1
|
Dong S, Li Y, Zhu K, Wang C, Zhai S. Advances in structure designing and function tailoring strategy toward alginate-based hydrogels for efficient water remediation: A review. Int J Biol Macromol 2025; 304:140801. [PMID: 39924010 DOI: 10.1016/j.ijbiomac.2025.140801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Alginate (mainly sodium alginate, SA), as a natural polysaccharide material, has been widely applied in water remediation due to its excellent biocompatibility, degradability, and high hydration properties. Alginate hydrogels exhibit high adsorption capacity, effectively removing heavy metal ions, dyes, antibiotics, phosphate ions, and other pollutants from wastewater. This review begins with a description of the chemical structure of sodium alginate and its physicochemical properties, followed by a detailed discussion of the preparation methods of alginate-based composite hydrogels, including physical and chemical crosslinking, emulsification, electrostatic complexation, self-assembly, ultrasound and microwave-assisted methods. Based on the different compositions of the composites, alginate-based composite hydrogels are classified into several types for the removal of specific pollutants. Moreover, the paper systematically summarizes the research progress of alginate-based composite hydrogels in adsorbing heavy metal ions, dyes, antibiotics, phosphate ions for application effects. Although alginate-based composite hydrogels demonstrate great potential in water remediation, challenges such as insufficient mechanical strength, poor regeneration ability, and low stability under extreme conditions still exist. Finally, the future development prospects of alginate composite hydrogels in the field of water remediation, as well as potential research directions to improve their adsorption performance, enhance their regeneration capacity, and improve their environmental friendliness are presented.
Collapse
Affiliation(s)
- Shuwen Dong
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yingyi Li
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Kairuo Zhu
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chaohai Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China.
| | - Shangru Zhai
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; School of Environment and Nature Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang Province 310023, China.
| |
Collapse
|
2
|
Li J, Hou Y, Wu H, Chen C, Fu X, Liu J, Li L, Shang S, Deng G. A poly (vinyl alcohol) coated core-shell nanoparticle with a tunable surface for pH and glutathione dual-responsive drug delivery. Colloids Surf B Biointerfaces 2025; 247:114421. [PMID: 39637696 DOI: 10.1016/j.colsurfb.2024.114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The surface characteristics of nanoparticles play a pivotal role in modulating the efficiency and functionality of drug delivery systems, particularly when addressing the complex challenges of targeted therapeutics. This study presents the development of a core-shell nanoparticle system (PMAA@DOX-PVA), incorporating poly(vinyl alcohol) (PVA) as a dynamic shell component to establish dual responsiveness to pH and glutathione levels. The hydrophilic PVA shell is covalently conjugated to the poly (methylacrylic acid) (PMAA) core via a boronic ester bond, establishing a robust platform for controlled release with tunable surface properties. Notably, our findings demonstrate a remarkable enhancement in drug loading efficiency from a modest 8 % (PMAA@DOX) to an impressive 18 % (PMAA@DOX-PVA-0.2). Furthermore, under physiological conditions (pH 7.4), the drug leakage after 62 hours is significantly reduced, dropping from 37 % (PMAA@DOX) to 21 % (PMAA@DOX-PVA-0.2). This suggests a potential improvement in stability during blood circulation. Intriguingly, the PVA ratio was found to influence drug release profiles under different environments distinctly. The possible mechanism was proposed offering insight into this tunable behavior. In vitro cytotoxicity assays on A549 cancer cells reveal that the blank carriers exhibit excellent biocompatibility, while the PVA-coated nanoparticles significantly boost anti-tumor efficacy. Collectively, these results present a promising strategy for designing core-shell nanoparticles with customizable surface properties, paving the way for next-generation, multifunctional drug delivery systems in diverse biomedical applications.
Collapse
Affiliation(s)
- Jiagen Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China.
| | - Yuhang Hou
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China
| | - Hao Wu
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China
| | - Chunxia Chen
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng 475004, China
| | - Xiaohong Fu
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China
| | - Jun Liu
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan, China
| | - Lu Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shuyong Shang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China; Sichuan Provincial Key Laboratory of Philosophy and Social Sciences for Monitoring and Evaluation of Rural Land Utilization, Chengdu Normal University, Chengdu 611130, China.
| | - Guowei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China.
| |
Collapse
|
3
|
Wang Z, Xu J, Zhu J, Fang H, Lei W, Qu X, Cheng YY, Li X, Guan Y, Wang H, Song K. Osteochondral Tissue Engineering: Scaffold Materials, Fabrication Techniques and Applications. Biotechnol J 2025; 20:e202400699. [PMID: 39865414 DOI: 10.1002/biot.202400699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025]
Abstract
Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration. This review highlights the selection and design of scaffolds using natural and synthetic materials such as collagen, chitosan (Cs), and polylactic acid (PLA), alongside inorganic components like bioactive glass and nano-hydroxyapatite (nHAp). Key fabrication techniques-freeze-drying, electrospinning, and 3D printing-have improved scaffold porosity and mechanical properties. Special focus is placed on the design of multiphasic scaffolds that mimic natural tissue structures, promoting cell adhesion and differentiation and supporting the regeneration of cartilage and subchondral bone. In addition, the current obstacles and future directions for regenerating damaged osteochondral tissues will be discussed.
