1
|
Lu W, Chen N, Feng C, Zhang G, Sirés I. Degradation of antibiotics and profiling of transformation products upon peracetic acid-mediated treatment of electrochlorinated groundwater in a flow-through reactor. WATER RESEARCH 2025; 284:124013. [PMID: 40541095 DOI: 10.1016/j.watres.2025.124013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 06/02/2025] [Accepted: 06/11/2025] [Indexed: 06/22/2025]
Abstract
Preventing the formation of hazardous chlorinated transformation products (Cl-TPs) when applying the electrochemical advanced oxidation processes (EAOPs) is a major challenge for ensuring their broader scale-up. In this context, the addition of peracetic acid (PAA) can potentially contribute to reduce the risk of Cl-TPs, but the associated transformation pathways remain insufficiently understood. Here, PAA-mediated electrochlorination process was found to reduce typical Cl-TPs (e.g., chloroform below 60 μg L-1) by 26.9 %∼80.8 %. Under optimized conditions, an innovative PAA-based treatment in a single-pass flow-through electrochemical reactor achieves the removal of four mixed antibiotics with low specific energy consumption (5.3 Wh mmol-1). The antibiotics concentration in the effluent remained below the detection limit within 10 operation cycles. In addition, reductions in Cl-TPs were achieved in both simulated and actual groundwater, meeting the 2022 Chinese drinking water quality standards. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) revealed that PAA-based electrochlorination preferentially removed highly unsaturated heavy byproducts (O/C < 0.3, MW >400 Da), and the CHOCl formulae number decreased by 59 %. The transformation pathways of Cl-TPs were mainly identified as decarbonylation, dihydroxylation, and hydrogenation. Moreover, the possible halogenation pathways number showed a significant decrease of 77.9 %. These findings provide deeper insights into the degradation mechanisms and Cl-TPs minimization during PAA-mediated electrochemical antibiotic degradation, shedding light on the transformation processes in diverse environmental scenarios.
Collapse
Affiliation(s)
- Wang Lu
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Spain; School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Gong Zhang
- College of Environment, Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environment, Tsinghua University, Beijing 100084, China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
2
|
Yan H, Liu X, Zong Y, Lei Z, He Q, Zhao Z, Zhou Z, Ye G, Hou C, Wu D. Dynamic electrode reconfiguration promotes in situ electrochemical peracetic acid synthesis for selective water decontamination. WATER RESEARCH 2025; 275:123205. [PMID: 39892192 DOI: 10.1016/j.watres.2025.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
In situ synthesis and activation of peracetic acid (PAA) for water decontamination is a promising way to overcome the transport and storage problems in PAA applications. Here, an in situ electrochemical PAA synthesis and activation system is constructed using RuO2-Ti "active" electrode and graphite plate as the anode and the cathode, respectively. PAA is efficiently generated at the RuO2-Ti anode with a maximum real-time concentration of ∼1020 μM and a negligible precursor loss of 2.91 % after 180 min, and can be activated at the cathode to destruct a refractory pollutant (i.e., benzoic acid (BA)) with the rate constant of 0.22-0.28 h-1, even under the interference of co-existing anions. Multiple pieces of evidence, including differential electrochemical mass spectrometry, sulfoxide probing test, and electron paramagnetic resonance spectroscopy, indicate that the oxygen-atom-transferring oxidation of CH3COO- by a high-valent ruthenium-oxo intermediate (i.e., RuO3) in situ formed through the electrode reconfiguration between RuO2 and chem-sorbed HO• mainly accounts for PAA synthesis. Acetylperoxyl radical (CH3C(O)OO•) was evidenced as the dominant species for BA degradation. This study proposes an in situ strategy to electrochemically synthesize and activate PAA for selective water decontamination and enriches the understandings of the mechanism of "active" electrode in peroxide synthesis.
Collapse
Affiliation(s)
- Hanlin Yan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| | - Xiaoguang Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Zhendong Lei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| | - Qunbiao He
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| | - Zhenyu Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| | - Zhengwei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| | - Guojie Ye
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| | - Chengsi Hou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Li S, Zou J, Wu J, He L, Tang C, Li F, Sun B, Zhao M, Li Q, Wang P, Huang L, Cheng Q, Tan H, Ma J. Removal of Sulfonamide Antibiotics in Peracetic Acid-Mediated Natural Polyphenol Systems via an Overlooked Polymerization Pathway: Role of ortho-Quinones. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7747-7759. [PMID: 40223568 DOI: 10.1021/acs.est.4c13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Natural polyphenols can be oxidized into reactive quinones, which might play a key role in the removal of specific contaminants in natural polyphenol-related advanced oxidation processes (AOPs). In this study, peracetic acid (PAA) was employed in combination with natural protocatechuic acid (PCA) to remove sulfonamide antibiotics (SAs) from water. More than 95% removal of sulfamethoxazole (SMX) and other SAs was observed in the PCA/PAA system, and neutral pH conditions (5.0-8.0) were more conducive to the removal of SMX. The PCA/PAA system exhibited a great anti-interference ability against complex water matrices. ortho-Quinone, generated from the oxidation of PCA by PAA, played a dominant role in the SMX removal. Electrons tended to transfer from SMX to the generated ortho-quinones and form covalent bonds, resulting in the production of less toxic oligomers via the overlooked polymerization pathway. A reduction in the toxicity of the SMX solution was found following treatment with the PCA/PAA system. More interestingly, several polyphenols structurally related to PCA could also facilitate SMX removal using PAA as the oxidant. Overall, this study proposes a novel strategy for developing reactive quinones dominated AOPs with robust anti-interference performance, as well as enhances the understanding of contaminant removal via an overlooked polymerization pathway in natural polyphenol-related AOPs.
