysis of degradation products and toxicity tests, MNZ was transformed into different intermediates with low toxicity through four pathways, eventually mineralizing into inorganic small molecules. After six cycles, the MNZ degradation rate still reached 82.1%, exhibiting excellent stability and recyclability. In general, this study provides new ideas for activating sulfite, while providing theoretical support for subsequent research on sulfite advanced oxidation system.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Kai Wang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Dedong Wu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
12
|
Zhao Z, Li Y, Zhou Y, Hou Y, Sun Z, Wang W, Gou J, Cheng X. Activation of sulfite by micron-scale iron-carbon composite for metronidazole degradation: Theoretical and experimental studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130873. [PMID: 36731316 DOI: 10.1016/j.jhazmat.2023.130873] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In recent years, sulfite (S(Ⅳ)), as an alternative to persulfates, has played a crucial role in eliminating antibiotics in wastewater, so there is an urgent need to develop a cheap, environmentally friendly, and effective catalyst. Zero-valent iron (ZVI) has great potential for activated S(Ⅳ) removal of organic pollutants, but its reactivity in water is reduced due to passivation. In this study, a micron-scale iron-carbon composite(mZVI@C-800) prepared via high-temperature calcination was coupled with S(Ⅳ) to degrade metronidazole (MNZ). Under the optimized reaction conditions of mZVI@C-800 dosage of 0.2 g/L and S(Ⅳ) concentration of 0.1 g/L, the MNZ removal rate was up to 81.5 % in acidic and neutral environments. The surface chemical properties of the catalysts were characterized by different analytical techniques, and the corresponding catalytic mechanism was analyzed based on these analytical results. As a result, Fe2+ is the main active site, and ·OH and SO4·- were the dominant active species. The increase in efficiency was attributed to the introduction of carbon to enhance the corrosion of mZVI further releasing more Fe2+. Additionally proposed were the potential response mechanism, the degradation path, and the toxicity change rule. These results demonstrate that the catalytic breakdown of antibiotics in wastewater treatment can be accelerated by the use of the outstanding catalytic material mZVI@C-800.
Collapse
Affiliation(s)
- Zixuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yunhe Li
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yuerong Zhou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yilong Hou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhengyi Sun
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Wenhao Wang
- Civil Engineering Department, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, PR China
| | - Jianfeng Gou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Xiuwen Cheng
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Chemistry and Environmental Science, Yili Normal University, Yining 835000, PR China.
| |
Collapse
|
13
|
Yang G, Liang Y, Zheng H, Yang J, Guo S, Yu H. A self-circulating cerium-rich CeO2-x/Bi2MoO6 heterojunction catalyst for boosting photo-Fenton degradation of fluoroquinolone antibiotics. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Effective removal of nitroimidazole antibiotics in aqueous solution by an aluminum-based metal-organic framework: Performance and mechanistic studies. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Wang Z, Fang Z, Wang B, Zhang Y, Yang M, Li Y. Graphitic carbon nitride facilely modified with pyromellitic diimide with enhanced photocatalytic activity and good selectivity towards the photodegradation of cationic dyes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Shen J, Cheng F, Chen Y, Li Z, Liu Y, Yuan Y, Zhou P, Liu W, Lai B, Zhang Y. Vanadium trioxide mediated peroxymonosulfate for fast metronidazole oxidation: Stepwise oxidation of vanadium for donating electrons. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Zhao G, Ding J, Ren J, Zhao Q, Fan H, Wang K, Gao Q, Chen X, Long M. Treasuring industrial sulfur by-products: A review on add-value to reductive sulfide and sulfite for contaminant removal and hydrogen production. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129462. [PMID: 35792429 DOI: 10.1016/j.jhazmat.2022.129462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Reductive sulfur-containing by-products (S-BPs) released from industrial process mainly exist in the simple form of sulfide and sulfite. In this study, recent advances to remove and make full use of reductive S-BPs to achieve efficient contaminant removal and hydrogen production are critically reviewed. Sulfide, serves as both reductant and nucleophile, can form intermediates with the catalyst surface functional group through chemical interaction, efficiently promoting the catalytic reduction process to remove contaminants. Sulfite assisted catalytic process could be classified to the advanced reduction processes (ARPs) and advanced oxidation processes (AOPs), mainly depending on the presence of dissolved oxygen (DO) in the solution. During ARPs, sulfite could generate reductive active species including hydrated electron (eaq-), hydrogen radical (H·), and sulfite radical (SO3•-) under the irradiation of UV light, leading to the efficient reduction removal of a variety of contaminants. During AOPs, sulfite could first produce SO3•- under the action of the catalyst or energy, initiating a series of reactions to produce oxysulfur radicals. Various contaminants could be effectively removed under the role of these oxidizing active species. Sulfides and sulfites could also be removed along with promoting hydrogen production via photocatalytic and electrocatalytic processes. Besides, the present limitations and the prospects for future practical applications of the process with these S-BPs are proposed. Overall, this review gives a comprehensive summary and aims to provide new insights and thoughts in promoting contaminant removal and hydrogen production through taking full advantage of reductive S-BPs.
Collapse
Affiliation(s)
- Guanshu Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jiayi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Haojun Fan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingwei Gao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xueqi Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
18
|
Mirhosseini H, Shamspur T, Mostafavi A. Novel adsorbent g
‐C
3
N
4
/
ZnV
2
O
4
for efficient removal of crystal violet dye: removal process optimization, adsorption isotherms and kinetic modeling. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hadiseh Mirhosseini
- Department of Chemistry, Faculty of science Shahid Bahonar University of Kerman Kerman Iran
- Young Research Society Shahid Bahonar University of Kerman Kerman Iran
| | - Tayebeh Shamspur
- Department of Chemistry, Faculty of science Shahid Bahonar University of Kerman Kerman Iran
| | - Ali Mostafavi
- Department of Chemistry, Faculty of science Shahid Bahonar University of Kerman Kerman Iran
| |
Collapse
|
19
|
Zhao J, Wu F, He Q, Feng Y. Enhanced degradation of amiloride over Bi 2FeNbO 7/bisulfite process: Key factors and mechanism. CHEMOSPHERE 2022; 300:134573. [PMID: 35436455 DOI: 10.1016/j.chemosphere.2022.134573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/13/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Construction of Bi2FeNbO7/bisulfite system for abatement of pharmaceutical residue was achieved. An attempt to synthesize Bi2FeNbO7 through hydrothermal technique was confirmed by X-ray diffraction. The magnetic field experiment revealed that Bi2FeNbO7 possessed a saturation magnetization of 6.99 emu/g, indicating magnetic attributes of Bi2FeNbO7. Scanning electron microscopy images showed that Bi2FeNbO7 exhibited regular octahedra in the size of 200-300 nm. In a self-made device, the activation of sodium bisulfite using Bi2FeNbO7 for the disposal of amiloride has been carefully explored. The effects of solution pH, sodium bisulfite concentration, Bi2FeNbO7 dosage, amiloride concentration, coexisting ions, and water matrix on the performance of Bi2FeNbO7/bisulfite system was investigated. The catalytic performance of Bi2FeNbO7/bisulfite to degrade amiloride was considerably higher than that of traditional iron oxides. The maximum removal efficiency of amiloride was 97.9% in Bi2FeNbO7/bisulfite process. The involvement of Fe might be crucial for activating bisulfite to create active species. The dominating radical in Bi2FeNbO7/bisulfite process was identified as SO3•‒. With the help of UHPLC/MS/MS, three new degradation products of amiloride were found. Dehalogenation and deamination of amiloride might account for the formation of these transformation products. This work provides a highly efficient Bi2FeNbO7/bisulfite process for the disposal of pharmaceutical pollutants in water treatment.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Applied Chemistry, Xi'an University of Technology, 5 Jinhua South Road, Xi'an, Shaanxi, 710048, PR China.