Collapse
Affiliation(s)
- Zhenyu Wang
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Jie Xu
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Jingjing Zhu
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Huan Fang
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Wanyu Lei
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Xinrui Qu
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Broadway, Australia
| | - Xiangqin Li
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yanchun Guan
- Department of Rheumatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongfei Wang
- Department of Orthopedics, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kedong Song
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
4
|
Liu Z, Zhao J, Wang A, Yuan H, Chi Y. Adsorption behavior and mechanism of Cu(II) by sodium alginate/carboxymethylcellulose/magnesium hydroxide (SC-MH) hydrogel. Int J Biol Macromol 2024; 277:134046. [PMID: 39033892 DOI: 10.1016/j.ijbiomac.2024.134046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
In the present work, an environmentally-friendly, reusable hydrogel ball characterized by its great adsorption capacity to Cu(II) was synthesized. The preparation of this hydrogel drew on sodium alginate (SA) and carboxymethyl cellulose (CMC) as primary composition elements. The endeavor brought novelty by ingeniously infusing it with slurry magnesium hydroxide (MH). The factors (pH, SC-MH amount, initial concentration, adsorption time) that are critical to adsorption were also investigated. FTIR, SEM-EDS and XPS were used to reveal the adsorption mechanism of Cu on SC-MH. The results show that the surface of SC-MH is rough, and there are a large number of gully-like structures conducive to adsorption, which are rich in hydroxyl and carboxyl groups. Under the optimum conditions, the maximum adsorption capacity reached 215.68 mg/g. Based on its high R2 value (0.999), the Langmuir model is determined to be the most appropriate for describing the adsorption behavior, indicating monolayer homogeneous adsorption. The kinetic data align well with the pseudo-second-order kinetic model. Furthermore, thermodynamic analysis reveals the adsorption process to be spontaneous and endothermic, as demonstrated by a negative ΔG and positive ΔH (38.8859 KJ/mol). The mechanism involves electrostatic attraction, chelation, Mg(OH)2 adsorption and ion exchange.
Collapse
Affiliation(s)
- Zhong Liu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jianhai Zhao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Anni Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Hongying Yuan
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yongzhi Chi
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
5
|
Dalei G, Jena M, Jena D, Kaur N, Prasad MSS, Sahu A, Das BR, Das S. Green NiO nanoparticle-integrated PVA-alginate hydrogel: potent nanocatalyst for efficient reduction of anthropogenic water pollutants. Bioprocess Biosyst Eng 2024; 47:1515-1531. [PMID: 38904714 DOI: 10.1007/s00449-024-03046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Hydrogel nanocatalyst composed of nickel oxide (NiO) nanoparticles embedded in PVA-alginate hydrogels were potentially explored toward the reduction of anthropogenic water pollutants. The NiO nanoparticles was accomplished via green method using waste pineapple peel extract. The formation of the nanoparticles was affirmed from different analytical techniques such as UV-Vis, FTIR, XRD, TGA, FESEM, and EDS. Spherical NiO nanoparticles were obtained having an average size of 11.5 nm. The nano NiO were then integrated into PVA-alginate hydrogel matrix forming a nanocomposite hydrogel (PVALg@ NiO). The integration of nano NiO rendered an improved thermal stability to the parent hydrogel. The PVALg@ NiO hydrogel was utilized as a catalyst in the reduction of 4-nitrophenol (4-NP), potassium hexacyanoferrate (III), rhodamine B (RhB), methyl orange (MO), and malachite green (MG) in the presence of a reducing agent, i.e., NaBH4. Under optimized conditions, the reduction reactions were completed by 4.0 min and 3.0 min for 4-NP and potassium hexacyanoferrate (III), respectively, and the rate constant was estimated to be 1.14 min-1 and 2.15 min-1. The rate of reduction was found to be faster for the dyes and the respective rate constants were be 0.17 s-1 for RhB, MG and 0.05 s-1 for MO. The PVALg@ NiO hydrogel nanocatalyst demonstrated a recyclability of four runs without any perceptible diminution in its catalytic mettle. The efficacy of the PVALg@ NiO hydrogel nanocatalyst was further examined for the reduction of dyes in real water samples collected from different sources and the results affirm its high catalytic potential. Thus, this study paves the path for the development of a sustainable hydrogel nanocatalyst for reduction of hazardous pollutants in wastewater treatment.
Collapse
Affiliation(s)
- Ganeswar Dalei
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Monalisa Jena
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Debasis Jena
- Department of Chemistry, Ravenshaw University, Cuttack, Odisha, 753003, India
| | - Navneel Kaur
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - M Swadhin Shakti Prasad
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Ayushman Sahu
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Bijnyan Ranjan Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India
| | - Subhraseema Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, Odisha, 751029, India.