Collapse
Affiliation(s)
- Sheng Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jianying Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Linfeng He
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Chenyu Tang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Fei Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Bo Sun
- China National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Min Zhao
- China National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, Fujian 361005, P. R. China
| | - Panpan Wang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| | - Lengshen Huang
- Institute of Horticulture Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Qingfeng Cheng
- School of Urban Construction, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Haoqiang Tan
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| |
Collapse
|
4
|
Liu S, Di F, Lian Z, Wang G, Yu Q, Han D. New insights into the Fe(III)-activated peroxyacetic acid: Oxidation properties and mechanism. ENVIRONMENTAL RESEARCH 2025; 270:120912. [PMID: 39848513 DOI: 10.1016/j.envres.2025.120912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Iron-activated peroxyacetic acid (PAA) represents an innovative advanced oxidation process (AOP). However, the efficiency of PAA activation by Fe(III) is often underestimated due to the widespread assumption that Fe(III) exhibits much lower ability than Fe(II) to activate PAA. Herein, the oxidative degradation of Rhodamine B (RhB) by Fe(III)-activated PAA process was investigated, and some new insights into the performance and mechanism of the Fe(III)/PAA system were presented. Although the reaction rate of Fe(III) with PAA was slightly slower than that of Fe(II), Fe(III) was still able to activate PAA effectively, and the degradation efficiency of RhB was comparable to that of the Fe(II)/PAA system after 30 min of reaction. Notably, the Fe(III)/PAA system demonstrated superior oxidation capacity compared to conventional oxidant systems, including Fe(III)/H2O2, Fe(III)/PDS, Fe(III)/PMS. The degradation efficiency varied significantly across different water substrates. While Cl- exhibited a certain inhibitory effect on the degradation of RhB, H2PO4- exerted a pronounced inhibitory influence, whereas NO3-, SO42- and HCO3- had negligible effects. The increase of humic acid (HA) showed a facilitating effect in the initial stage, followed by an inhibitory effect. Furthermore, mechanistic studies indicated that H2O2 in PAA solution was not effectively activated. The degradation of RhB primarily occurred through a non-radical pathway generated by PAA activation, with the contribution of reactive species (RS) in the order of FeIVO2+ > •OH > R-O• (CH3COO• and CH3COOO•). RhB degradation was achieved not only by attacking the chromophore of RhB molecules, but also the effective destruction of the stable structures such as benzene rings. This study enhances the understanding of Fe(III)-activated PAA and broadens its potential for developing and applying PAA-based AOPs.
Collapse
Affiliation(s)
- Songyun Liu
- Institute of Marine Science, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China; Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China
| | - Fei Di
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhan Lian
- Institute of Marine Science, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Guang Wang
- Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Qi Yu
- Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Donghui Han
- Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| |
Collapse
|
5
|
Liu Y, Xu L, Li X, Wang S. Removal of sulfamethoxazole by Fe(III)-activated peracetic acid combined with ascorbic acid. ENVIRONMENTAL TECHNOLOGY 2024:1-11. [PMID: 39737894 DOI: 10.1080/09593330.2024.2442779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/08/2024] [Indexed: 01/01/2025]
Abstract
Ascorbic acid (AA) was used as a reducing agent to improve the Fe(III)-activated peracetic acid (PAA) system for the removal of sulfamethoxazole (SMX) in this work. The efficiency, influencing factors and mechanism of SMX elimination in the AA/Fe(III)/PAA process were studied. The results exhibited that AA facilitated the reduction of Fe(III) to Fe(II) and subsequently improved the activation of PAA and H2O2. Various radicals, including organic radicals (e.g. CH3C(O)O• and CH3C(O)OO•) and hydroxyl radical (HO•), were rapidly formed from the activated PAA and H2O2, resulting in SMX removal. Increasing dosages of PAA and Fe(III) contributed to enhanced SMX degradation, while excessive PAA and Fe(III) did not further promote SMX degradation. Due to the radicals' quenching effect, excess AA hindered SMX elimination in the AA/Fe(III)/PAA process. The presence of HCO 3 - and Cl- inhibited SMX removal in this system, whereas NO 3 - , SO 4 2 - and natural organic matter had little impact on SMX degradation. The transformation pathways of SMX in the AA/Fe(III)/PAA system included hydroxylation, bond cleavage and amino oxidation. This research provides a strategy to enhance the Fe(III)-activated PAA system for the elimination of refractory organic pollutants.
Collapse
Affiliation(s)
- Yiqing Liu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Linghan Xu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Xin Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Shixiang Wang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Jiang Z, Song T, Huang B, Qi C, Peng Z, Wang T, Li Y, Ye L. Hollow Biomass Adsorbent Derived from Platanus Officinalis Grafted with Polydopamine-Mediated Polyethyleneimine for the Removal of Eriochrome Black T from Water. Molecules 2024; 29:5730. [PMID: 39683889 DOI: 10.3390/molecules29235730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Platanus officinalis fibers (PFs) taking advantage of high-availability, eco-friendly and low-cost characteristics have attracted significant focus in the field of biomaterial application. Polyethyleneimine grafted with polydopamine on magnetic Platanus officinalis fibers (PEI-PDA@M-PFs) were prepared through a two-step process of mussel inspiration and the Michael addition reaction, which can work as an effective multifunctional biomass adsorbent for anionic dye with outstanding separation capacity and efficiency. The as-prepared PEI-PDA@M-PFs possess desirable hydrophilicity, magnetism and positive charge, along with abundant amino functional groups on the surface, facilitating efficient adsorption and the removal of Eriochrome Black T (EBT) dyes from water. In addition to the formation mechanism, the adsorption properties, including adsorption isotherms, kinetics, and the reusability of the absorbent, were studied intensively. The as-prepared PEI-PDA@M-PFs achieved a theoretical maximum adsorption capacity of 166.11 mg/g under optimal conditions (pH 7.0), with 10 mg of the adsorbent introduced into the EBT solution. The pseudo-second-order kinetic and Langmuir models were well matched with experimental data. Moreover, thermodynamic data ΔH > 0 revealed homogeneous chemical adsorption with a heat-absorption reaction. The adsorbent remained at high stability and recyclability even after five cycles of EBT adsorption processes. These above findings provide new insights into the adsorption processes and the development of biologic material for sustainable applications.