| | - Fei Wu
- Department of Applied Chemistry, Xi'an University of Technology, 5 Jinhua South Road, Xi'an, Shaanxi, 710048, PR China
| | - Qiang He
- Technical Center, Xi'an Customs District, Shaanxi, 710068, PR China
| | - Yawei Feng
- Department of Applied Chemistry, Xi'an University of Technology, 5 Jinhua South Road, Xi'an, Shaanxi, 710048, PR China
| |
Collapse
|
20
|
Fluidized ZnO@BCFPs Particle Electrodes for Efficient Degradation and Detoxification of Metronidazole in 3D Electro-Peroxone Process. MATERIALS 2022; 15:ma15103731. [PMID: 35629757 PMCID: PMC9144341 DOI: 10.3390/ma15103731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023]
Abstract
A novel material of self-shaped ZnO-embedded biomass carbon foam pellets (ZnO@BCFPs) was successfully synthesized and used as fluidized particle electrodes in three-dimensional (3D) electro-peroxone systems for metronidazole degradation. Compared with 3D and 2D + O3 systems, the energy consumption was greatly reduced and the removal efficiencies of metronidazole were improved in the 3D + O3 system. The degradation rate constants increased from 0.0369 min-1 and 0.0337 min-1 to 0.0553 min-1, respectively. The removal efficiencies of metronidazole and total organic carbon reached 100% and 50.5% within 60 min under optimal conditions. It indicated that adding ZnO@BCFPs particle electrodes was beneficial to simultaneous adsorption and degradation of metronidazole due to improving mass transfer of metronidazole and forming numerous tiny electrolytic cells. In addition, the process of metronidazole degradation in 3D electro-peroxone systems involved hydroxyethyl cleavage, hydroxylation, nitro-reduction, N-denitrification and ring-opening. The active species of ·OH and ·O2- played an important role. Furthermore, the acute toxicity LD50 and the bioconcentration factor of intermediate products decreased with the increasing reaction time.
Collapse
|
21
|
Iron Carbon Catalyst Initiated the Generation of Active Free Radicals without Oxidants for Decontamination of Methylene Blue from Waters. Catalysts 2022. [DOI: 10.3390/catal12040388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In conventional oxidation technologies for treatment of contaminated waters, secondary pollution of the aqueous environment often occurs because of the additional oxidants generated during the process. To avoid this problem, Fe/NG catalyst composites without additives were developed in this study for decontamination of methylene blue (MB) from waters. The Fe/NG catalyst, composed of carbon nitride and iron chloride (FeCl3·6H2O), was prepared by high temperature pyrolysis. It is an exceptionally efficient, recoverable, and sustainable catalyst for degradation of organic matter. The morphological characteristics, chemical structure, and surface properties of the catalyst composites were investigated. The catalyst exhibited high MB removal efficiency (100%) within 30 min under ambient temperature and dark conditions. The experiments indicated that an MB degradation effect was also applicable under most acid–base conditions (pH = 2–10). The characterization results using electron spin resonance and analysis of intermediate products demonstrated that free radicals such as ·OH and ·O2− were produced from the Fe/NG composites in the heterogeneous system, which resulted in the high MB degradation efficiency. Moreover, the catalysis reaction generated reducing substances, triggering iron carbon micro-electrolysis to spontaneously develop a microcurrent, which assisted the degradation of MB. This study demonstrates the feasibility of Fe/NG catalysts that spontaneously generate active species for degrading pollutants in an aqueous environment at normal temperature, providing an attractive approach for treating organic-contaminated waters.
Collapse
|
22
|
Rao Y, Li A, Zhang Y, Wang F, Zhang T, Sheng Y, Jiao T. Efficient degradation of metronidazole with dual-cathode of acetylene black-PTFE/CoFe2O4-PTFE coupling persulfate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|