- Department of Chemistry, Ravenshaw University, Cuttack, Odisha, 753003, India.
| |
Collapse
|
6
|
Li M, Wang F, Ouyang S, Liu Y, Hu Z, Wu Y, Qian J, Li Z, Wang L, Ma S. A comprehensive review on preparation and functional application of the wood aerogel with natural cellulose framework. Int J Biol Macromol 2024; 275:133340. [PMID: 38925195 DOI: 10.1016/j.ijbiomac.2024.133340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
As the traditional aerogel has defects such as poor mechanical properties, complicated preparation process, high energy consumption and non-renewable, wood aerogel as a new generation of aerogel shows unique advantages. With a natural cellulose framework, wood aerogel is a novel nano-porous material exhibiting exceptional properties such as light weight, high porosity, large specific surface area, and low thermal conductivity. Furthermore, its adaptability to further functionalization enables versatile applications across diverse fields. Driven by the imperative for sustainable development, wood aerogel as a renewable and eco-friendly material, has garnered significant attention from researchers. This review introduces preparation methods of wood aerogel based on the top-down strategy and analyzes the factors influencing their key properties intending to obtain wood aerogels with desirable properties. Avenues for realizing its functionality are also explored, and research progress across various domains are surveyed, including oil-water separation, conductivity and energy storage, as well as photothermal conversion. Finally, potential challenges associated with wood aerogel exploitation and utilization are addressed, alongside discussions on future prospects and research directions. The results emphasize the broad research value and future prospects of wood aerogels, which are poised to drive high-value utilization of wood and foster the development of green multifunctional aerogels.
Collapse
Affiliation(s)
- Mengdi Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shiqiang Ouyang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yichi Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zihan Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yiting Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Qian
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhihua Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Xuan L, Hou Y, Liang L, Wu J, Fan K, Lian L, Qiu J, Miao Y, Ravanbakhsh H, Xu M, Tang G. Microgels for Cell Delivery in Tissue Engineering and Regenerative Medicine. NANO-MICRO LETTERS 2024; 16:218. [PMID: 38884868 PMCID: PMC11183039 DOI: 10.1007/s40820-024-01421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.
Collapse
Affiliation(s)
- Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingying Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianhua Qiu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingling Miao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hossein Ravanbakhsh
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA.
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
8
|
Hamidon TS, Garba ZN, Zango ZU, Hussin MH. Biopolymer-based beads for the adsorptive removal of organic pollutants from wastewater: Current state and future perspectives. Int J Biol Macromol 2024; 269:131759. [PMID: 38679272 DOI: 10.1016/j.ijbiomac.2024.131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Among biopolymer-based adsorbents, composites in the form of beads have shown promising results in terms of high adsorption capacity and ease of separation from the effluents. This review addresses the potential of biopolymer-based beads to remediate wastewaters polluted with emerging organic contaminants, for instance dyes, active pharmaceutical ingredients, pesticides, phenols, oils, polyaromatic hydrocarbons, and polychlorinated biphenyls. High adsorption capacities up to 2541.76 mg g-1 for dyes, 392 mg g-1 for pesticides and phenols, 1890.3 mg g-1 for pharmaceuticals, and 537 g g-1 for oils and organic solvents have been reported. The review also attempted to convey to its readers the significance of wastewater treatment through adsorption by providing an overview on decontamination technologies of organic water contaminants. Various preparation methods of biopolymer-based gel beads and adsorption mechanisms involved in the process of decontamination have been summarized and analyzed. Therefore, we believe there is an urge to discuss the current state of the application of biopolymer-based gel beads for the adsorption of organic pollutants from wastewater and future perspectives in this regard since it is imperative to treat wastewater before releasing into freshwater bodies.
Collapse
Affiliation(s)
- Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - Zakariyya Uba Zango
- Department of Chemistry, Faculty of Science, Al-Qalam University Katsina, Katsina 820101, Nigeria
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
9
|
Yu K, Yang L, Zhang N, Wang S, Liu H. Development of nanocellulose hydrogels for application in the food and biomedical industries: A review. Int J Biol Macromol 2024; 272:132668. [PMID: 38821305 DOI: 10.1016/j.ijbiomac.2024.132668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
As the most abundant and renewable natural resource, cellulose has attracted significant attention and research interest for the production of hydrogels (HGs). To address environmental issues and emerging demands, the benefits of naturally produced HGs include excellent mechanical properties and superior biocompatibility. HGs are three-dimensional networks created by chemical or physical cross-linking of linear or branched hydrophilic polymers and have high capacity for absorption of water and biological fluids. Although widely used in the food and biomedical fields, most HGs are not biodegradable. Nanocellulose hydrogels (NC-HGs) have been extensively applied in the food industry for detection of freshness, chemical additives, and substitutes, as well as the biomedical field for use as bioengineering scaffolds and drug delivery systems owing to structural interchangeability and stimuli-responsive properties. In this review article, the sources, structures, and preparation methods of NC-HGs are described, applications in the food and biomedical industries are summarized, and current limitations and future trends are discussed.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - Lina Yang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China.