Collapse
Affiliation(s)
- Zefeng Jiang
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Tongyang Song
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Bowen Huang
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Chengqiang Qi
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Zifu Peng
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Tong Wang
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Yuliang Li
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Linjing Ye
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| |
Collapse
|
7
|
Liu Y, Zhou R, Tang Y, Li X, Xu L, Fu Y. Enhanced Mn(II)/peracetic acid by nitrilotriacetic acid to degrade organic contaminants: Role of Mn(V) and organic radicals. Sci Rep 2024; 14:29686. [PMID: 39613929 DOI: 10.1038/s41598-024-81368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
In this work, it was found that the presence of nitrilotriacetic acid (NTA) could enhance the elimination of sulfamethoxazole (SMX) significantly in Mn(II)/peracetic acid (PAA) process. NTA firstly complexed with Mn(II) to produce Mn(II)-NTA complex, which could activate PAA producing CH3C(O)O· and Mn(III)-NTA complex. Subsequently, Mn(V) was generated via two-electron transfer between Mn(III)-NTA complex and PAA. According to the results of UV-vis spectrum analysis, scavenging experiments and chemical probe method, organic radicals and Mn(V) were proved to participate in SMX abatement and Mn(V) was the predominant reactive oxidant. Four possible degradation pathways of SMX in Mn(II)/PAA/NTA process including hydroxylation, amino oxidation, bond cleavage and coupling reaction were proposed based on six identified degradation products. Mn(II)/PAA/NTA process worked only in acidic and neutral conditions and the increase in PAA, Mn(II) or NTA concentration could accelerate SMX removal. This study provides a strategy for improving PAA activation by Mn(II) and an insight into SMX degradation mechanism by Mn(II)/PAA/NTA process.
Collapse
Affiliation(s)
- Yiqing Liu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Runyu Zhou
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
- Zhejiang Development & Planning Institute, Hangzhou, 310012, China
| | - Yuqi Tang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xin Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Linghan Xu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yongsheng Fu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
8
|
Wu J, Zou J, Lin J, Li S, He L, Wu Z, Li Q, Gong C, Ma J. Overlooked Role of Coexistent Hydrogen Peroxide in Activated Peracetic Acid by Cu(II) for Enhanced Oxidation of Organic Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15741-15754. [PMID: 38359405 DOI: 10.1021/acs.est.3c09753] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cu(II)-catalyzed peracetic acid (PAA) processes have shown significant potential to remove contaminants in water treatment. Nevertheless, the role of coexistent H2O2 in the transformation from Cu(II) to Cu(I) remained contentious. Herein, with the Cu(II)/PAA process as an example, the respective roles of PAA and H2O2 on the Cu(II)/Cu(I) cycling were comprehensively investigated over the pH range of 7.0-10.5. Contrary to previous studies, it was surprisingly found that the coexistent deprotonated H2O2 (HO2-), instead of PAA, was crucial for accelerating the transformation from Cu(II) to Cu(I) (kHO2-/Cu(II) = (0.17-1) × 106 M-1 s-1, kPAA/Cu(II) < 2.33 ± 0.3 M-1 s-1). Subsequently, the formed Cu(I) preferentially reacted with PAA (kPAA/Cu(I) = (5.84 ± 0.17) × 102 M-1 s-1), rather than H2O2 (kH2O2/Cu(I) = (5.00 ± 0.2) × 101 M-1 s-1), generating reactive species to oxidize organic contaminants. With naproxen as the target pollutant, the proposed synergistic role of H2O2 and PAA was found to be highly dependent on the solution pH with weakly alkaline conditions being more conducive to naproxen degradation. Overall, this study systematically investigated the overlooked but crucial role of coexistent H2O2 in the Cu(II)/PAA process, which might provide valuable insights for better understanding the underlying mechanism in Cu-catalyzed PAA processes.
Collapse
Affiliation(s)
- Jianying Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jinbin Lin
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Environment, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Linfeng He
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Zhijie Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, Fujian 361005, P. R. China
| | - Chunming Gong
- Xiamen Institute of Environmental Science, Xiamen, Fujian 361005, P. R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| |
Collapse
|
9
|
Zhang J, Zhang Y, Lv N, Li F, Li Y, Guo Z. Electrochemistry promotion of Fe(Ⅲ)/Fe(Ⅱ) cycle for continuous activation of PAA for sludge disintegration: Performance and mechanism. ENVIRONMENTAL RESEARCH 2024; 256:119268. [PMID: 38815721 DOI: 10.1016/j.envres.2024.119268] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
In this study, electrochemistry was used to enhance the advanced oxidation of Fe(Ⅱ)/PAA (EC/Fe(Ⅱ)/PAA) to disintegrate waste activated sludge, and its performance and mechanism was compared with those of EC, PAA, EC/PAA and Fe(Ⅱ)/PAA. Results showed that the EC/Fe(Ⅱ)/PAA process effectively improved sludge disintegration and the concentrations of soluble chemical oxygen demand, polysaccharides and nucleic acids increased by 62.85%, 41.15% and 12.21%, respectively, compared to the Fe(Ⅱ)/PAA process. Mechanism analysis showed that the main active species produced in the EC/Fe(Ⅱ)/PAA process were •OH, R-O• and FeIVO2+. During the reaction process, sludge flocs were disrupted and particle size was reduced by the combined effects of active species oxidation, electrochemical oxidation and PAA oxidation. Furthermore, extracellular polymeric substances (EPS) was degraded, the conversion of TB-EPS to LB-EPS and S-EPS was promoted and the total protein and polysaccharide contents of EPS were increased. After sludge cells were disrupted, intracellular substances were released, causing an increase in nucleic acids, humic acids and fulvic acids in the supernatant, and resulting in sludge reduction. EC effectively accelerated the conversion of Fe(Ⅲ) to Fe(Ⅱ), which was conducive to the activation of PAA, while also enhancing the disintegration of EPS and sludge cells. This study provided an effective approach for the release of organic matter, offering significant benefits in sludge resource utilization.