| | - Ning Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| |
Collapse
|
10
|
Leon-Cecilla A, Gila-Vilchez C, Vazquez-Perez FJ, Capitan-Vallvey LF, Martos V, Fernandez-Ramos MD, Álvarez de Cienfuegos L, Medina-Castillo AL, Lopez-Lopez MT. Highly deformable and strongly magnetic semi-interpenetrating hydrogels based on alginate or cellulose. Int J Biol Macromol 2024; 260:129368. [PMID: 38219926 DOI: 10.1016/j.ijbiomac.2024.129368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
The effective implementation of many of the applications of magnetic hydrogels requires the development of innovative systems capable of withstanding a substantial load of magnetic particles to ensure exceptional responsiveness, without compromising their reliability and stability. To address this challenge, double-network hydrogels have emerged as a promising foundation, thanks to their extraordinary mechanical deformability and toughness. Here, we report a semi-interpenetrating polymer networks (SIPNs) approach to create diverse magnetic SIPNs hydrogels based on alginate or cellulose, exhibiting remarkable deformability under certain stresses. Achieving strong responsiveness to magnetic fields is a key objective, and this characteristic is realized by the incorporation of highly magnetic iron microparticles at moderately large concentrations into the polymer network. Remarkably, the SIPNs hydrogels developed in this research accommodate high loadings of magnetic particles without significantly compromising their physical properties. This feature is essential for their use in applications that demand robust responsiveness to applied magnetic fields and overall stability, such as a hydrogel luminescent oxygen sensor controlled by magnetic fields that we designed and tested as proof-of-concept. These findings underscore the potential and versatility of magnetic SIPNs hydrogels based on carbohydrate biopolymers as fundamental components in driving the progress of advanced hydrogels for diverse practical implementations.
Collapse
Affiliation(s)
- Alberto Leon-Cecilla
- Universidad de Granada, Departamento de Física Aplicada, Campus de Fuentenueva, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Cristina Gila-Vilchez
- Universidad de Granada, Departamento de Física Aplicada, Campus de Fuentenueva, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Francisco J Vazquez-Perez
- Universidad de Granada, Departamento de Física Aplicada, Campus de Fuentenueva, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Luis F Capitan-Vallvey
- Universidad de Granada, Departamento de Química Analítica, Campus de Fuentenueva, E-18071 Granada, Spain
| | - Vanesa Martos
- Universidad de Granada, Departamento de Fisiología Vegetal, Campus de Fuentenueva, E-18071 Granada, Spain; Instituto de Biotecnología, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada, Spain
| | - María D Fernandez-Ramos
- Universidad de Granada, Departamento de Química Analítica, Campus de Fuentenueva, E-18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain; Universidad de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, Campus de Fuentenueva, E-18071 Granada, Spain
| | - Antonio L Medina-Castillo
- Universidad de Granada, Departamento de Química Analítica, Campus de Fuentenueva, E-18071 Granada, Spain.
| | - Modesto T Lopez-Lopez
- Universidad de Granada, Departamento de Física Aplicada, Campus de Fuentenueva, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain.
| |
Collapse
|
11
|
Teijido R, Zhang Q, Blanco M, Pérez-Álvarez L, Lanceros-Méndez S, Vilas-Vilela JL, Ruiz-Rubio L. Graphene-Enhanced Methacrylated Alginate Gel Films for Sustainable Dye Removal in Water Purification. Gels 2023; 10:25. [PMID: 38247748 PMCID: PMC10815123 DOI: 10.3390/gels10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Self-standing nanocomposite films were prepared by three-dimensional UV-induced radical copolymerization of methacrylated alginate (MALG) with acrylic acid (AA) and reinforced with graphene oxide (GO) to improve both mechanical strength and dye adsorption capacity in wastewater decontamination operations. Dynamic mechanical-thermal analysis revealed variations in storage modulus: the higher the GO content, the higher the storage modulus (E') values. Also, the higher the temperature (associated with a lower and lower water content of films), the larger values of E' for the films of the same composition (E'(25 °C) = 676.6-1538.7 MPa; E'(100 °C) = 886.9-2066.6 MPa), providing insights into the compatibility between GO and the MALG/AA matrix, as well as, assessing the improvement in the nanocomposite's final mechanical properties. These crosslinked films in a dry state exhibited rapid water uptake and relatively short drying times (ca. 30 min at room temperature for the MALG/AA/GO composites) resulting from the swelling-drying studies and water contact angle measurements. The efficacy of methylene blue removal from water assessed via UV-VIS spectrometry revealed excellent results, expressed as an adsorption yield of 70-80% and 85-98% after 30 h and 258 h, respectively, of immersion time of films into an MB aqueous solution of 12.5 mg/L (as the contaminated water model). The reusability of the same films was evaluated by consecutive extraction processes of MB from the composite membranes when the content of desorbed dye was also spectrophotometrically monitored and conducted in acidic conditions (HCl aqueous solutions of pH 2). Overall, the introduction of GO in the developed self-standing MALG/AA nanocomposite films exhibited enhanced mechanical properties and increased efficiency for dye removal applications. Their great reutilization potential was highlighted by low drying times and a good ability to release the dye initially adsorbed. Thus, the prepared films could be suitable materials for sustainable and effective water treatment technologies.