Collapse
Affiliation(s)
- Jing Zhang
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Yanping Zhang
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China.
| | - Ning Lv
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Fen Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, Heilongjiang, China
| | - Yibing Li
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Zhenjie Guo
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
10
|
Lu W, Chen N, Feng C, Sirés I, An N, Mu H. Exploring the viability of peracetic acid-mediated antibiotic degradation in wastewater through activation with electrogenerated HClO. WATER RESEARCH 2024; 261:122007. [PMID: 38996730 DOI: 10.1016/j.watres.2024.122007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Electrochemical advanced oxidation processes (EAOPs) face challenging conditions in chloride media, owing to the co-generation of undesirable Cl-disinfection byproducts (Cl-DBPs). Herein, the synergistic activation between in-situ electrogenerated HClO and peracetic acid (PAA)-based reactive species in actual wastewater is discussed. A metal-free graphene-modified graphite felt (graphene/GF) cathode is used for the first time to achieve the electrochemically-mediated activation of PAA. The PAA/Cl- system allowed a near-complete sulfamethoxazole (SMX) degradation (kobs =0.49 min-1) in only 5 min in a model solution, inducing 32.7- and 8.2-fold rise in kobs as compared to single PAA and Cl- systems, respectively. Such enhancement is attributed to the occurrence of 1O2 (25.5 μmol L-1 after 5 min of electrolysis) from the thermodynamically favored reaction between HClO and PAA-based reactive species. The antibiotic degradation in a complex water matrix was further considered. The SMX removal is slightly susceptible to the coexisting natural organic matter, with both the acute cytotoxicity (ACT) and the yield of 12 DBPs decreasing by 29.4 % and 37.3 %, respectively. According to calculations, HClO accumulation and organic Cl-addition reactions are thermodynamically unfavored. This study provides a scenario-oriented paradigm for PAA-based electrochemical treatment technology, being particularly appealing for treating wastewater rich in Cl- ion, which may derive in toxic Cl-DBPs.
Collapse
Affiliation(s)
- Wang Lu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China; Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Ning An
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Haotian Mu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
11
|
Huang J, Fraser A, Jiang X. Efficacy of three EPA-registered antimicrobials and steam against two human norovirus surrogates on nylon carpets with two backing types. Appl Environ Microbiol 2024; 90:e0038424. [PMID: 38786363 PMCID: PMC11218654 DOI: 10.1128/aem.00384-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Carpet cleaning guidelines currently do not include the use of an antimicrobial, except after a bodily fluid event. To address this gap, we compared the efficacy of three antimicrobials-two hydrogen peroxide-based (H2O2) products (A and B) and one chlorine-based product (C)-and a steam treatment against two norovirus surrogates, specifically feline calicivirus (FCV) and Tulane virus (TuV). These tests were performed on nylon carpets with either water-permeable or waterproof backing types. The effect of repeated antimicrobial use on carpet properties was also evaluated. For a carpet with water-permeable backing, products A, B, and C achieved a 0.8, 3.1, and 0.9 log10 PFU/coupon reduction of FCV and 0.3, 2.5, and 0.4 log10 TCID50/coupon reduction of TuV, respectively, following a 30 min contact time. For carpet with waterproof backing, only product B achieved a 5.0 log10 PFU/coupon reduction of FCV and >3.0 log10 TCID50/coupon reduction of TuV, whereas products A and C achieved a 2.4 and 1.6 log10 PFU/coupon reduction of FCV and a 1.2 and 1.2 log10 TCID50/coupon reduction of TuV, respectively. Steam treatment achieved a ≥ 5.2 log10 PFU/coupon reduction of FCV and a > 3.2 log10 TCID50/coupon reduction of TuV in 15 seconds on the carpet with both backing types. The repeated use of products A and B decreased the tensile strength of the carpet backing, while use of product B resulted in cracks on carpet fibers. Overall, steam treatment for 15 seconds was efficacious on both carpet types, but only product B achieved efficacy after a 30-minute exposure on the carpet with waterproof backing.IMPORTANCECarpets are common in long-term care facilities, despite its potential as a vehicle for transmission of agents associated with healthcare-associated infections, including human norovirus (NoV). Presently, our understanding of carpet disinfection is limited; hence, there are no commercial antimicrobials against norovirus available for use on carpets. Our findings showed that steam treatment, which minimally affected the properties of carpet fibers and backing, was more efficacious against human norovirus surrogates on carpets compared to the three chemical antimicrobials tested. Additionally, the two surrogates were more sensitive to chemical antimicrobials on the carpet with waterproof backing compared to carpets with water-permeable backing. These findings can inform development of antimicrobials for use on carpets contaminated with human norovirus.
Collapse
Affiliation(s)
- Jinge Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Angela Fraser
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
12
|
Sciscenko I, Vione D, Minella M. Infancy of peracetic acid activation by iron, a new Fenton-based process: A review. Heliyon 2024; 10:e27036. [PMID: 38495153 PMCID: PMC10943352 DOI: 10.1016/j.heliyon.2024.e27036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
The exacerbated global water scarcity and stricter water directives are leading to an increment in the recycled water use, requiring the development of new cost-effective advanced water treatments to provide safe water to the population. In this sense, peracetic acid (PAA, CH3C(O)OOH) is an environmentally friendly disinfectant with the potential to challenge the dominance of chlorine in large wastewater treatment plants in the near future. PAA can be used as an alternative oxidant to H2O2 to carry out the Fenton reaction, and it has recently been proven as more effective than H2O2 towards emerging pollutants degradation at circumneutral pH values and in the presence of anions. PAA activation by homogeneous and heterogeneous iron-based materials generates - besides HO• and FeO2+ - more selective CH3C(O)O• and CH3C(O)OO• radicals, slightly scavenged by typical HO• quenchers (e.g., bicarbonates), which extends PAA use to complex water matrices. This is reflected in an exponential progress of iron-PAA publications during the last few years. Although some reviews of PAA general properties and uses in water treatment were recently published, there is no account on the research and environmental applications of PAA activation by Fe-based materials, in spite of its gratifying progress. In view of these statements, here we provide a holistic review of the types of iron-based PAA activation systems and analyse the diverse iron compounds employed to date (e.g., ferrous and ferric salts, ferrate(VI), spinel ferrites), the use of external ferric reducing/chelating agents (e.g., picolinic acid, l-cysteine, boron) and of UV-visible irradiation systems, analysing the mechanisms involved in each case. Comparison of PAA activation by iron vs. other transition metals (particularly cobalt) is also discussed. This work aims at providing a thorough understanding of the Fe/PAA-based processes, facilitating useful insights into its advantages and limitations, overlooked issues, and prospects, leading to its popularisation and know-how increment.
Collapse
Affiliation(s)
- Iván Sciscenko
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, plaza Ferrándiz y Carbonell S/N, 03801, Alcoy, Spain
| | - Davide Vione
- Department of Chemistry, University of Turin, via Pietro Giuria 5, 10125, Turin, Italy
| | - Marco Minella
- Department of Chemistry, University of Turin, via Pietro Giuria 5, 10125, Turin, Italy
| |
Collapse
|
13
|
Lin Y, He Y, Sun Q, Ping Q, Huang M, Wang L, Li Y. Underlying the mechanisms of pathogen inactivation and regrowth in wastewater using peracetic acid-based disinfection processes: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132868. [PMID: 37944231 DOI: 10.1016/j.jhazmat.2023.132868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Peracetic acid (PAA) disinfection is an emerging wastewater disinfection process. Its advantages include excellent pathogen inactivation performance and little generation of toxic and harmful disinfection byproducts. The objective of this review is to comprehensively analyze the experimental data and scientific information related to PAA-based disinfection processes. Kinetic models and modeling frameworks are discussed to provide effective tools to assess pathogen inactivation efficacy. Then, the efficacy of PAA-based disinfection processes for pathogen inactivation is summarized, and the inactivation mechanisms involved in disinfection and the interactions of PAA with conventional disinfection processes are elaborated. Subsequently, the risk of pathogen regrowth after PAA-based disinfection process is clearly discussed. Finally, to address ecological risks related to PAA-based disinfection, its impact on the spread of antibiotic-resistant bacteria and the transfer of antibiotic resistance genes (ARGs) is also assessed. Among advanced PAA-based disinfection processes, ultraviolet/PAA is promising not only because it has practical application value but also because pathogen regrowth can be inhibited and ARGs transfer risk can be significantly reduced via this process. This review presents valuable and comprehensive information to provide an in-depth understanding of PAA as an alternative wastewater disinfection technology.
Collapse
Affiliation(s)
- Yuqian Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Yunpeng He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qiya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Manhong Huang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China; Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
14
|
Lu W, Chen N, Feng C, An N, Dong Y. Peracetic acid-based electrochemical treatment of sulfamethoxazole and real antibiotic wastewater: Different role of anode and cathode. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132819. [PMID: 39491988 DOI: 10.1016/j.jhazmat.2023.132819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/23/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Although has high oxidation capacity and low toxic by-product formation potential, the feasibility, mechanism, and antibiotic treatment performance of peracetic acid (PAA)-based electrochemical system remains unknown. This work systematically studied the electro-activation process of PAA, and distinguished the different mechanisms of anode and cathode. In the PAA-based electrochemical system, the anode mainly produces BDD(•OH), and the cathode is mainly the R-O• (especially CH3CO3•). These differences lead to different degradation pathway and toxicity evolution of sulfamethoxazole (SMX). The anode transformation products (TPs) show negative toxicity and are difficult to be further removed, while TPs from PAA-dominated cathode posed electron-donating effect and a tapering ecological risk. The BDD(•OH) can well mineralize the TPs produced from cathode. Moreover, the active chlorine produced by the anode can effectively avoid the accumulation of NH4+- N released by antibiotic degradation. In an undivided cell, PAA-based treatment for real antibiotic wastewater achieved 73.9%, 59.4%, 76.9%, and 31.7% of COD, TOC, NH4+- N, and TN removal, respectively. More importantly, when PAA existed in this system, the active chlorine and AOCl accumulation are inhibited (inhibition ratio 83.5% and 82.7%, respectively). This study provides theoretical and technical support for the practical application of PAA-based electrochemical system.
Collapse
Affiliation(s)
- Wang Lu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Ning An
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Yanyan Dong
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| |
Collapse
|
15
|
Kiejza D, Karpińska J, Piotrowska-Niczyporuk A, Kotowska U. Advanced oxidation of bisphenols by peracetic acid activated by light and ultrasound. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122029. [PMID: 37336351 DOI: 10.1016/j.envpol.2023.122029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
Light and ultrasound have been tested as physical factors activating peracetic acid (PAA) to oxidize bisphenols (BPs). Based on the chemometric approach of the Taguchi method, UV irradiation with a wavelength of 254 nm was selected as the optimal type of PAA activator. The effectiveness of the UV/PAA system was also compared with other oxidation methods. Under optimal conditions ([BPs]0 = 1 mg/L, 1 mM PAA, pH 9, UV 254 nm) the tested bisphenols are completely degraded within 15-60 min. The influence of the matrix on the process of organic micropollutants removal in the UV/PAA system was also investigated. Toxicity assessment leads to the conclusion that the reaction mixture shows limited toxicity towards living organisms.
Collapse
Affiliation(s)
- Dariusz Kiejza
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland.
| | - Joanna Karpińska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland
| | - Alicja Piotrowska-Niczyporuk
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245, Bialystok, Poland
| | - Urszula Kotowska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245, Bialystok, Poland
| |
Collapse
|
16
|
Liu J, Zhang X, Li J, Zhang X, Feng L, Han S, Pan T, Zhang T, Wu S, Ke Z, Liu B, Zheng H. Study on the performance efficiency, mechanism, power consumption and biochemical properties of E/Ce(IV)/PMS on the enhanced removal of RB19. ENVIRONMENTAL RESEARCH 2023:116271. [PMID: 37286124 DOI: 10.1016/j.envres.2023.116271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
In this study, an advanced oxidation process with E/Ce(IV) synergistic PMS (E/Ce(IV)/PMS) was established for the efficient removal of Reactive Blue 19 (RB19). The catalytic oxidation performance of different coupling systems was examined and the synergistic effect of E/Ce(IV) with PMS in the system was substantiated. The oxidative removal of RB19 in E/Ce(IV)/PMS was excellent, achieving a removal efficiency of 94.47% and a reasonable power consumption (EE/O value was 3.27 kWh·m-3). The effect of pH, current density, Ce(IV) concentration, PMS concentration, initial RB19 concentration and water matrix on the removal efficiency of RB19 were explored. Additionally, quenching and EPR experiments showed that the solution contains different radicals such as SO4·-, HO∙ and 1O2, where 1O2 and SO4·- played key roles, but HO∙ just acted a weaker role. Ce ion trapping experiment confirmed that Ce(IV) was involved in the reaction process and played a major role (29.91%). RB19 was subject to three possible degradation pathways, and the intermediate products displayed well biochemical properties. To conclude, the degradation mechanism of RB19 was explored and discussed. In the presence of current, E/Ce(IV)/PMS performed a rapid Ce(IV)/Ce(III) cycle, continuously generating strong catalytic oxidation Ce(IV), The reactive radicals derived from the decomposition of PMS, in conjunction with Ce(IV) and direct electro-oxidation, efficiently destroyed the molecular structure of RB19 and showed an efficient removal rate.