Collapse
Affiliation(s)
- Rubén Teijido
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (R.T.); (L.P.-Á.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| | - Qi Zhang
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| | - Miren Blanco
- Tekniker, Basque Research and Technology Alliance (BRTA), 20600 Eibar, Spain;
| | - Leyre Pérez-Álvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (R.T.); (L.P.-Á.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| | - José Luis Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (R.T.); (L.P.-Á.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| | - Leire Ruiz-Rubio
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (R.T.); (L.P.-Á.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| |
Collapse
|
12
|
Siddiqui SA, Alvi T, Biswas A, Shityakov S, Gusinskaia T, Lavrentev F, Dutta K, Khan MKI, Stephen J, Radhakrishnan M. Food gels: principles, interaction mechanisms and its microstructure. Crit Rev Food Sci Nutr 2023; 63:12530-12551. [PMID: 35916765 DOI: 10.1080/10408398.2022.2103087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Food hydrogels are important materials having great scientific interest due to biocompatibility, safety and environment-friendly characteristics. In the food industry, hydrogels are widely used due to their three-dimensional crosslinked networks. Furthermore, they have attracted great attention due to their wide range of applications in the food industry, such as fat replacers, encapsulating agents, target delivery vehicles, and many more. In addition to basic and recent knowledge on food hydrogels, this review exclusively focuses on sensorial perceptions, nutritional significance, body interactions, network structures, mechanical properties, and potential hydrogel applications in food and food-based matrices. Additionally, this review highlights the structural design of hydrogels, which provide the forward-looking idea for future applications of food hydrogels (e.g., 3D or 4D printing).
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Tayyaba Alvi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abhishek Biswas
- Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Tatiana Gusinskaia
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Filipp Lavrentev
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Kunal Dutta
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | | | - Jaspin Stephen
- Centre of Excellence in Nonthermal Processing, NIFTEM-Thanjavur, Tamil Nadu, India
| | | |
Collapse
|
13
|
Renani N, Etesami N, Behzad T. Synthesis and Characterization of Novel Magnetic Nano-Biocomposite Hydrogels Based on Starch- g-poly(acrylic acid) Reinforced by Cellulose Nanofibers for Cu 2+ Ion Removal. ACS OMEGA 2023; 8:21929-21940. [PMID: 37360432 PMCID: PMC10285959 DOI: 10.1021/acsomega.3c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
One of the crucial challenges of the adsorption process is to recapture the adsorbent from the solution, especially for adsorbents in powder form. This study synthesized a novel magnetic nano-biocomposite hydrogel adsorbent to successfully remove Cu2+ ions, followed by convenient recovery and reusability of the adsorbent. The Cu2+ adsorption capacity of starch-g-poly(acrylic acid)/cellulose nanofibers (St-g-PAA/CNFs) composite hydrogel and magnetic composite hydrogel (M-St-g-PAA/CNFs) was investigated and compared in both bulk and powder forms. Results showed that Cu2+ removal kinetics and swelling rate were improved by grinding the bulk hydrogel into powder form. The kinetic data and adsorption isotherm were best correlated with the pseudo-second-order and Langmuir models, respectively. The maximum monolayer adsorption capacity values of M-St-g-PAA/CNFs hydrogels loaded with 2 and 8 wt % Fe3O4 nanoparticles in 600 mg/L Cu2+ solution were found to be 333.33 and 555.56 mg/g, respectively, compared to 322.58 mg/g for the St-g-PAA/CNFs hydrogel. Vibrating sample magnetometry (VSM) results demonstrate that the magnetic hydrogel that included 2 and 8 wt % magnetic nanoparticles exhibited paramagnetic behavior with the magnetization of 0.6-0.66 and 1-1.04 emu/g at the plateau, respectively, which showed a proper magnetic property and good magnetic attraction in the magnetic field for separating the adsorbent from the solution. Also, the synthesized compounds were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and Fourier transform infrared spectroscopy (FTIR). Finally, the magnetic bioadsorbent was successfully regenerated and reused for four treatment cycles.