Collapse
Affiliation(s)
- Jiajun Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Higher Education Mega Center, Panyu District, No100, Waihuan Xi Road, Guangzhou, Guangzhou, 510006, Guangdong, PR China
| | - Xionghao Zhang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Higher Education Mega Center, Panyu District, No100, Waihuan Xi Road, Guangzhou, Guangzhou, 510006, Guangdong, PR China
| | - Junda Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Higher Education Mega Center, Panyu District, No100, Waihuan Xi Road, Guangzhou, Guangzhou, 510006, Guangdong, PR China
| | - Xionghao Zhang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Higher Education Mega Center, Panyu District, No100, Waihuan Xi Road, Guangzhou, Guangzhou, 510006, Guangdong, PR China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Higher Education Mega Center, Panyu District, No100, Waihuan Xi Road, Guangzhou, Guangzhou, 510006, Guangdong, PR China.
| | - Shuai Han
- School of Civil and Transportation Engineering, Guangdong University of Technology, Higher Education Mega Center, Panyu District, No100, Waihuan Xi Road, Guangzhou, Guangzhou, 510006, Guangdong, PR China
| | - Tingyu Pan
- School of Civil and Transportation Engineering, Guangdong University of Technology, Higher Education Mega Center, Panyu District, No100, Waihuan Xi Road, Guangzhou, Guangzhou, 510006, Guangdong, PR China
| | - Taiheng Zhang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Higher Education Mega Center, Panyu District, No100, Waihuan Xi Road, Guangzhou, Guangzhou, 510006, Guangdong, PR China
| | - Shenyu Wu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Higher Education Mega Center, Panyu District, No100, Waihuan Xi Road, Guangzhou, Guangzhou, 510006, Guangdong, PR China
| | - Zijie Ke
- School of Civil and Transportation Engineering, Guangdong University of Technology, Higher Education Mega Center, Panyu District, No100, Waihuan Xi Road, Guangzhou, Guangzhou, 510006, Guangdong, PR China
| | - Bingzhi Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Higher Education Mega Center, Panyu District, No100, Waihuan Xi Road, Guangzhou, Guangzhou, 510006, Guangdong, PR China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
17
|
Yuan Q, Qu S, Li R, Huo ZY, Gao Y, Luo Y. Degradation of antibiotics by electrochemical advanced oxidation processes (EAOPs): Performance, mechanisms, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159092. [PMID: 36174705 DOI: 10.1016/j.scitotenv.2022.159092] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Global consumption and discharge of antibiotics have led to the rapid development and spread of bacterial antibiotic resistance. Among treatment strategies, electrochemical advanced oxidation processes (EAOPs) are gaining popularity for treating water/wastewater containing antibiotics due to their high efficiency and easiness of operation. In this review, we summarize various forms of EAOPs that contribute to antibiotic degradation, including common electrochemical oxidation (EO), electrolyte enhanced EO, electro-Fenton (EF) processes, EF-like process, and EAOPs coupling with other processes. Then we assess the performance of various EAOPs in antibiotic degradation and discuss the influence of key factors, including electrode, initial concentration and type of antibiotic, operation conditions, electrolyte, and water quality. We also review mechanisms and degradation pathways of various antibiotics degradation by EAOPs, and address the species and toxicity of intermediates produced during antibiotics treatment. Finally, we highlight challenges and critical research needs to facilitate the application of EAOPs in antibiotic treatment.
Collapse
Affiliation(s)
- Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; School of the Environment, Nanjing Tech University, Nanjing 211816, PR China.
| | - Siyao Qu
- School of the Environment, Nanjing Tech University, Nanjing 211816, PR China
| | - Rong Li
- School of the Environment, Nanjing Tech University, Nanjing 211816, PR China
| | - Zheng-Yang Huo
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, PR China.
| | - Yan Gao
- School of the Environment, Nanjing Tech University, Nanjing 211816, PR China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
18
|
Peracetic acid activation by natural chalcopyrite for metronidazole degradation: Unveiling the effects of Cu-Fe bimetallic sites and sulfur species. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Liu J, Xu M, Zhang T, Chu X, Shi K, Li J. Al/TiO 2 composite as a photocatalyst for the degradation of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9738-9748. [PMID: 36063271 DOI: 10.1007/s11356-022-22861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
TiO2 is a catalyst that can effectively degrade organic pollutants with the following advantages, low cost, simplicity, and pollution-free nature. In recent years, the non-noble plasmonic metal Al has effectively improved the photocatalytic performance of TiO2. However, the current reports are limited to the photocatalytic performance of Al/TiO2 on the substrate, which requires expensive large-scale vacuum equipment. In this study, monodispersed Al particles were proposed to enhance the photocatalysis of TiO2. The localized surface plasmon resonance (LSPR) effect of Al is proven by finite difference time domain method (FDTF) simulation. Then, Al/TiO2 composites were prepared by combining monodispersed Al and TiO2. The influence of ligand (glutathione (GSH), glutamic acid (GAG), or 3-mercaptopropane acid (MPA)), Al size (40 to 300 nm), and the ratio of Al to TiO2 (0.5:1 to 10:1) on the photocatalytic degradation of methylene blue (MB) by Al/TiO2 were discussed. The obtained results showed that the Al/TiO2 composite which were prepared with 200 nm Al particles, GSH as the ligand bridge, and an Al:TiO2 ratio of 1:1 had the best MB degradation effect. It can degrade 97.7% of 10 mg/L MB in 100 min. The reaction rate of the Al/TiO2 composite with the optimal photocatalytic performance is k=3.36×10-2 min-1, which is 10 times that of P25 TiO2. In addition, Al/TiO2 has a good photocatalytic effect on rhodamine B (RhB) and crystal violet (CV). Therefore, Al/TiO2 composites with the advantage of high efficiency are a type of potential photocatalytic material that can be used for the photocatalytic treatment of organic pollutants in water.