Collapse
|
14
|
ALSamman MT, Sánchez J. Adsorption of Copper and Arsenic from Water Using a Semi-Interpenetrating Polymer Network Based on Alginate and Chitosan. Polymers (Basel) 2023; 15:2192. [PMID: 37177337 PMCID: PMC10180717 DOI: 10.3390/polym15092192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
New biobased hydrogels were prepared via a semi-interpenetrating polymer network (semi-IPN) using polyacrylamide/chitosan (PAAM/chitosan) hydrogel for the adsorption of As(V) or poly acrylic acid/alginate (PAA/alginate) hydrogel for the adsorption of Cu(II). Both systems were crosslinked using N,N'-methylenebisacrylamide as the crosslinker and ammonium persulfate as the initiating agent. The hydrogels were characterized by SEM, Z-potential, and FTIR. Their performance was studied under different variables, such as the biopolymer effect, adsorbent dose, pH, contact time, and concentration of metal ions. The characterization of hydrogels revealed the morphology of the material, with and without biopolymers. In both cases, the added biopolymer provided porosity and cavities' formation, which improved the removal capacity. The Z-potential informed the surface charge of hydrogels, and the addition of biopolymers modified it, which explains the further metal removal ability. The FTIR spectra showed the functional groups of the hydrogels, confirming its chemical structure. In addition, the adsorption results showed that PAAM/chitosan can efficiently remove arsenic, reaching a capacity of 17.8 mg/g at pH 5.0, and it can also be regenerated by HNO3 for six cycles. On the other hand, copper-ion absorption was studied on PAA/alginate, which can remove with an adsorption capacity of 63.59 mg/g at pH 4.0, and the results indicate that it can also be regenerated by HNO3 for five cycles.
Collapse
Affiliation(s)
| | - Julio Sánchez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| |
Collapse
|
15
|
Santamaría E, Maestro A, González C. Encapsulation of Carvacrol-Loaded Nanoemulsion Obtained Using Phase Inversion Composition Method in Alginate Beads and Polysaccharide-Coated Alginate Beads. Foods 2023; 12:foods12091874. [PMID: 37174412 PMCID: PMC10178087 DOI: 10.3390/foods12091874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Nanoemulsions have been widely studied as lipophilic compound loading systems. A low-energy emulsification method, phase inversion composition (PIC), was used to prepare oil-in-water nanoemulsions in a carvacrol-coconut oil/Tween 80®-(linoleic acid-potassium linoleate)/water system. The phase behaviour of several emulsification paths was studied and related to the composition range in which small-sized stable nanoemulsions could be obtained. An experimental design was carried out to determine the best formulation in terms of size and stability. Nanoemulsions with a very small mean droplet diameter (16-20 nm) were obtained and successfully encapsulated to add carvacrol to foods as a natural antimicrobial and antioxidant agent. They were encapsulated into alginate beads by external gelation. In order to improve the carvacrol kinetics release, the beads were coated with two different biopolymers: chitosan and pullulan. All formulations were analysed with scanning electron microscopy to investigate the surface morphology. The release patterns at different pHs were evaluated. Different kinetics release models were fitted in order to study the release mechanisms affecting each formulation. Chitosan-coated beads avoided the initial release burst effect, improving the beads' structure and producing a Fickian release. At basic pH, the chitosan-coated beads collapsed and the pullulan-coated beads moderately improved the release pattern of the alginate beads. For acid and neutral pHs, the chitosan-coated beads presented more sustained release patterns.
Collapse
Affiliation(s)
- Esther Santamaría
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain
| | - Alicia Maestro
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain
| | - Carmen González
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Wang L, Jia X, Dou Z, Li X, Bao W, Ma C, Wang H, Wang L, Dong M, Zhang Y. Fluorescent labeling and tracing of immobilized efficient degrading bacterium DNB-S1 and its remediation efficiency of DBP contaminated soil. CHEMOSPHERE 2023; 320:138011. [PMID: 36731677 DOI: 10.1016/j.chemosphere.2023.138011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Dibutyl phthalate (DBP) is an organic pollutant frequently detected in soil, and is a reproductive poison that harms animals both before and after birth and has mutagenic, teratogenic, and carcinogenic effects. DBP removal from farmland has been the subject of extensive research in recent years. Efficient DBP degrading bacterial strains were screened in the laboratory. GFP (Green fluorescent protein) labeled degradation strain GFP-DNB-S1 was analyzed for its activity and dynamics. Using sodium alginate (SA) and nano-hydroxyapatite (n-HAP) as carrier materials and CaCl2 as a cross-linking agent, the immobilized microbial agent n-HAP/SA + DNB-S1 was prepared by embedding cross-linking immobilization technology to study the remediation effect of DBP contaminated soil. The best formation effect of immobilized materials (n-HAP/SA) was found when the SA to n-HAP ratio was 3:2. When compared to single SA immobilized bacteria, n-HAP/SA immobilized bacteria improved the surface roughness and porosity of the microspheres. After 70 days, LED light revealed that the immobilized bacteria's GFP green fluorescent protein expression was stable. At 70 days, the initial DBP concentration of 500 mg ∙ L-1 degraded at a rate of 69.9%. The degrading bacteria had no effect on DBP degradation before and after being labeled with GFP. The n-HAP/SA immobilized bacteria offered a better living environment for microorganisms due to their rougher surface and a greater number of pores. This protected the microorganisms and increased the efficiency of DBP degradation. When the concentration of DBP in contaminated soil was set to 20 mg ∙ kg-1 and the n-HAP/SA + DNB-S1 immobilized bacterial agent was applied to the soil, the rate of DBP degradation was determined to be 93.34%. The degradation process followed First-order degradation kinetics, which improved the physical and chemical properties of the soil as well as its fertility.