Collapse
Affiliation(s)
- Jing Liu
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Mingze Xu
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
| | - Tingsong Zhang
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Xueying Chu
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Kaixi Shi
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Jinhua Li
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| |
Collapse
|
20
|
Cao Y, Yao J, Knudsen TŠ, Pang W, Zhu J, Liu B, Li H, Li M, Su J. Radical chemistry, degradation mechanism and toxicity evolution of BPA in the UV/chlorine and UV/H 2O 2. CHEMOSPHERE 2023; 312:137169. [PMID: 36402353 DOI: 10.1016/j.chemosphere.2022.137169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/08/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
UV-assisted advanced oxidation processes (AOPs) are widely used and studied in degradation of bisphenol A (BPA). However, detailed information on their radical chemistry and degradation mechanisms is still lacking. In this study, degradation of BPA was comparatively evaluated to investigate the radical mechanisms, products and the toxicity variation in UV/chlorine and UV/H2O2 processes. In comparison with UV/H2O2, UV/chlorine had a higher BPA degradation efficiency and higher pH-dependency due to chlorination and the synergy of •OH and RCS. The •OH and Cl• played a pivotal role as the primary radicals in BPA degradation by UV/chlorine process at all pH investigated (6-8). The relative contributions of the secondary radicals ClO• gradually decreased with a variation of pH from 6 to 8 in this process. Presence of HCO3─ and HA inhibited BPA degradation to different extents in UV/chlorine process, while the effect of Cl─ could be neglected. According to the identified transformation products, chlorination (major), hydroxylation and breakage of the isopropylidene chain were BPA decomposition pathways in the UV/chlorine system. In the UV/H2O2 system, only hydroxylation (major) and breakage of the isopropylidene chain occurred. The toxicity analysis, based on the proposed degradation pathways, indicated that the generation of chlorinated products in the UV/chlorine system led to a higher toxicity of the resulting mixture than in the UV/H2O2 system. Although UV/chlorine has an excellent BPA degradation effect and it is cost-effective, the possible environmental risk should be carefully considered when UV/chlorine system is used to remove BPA in real waters.
Collapse
Affiliation(s)
- Ying Cao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Tatjana Šolević Knudsen
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000, Belgrade, Serbia
| | - Wancheng Pang
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Junjie Zhu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Bang Liu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Miaomiao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jianchao Su
- School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
21
|
Huang J, Puyang C, Wang Y, Zhang J, Guo H. Hydroxylamine activated by discharge plasma for synergetic degradation of tetracycline in water: Insight into performance and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Yao K, Fang L, Liao P, Chen H. Ultrasound-activated peracetic acid to degrade tetracycline hydrochloride: Efficiency and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Shi C, Wang Y, Zhang K, Lichtfouse E, Li C, Zhang Y. Fe-biochar as a safe and efficient catalyst to activate peracetic acid for the removal of the acid orange dye from water. CHEMOSPHERE 2022; 307:135686. [PMID: 35934093 DOI: 10.1016/j.chemosphere.2022.135686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/20/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Pollution of wastewater and natural waters by organic contaminants is a major health issue, yet actual remediation methods are limited by incomplete removal of recalcitrant contaminants and by secondary pollution by chlorinated contaminants and catalytic metals. To attempt to solve these issues, we tested the removal of acid orange by peracetic acid (PAA), a safe oxidant, activated by Fe-biochar that iron anchored on biochar to prevent secondary pollution by iron. Fe-biochar was synthesized using a simple, one-step pyrolysis method. We investigated the effects of PAA concentration, pH, humic acids, chloride, bicarbonate on the reaction. Radical quenching and electron paramagnetic resonance were used to identify reacting species. Results showed that the granulous structure of Fe-biochar and the presence of Fe, Fe3O4, Fe2O3, and Fe3C on Fe-biochar surface. The highest removal of acid orange of 99.9% was obtained with 1.144 mM PAA and 0.3 g/L Fe-biochar at pH 7. Acid orange removal increases with Fe-biochar dose, decreases with pH, is slightly inhibited by humic acids and bicarbonate, and is not modified by chloride. Our experimental results suggested that CH3C(O)OO· and CH3C(O)O· are the main radical species, but there may also be non-radical effects in Fe-biochar/PAA process. Fe-biochar displayed high re-usability, with 92.8% removal after five uses.
Collapse
Affiliation(s)
- Changjie Shi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200433, China.
| | - Yong Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200433, China.
| | - Kai Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200433, China.
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, CEREGE, Avenue Louis Philibert, Aix en Provence, 13100, France.
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200433, China.
| | - Yunshu Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200433, China.
| |
Collapse
|
24
|
Review of Advanced Oxidation Processes Based on Peracetic Acid for Organic Pollutants. WATER 2022. [DOI: 10.3390/w14152309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In recent years, the removal of organic pollutants from water and wastewater has attracted more attention to different advanced oxidation processes (AOPs). There has been increasing interest in using peroxyacetic acid (PAA), an emerging oxidant with low or no toxic by-products, yet the promotion and application are limited by unclear activation mechanisms and complex preparation processes. This paper synthesized the related research results reported on the removal of organic pollutants by PAA-based AOPs. Based on the research of others, this paper not only introduced the preparation method and characteristics of PAA but also summarized the mechanism and reactivity of PAA activated by the free radical pathway and discussed the main influencing factors. Furthermore, the principle and application of the newly discovered methods of non-radical activation of PAA in recent years were also reviewed for the first time. Finally, the shortcomings and development of PAA-based AOPs were discussed and prospected. This review provides a reference for the development of activated PAA technology that can be practically applied to the treatment of organic pollutants in water.
Collapse
|
25
|
Zhao Y, Zhao Y, Yu X, Kong D, Fan X, Wang R, Luo S, Lu D, Nan J, Ma J. Peracetic acid integrated catalytic ceramic membrane filtration for enhanced membrane fouling control: Performance evaluation and mechanism analysis. WATER RESEARCH 2022; 220:118710. [PMID: 35687976 DOI: 10.1016/j.watres.2022.118710] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Endowing ceramic membrane (CM) catalytic reactivity can enhance membrane fouling control in the aid of in situ oxidation process. Peracetic acid (PAA) oxidant holds great prospect to integrate with CM for membrane fouling control, owing to the prominent advantages of high oxidation efficacy and easy activation. Herein, this study, for the first time, presented a PAA/CM catalytic filtration system achieving highly-efficient protein fouling alleviation. A FeOCl functionalized CM (FeOCl-CM) was synthesized, possessing high hydrophilicity, low surface roughness, and highly-efficient activation towards PAA oxidation. Using bovine serum albumin (BSA) as the model protein foulant, the PAA/FeOCl-CM catalytic filtration notably alleviated fouling occurring in both membrane pores and surface, and halved the flux reduction degree as compared with the conventional CM filtration. The PAA/FeOCl-CM catalytic oxidation allows quick and complete disintegration of BSA particles, via the breakage of the amide I and II bands and the ring opening of the aromatic amino acids (e.g., Tryptophan, Tyrosine). In-depth investigation revealed that the in situ generated •OH and 1O2 were the key reactive species towards BSA degradation during catalytic filtration, while the organic radical oxidation and the direct electron transfer pathway from BSA to PAA via FeOCl-CM played minor roles. Overall, our findings highlight a new PAA/CM catalytic filtration strategy for achieving highly-efficient membrane fouling control and provide an understanding of the integrated PAA catalytic oxidation - membrane filtration behaviors.
Collapse
Affiliation(s)
- Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dezhen Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinru Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Runzhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuangjiang Luo
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
26
|
Pan S, Zhai Z, Yang K, Xiang Y, Tang S, Zhang Y, Jiao T, Zhang Q, Yuan D. β-Lactoglobulin amyloid fibrils supported Fe(III) to activate peroxydisulfate for organic pollutants elimination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Man S, Zeng X, Yin Z, Yang H, Bao H, Xu K, Wang L, Ge X, Mo Z, Yang W, Li X. Preparation of a novel Ce and Sb co-doped SnO2 nanoflowers electrode by a two-step (hydrothermal and thermal decomposition) method for organic pollutants electrochemical degradation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Abstract
An electro-Fe2+-activated peracetic acid (EC/Fe2+/PAA) process was established for organic dye removal in water. The operation factors such as the PAA dosage, Fe2+ amount, current density, and pH were investigated on methylene blue (MB) removal for the synergistic EC/Fe2+/PAA system. Efficient MB decolorization (98.97% and 0.06992 min−1) was achieved within 30 min under 5.4 mmol L−1 PAA, 30 μmol L−1 Fe2+, 15 mA cm−2 current intensity, and pH 2.9. Masking tests affirmed that the dominating radicals were hydroxyl radicals (OH), organic radicals (CH3CO2·, CH3CO3·), and singlet oxygen (1O2), which were generated from the activated PAA by the synergetic effect of EC and Fe2+. The influence of inorganic ions and natural organic matter on the MB removal was determined. Moreover, the efficacy of the EC/Fe2+/PAA was confirmed by decontaminating other organic pollutants, such as antibiotic tetracycline and metronidazole. The studied synergy process offers a novel, advanced oxidation method for PAA activation and organic wastewater treatment.
Collapse
|
29
|
Wang H, Liu C, Ma X, Wang Y. Porous multifunctional phenylcarbamoylated-β-cyclodextrin polymers for rapid removal of aromatic organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13893-13904. [PMID: 34599452 DOI: 10.1007/s11356-021-16656-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
In this work, polymers containing a large number of benzene rings and multiple functional groups were designed to remove aromatic organic pollutants. Using tetrafluoroterephthalonitrile (TFTPN) as a rigid crosslinking agent to crosslink different functionalized phenylcarbamoylated-β-cyclodextrin derivatives to prepare a series of porous multifunctional cyclodextrin (CD) polymerizations, including three preliminary polymerized adsorption materials and a mix β-cyclodextrin polymer (X-CDP) prepared via a secondary crosslinking procedure of the above three materials. The X-CDP preparation process connects the pre-formed nanoparticles and increases the presence of linkers inside the particles. At the same time, X-CDP exhibited porous structure with various functional groups such as nitro, chlorine, fluorine, and hydroxyl. Those special characteristics render this material with good adsorption ability towards various aromatic organic pollutants in water, including tetracycline, ibuprofen, dichlorophenol, norfloxacin, bisphenol A, and naphthol. Especially, the maximum adsorption capacity for tetracycline at equilibrium reached 110.56 mg·g-1, which is competitive with the adsorption capacities of other polysaccharide adsorbents. X-CDP removed organic contaminants much more quickly than other adsorbents, reaching almost ~95% of its equilibrium in only 30 s, and the rate constant reaches 2.32 g·mg-1·min-1. The main adsorption process of the pollutants by X-CDP fitted the pseudo-second-order kinetic and Langmuir isotherm well, indicating that the adsorption process is monolayer adsorption. Moreover, X-CDP possessed the good reusability where the pollutant removal rate was only reduced 8.3% after five cycles. Such advantages render the polymer great potential in the rapid treatment of organic pollutants in water bodies.
Collapse
Affiliation(s)
- He Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Congzhi Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Xiaofei Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
| |
Collapse
|
30
|
Pak S, Ri K, Xu C, Ji Q, Sun D, Qi C, Yang S, He H, Pak M. Fabrication of g-C 3N 4/Y-TiO 2 Z-scheme heterojunction photocatalysts for enhanced photocatalytic activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj03691b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The g-C3N4/Y-TiO2 Z-scheme heterojunction photocatalysts for enhanced photocatalytic activity that use yttrium instead of noble metals was successfully manufactured.
Collapse
Affiliation(s)
- SongSik Pak
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
- Department of Applied Chemical Engineering, Hamhung University of Chemical Industry, Hamhung, Democratic People's Republic of Korea
| | - KwangChol Ri
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
- Institute of Chemical Engineering, Hamhung University of Chemical Industry, Hamhung, Democratic People's Republic of Korea
| | - Chenmin Xu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Qiuyi Ji
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Dunyu Sun
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Chengdu Qi
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - MyongNam Pak
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
- Department of Physics, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| |
Collapse
|