Collapse
Affiliation(s)
- Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaochen Jia
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zeyu Dou
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaoqian Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wenjing Bao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Chaoran Ma
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongye Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Maofeng Dong
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, 2901 Beizhai Road, Minhang District, Shanghai, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
17
|
Zhang W, Xu Y, Mu X, Li S, Liu X, Lei Z. Research Progress of Polysaccharide-Based Natural Polymer Hydrogels in Water Purification. Gels 2023; 9:gels9030249. [PMID: 36975698 PMCID: PMC10048097 DOI: 10.3390/gels9030249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
The pollution and scarcity of freshwater resources are global problems that have a significant influence on human life. It is very important to remove harmful substances in the water to realize the recycling of water resources. Hydrogels have recently attracted attention due to their special three-dimensional network structure, large surface area, and pores, which show great potential for the removal of pollutants in water. In their preparation, natural polymers are one of the preferred materials because of their wide availability, low cost, and easy thermal degradation. However, when it is directly used for adsorption, its performance is unsatisfactory, so it usually needs to be modified in the preparation process. This paper reviews the modification and adsorption properties of polysaccharide-based natural polymer hydrogels, such as cellulose, chitosan, starch, and sodium alginate, and discusses the effects of their types and structures on performance and recent technological advances.
Collapse
Affiliation(s)
- Wenxu Zhang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Yan Xu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Xuyang Mu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Sijie Li
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Xiaoming Liu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
18
|
Design of carboxymethyl chitosan-reinforced pH-responsive hydrogels for on-demand release of carvacrol and simulation of release kinetics. Food Chem 2023; 405:134856. [DOI: 10.1016/j.foodchem.2022.134856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
19
|
Tang Q, Hu J, Li S, Lin S, Tu Y, Gui X, Dong Y. Preparation of an aramid nanofiber-reinforced colorimetric hydrogel employing natural anthocyanin as an indicator for shrimp and fish spoilage monitoring. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
20
|
Xie X, Zhao X, Luo X, Zhang Y, Qin Z, Ji H. Characterization of Modified Mechanically Activated Cassava Starch Magnetic Porous Microspheres and Its Adsorption for Cd(II) Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:513. [PMID: 36770474 PMCID: PMC9919324 DOI: 10.3390/nano13030513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The magnetic polymer microsphere is a promising adsorbent due to its high adsorption efficiency and good regeneration ability from wastewater. Cassava starch magnetic porous microspheres (AAM-MSMPMs) were synthesized by graft copolymerization in inverse emulsion. Mechanically activated cassava starch (MS) was used to graft skeletons, vinyl monomers [acrylic acid (AA) and acrylamide (AM)] as copolymerized unsaturated monomers, methyl methacrylate (MMA) as the dispersing agent, and polyethylene glycol/methanol (PEG2000/MeOH) as the porogen. It was found that the AAM-MSMPM adsorbent is superparamagnetic, the saturation magnetization is 14.9 emu·g-1, and it can be rapidly and directionally separated from Cd(II) ions in aqueous solution. The FTIR indicated that the carboxyl and hydroxyl groups were grafted into MS. The AAM-MSMPM had good speroidization and a uniform size. After the porogen was added, the particle size of the AAM-MSMPM decreased from 19.00 to 7.00 nm, and the specific surface area increased from 7.00 to 35.00 m2·g-1. The pore volume increased from 0.03 to 0.13 cm3·g-1. The AAM-MSMPM exhibited a large specific surface area and provided more adsorption active sites for Cd(II) ions. The maximum adsorption capacity of the AAM-MSMPM for Cd(II) ions was 210.68 mg·g-1, i.e., 81.02% higher than that without porogen. Additionally, the Cd(II) ion adsorption process on the AAM-MSMPM can be described by Langmuir isothermal and pseudo-second-order kinetic models. A chemical reaction dominated the Cd(II) ion adsorption process on the AAM-MSMPM, and chemisorption was the rate-controlling step during the Cd(II) ion adsorption process. The AAM-MSMPM still had excellent stability after five consecutive reuses.
Collapse
Affiliation(s)
- Xinling Xie
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaona Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xuan Luo
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Youquan Zhang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zuzeng Qin
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongbing Ji
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Wang N, Cheng B, Guang S, Xu H. Self-assembled photothermal conversion shell coating on the surface of CA/SP for photothermal bacteriostasis and rapid wound healing. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Anti-biofouling polyvinylidene fluoride/quaternized polyvinyl alcohol ultrafiltration membrane selectively separates aromatic contaminants from wastewater by host–guest interactions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Tang Q, Hu J, Li S, Lin S, Tu Y, Gui X. Colorimetric hydrogel indicators based on polyvinyl alcohol/sodium alginate for visual food spoilage monitoring. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiushi Tang
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100039 China
- Shunde Polytechnic Foshan 528300 China
| | - Jiwen Hu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100039 China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 China
| | - Shi Li
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Shudong Lin
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100039 China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 China
| | - Yuanyuan Tu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100039 China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 China
| | - Xuefeng Gui
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100039 China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 China
| |
Collapse
|
24
|
Xiao Q, Cui Y, Meng Y, Guo F, Ruan X, He G, Jiang X. PNIPAm hydrogel composite membrane for high-throughput adsorption of biological macromolecules. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
He P, Shen M, Xie W, Ma Y, Pan J. The Efficient and Convenient Extracting Uranium from Water by a Uranyl-Ion Affine Microgel Container. NANOMATERIALS 2022; 12:nano12132259. [PMID: 35808098 PMCID: PMC9268145 DOI: 10.3390/nano12132259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Uranium is an indispensable part of the nuclear industry that benefits us, but its consequent pollution of water bodies also makes a far-reaching impact on human society. The rapid, efficient and convenient extraction of uranium from water is to be a top priority. Thanks to the super hydrophilic and fast adsorption rate of microgel, it has been the ideal adsorbent in water; however, it was too difficult to recover the microgel after adsorption, which limited its practical applications. Here, we developed a uranyl-ion affine and recyclable microgel container that has not only the rapid swelling rate of microgel particles but also allows the detection of the adsorption saturation process by the naked eye.
Collapse
|
26
|
ALSamman MT, Sánchez J. Chitosan- and Alginate-Based Hydrogels for the Adsorption of Anionic and Cationic Dyes from Water. Polymers (Basel) 2022; 14:polym14081498. [PMID: 35458248 PMCID: PMC9025658 DOI: 10.3390/polym14081498] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Novel hydrogel systems based on polyacrylamide/chitosan (PAAM/chitosan) or polyacrylic acid/alginate (PAA/alginate) were prepared, characterized, and applied to reduce the concentrations of dyes in water. These hydrogels were synthetized via a semi-interpenetrating polymer network (semi-IPN) and then characterized by Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), and their swelling capacities in water were measured. In the adsorption experiments, methylene blue (MB) was used as a cationic dye, and methyl orange (MO) was used as an anionic dye. The study was carried out using a successive batch method for the dye absorption process and an equilibrium system to investigate the adsorption of MO on PAAM/chitosan hydrogels and MB on PAA/alginate in separate experiments. The results showed that the target hydrogels were synthetized with high yield (more than 90%). The chemical structure of the hydrogels was corroborated by FTIR, and their high thermal stability was verified by TGA. The absorption of the MO dye was higher at pH 3.0 using PAAM/chitosan, and it had the ability to remove 43% of MO within 10 min using 0.05 g of hydrogel. The presence of interfering salts resulted in a 20–60% decrease in the absorption of MO. On the other hand, the absorption of the MB dye was higher at pH 8.5 using PAA/alginate, and it had the ability to remove 96% of MB within 10 min using 0.05 g of hydrogel, and its removal capacity was stable for interfering salts.
Collapse
|
27
|
Wang E, Wen H, Guo P, Luo Y, Wang C, He Z, Pan J, Chen X, Cao B, Wang Y, Huang S, Xue W. Fabrication of methacrylated casein/alginate microspheres crosslinked by UV light coupled with Ca2+ chelation for pH-sensitive drug delivery. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-021-04917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Zhang S, Dai F, Ke Z, Wang Q, Chen C, Qian G, Yu Y. A novel porous hollow carboxyl-polysulfone microsphere for selective removal of cationic dyes. CHEMOSPHERE 2022; 289:133205. [PMID: 34890624 DOI: 10.1016/j.chemosphere.2021.133205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Herein, we obtained porous hollow carboxyl-polysulfone (PH-CPSF) microspheres through non-solvent-induced phase separation (NIPS) method and simple modification, used as highly efficient adsorbents for removing cationic dyes from sewage. The resulting PH-CPSF microspheres possess a hollow core and sponge-like shell structure, with high surface area, durable chemical inertness and structural stability. The as-synthesized PH-CPSF microspheres deliver a desirable adsorption effect after deprotonation treatment, with an adsorption capacity reaching up to 154.5 mg g-1 at 25 °C (pH = 7) of methylene blue (MB). The inter-molecular interactions between MB and the surface of the PH-CPSF, including π-π interaction, hydrogen bonding, strong charge attraction and weak charge attraction endow the adsorption ability of the PH-CPSF. The pseudo-second-order kinetic model pronounces in the adsorption behavior, and the adsorption equilibrium data is fitted to the Langmuir model. Moreover, PH-CPSF microspheres can also be used as adsorption fillers for large-scale water purification, and a removal rate of 94.0% for MB can be achieved under a flow rate of 8000 L m-3 h-1. The reusability of 95.3% removal effect for PH-CPSF microspheres after 20 consecutive cycles can be attained by a simple regeneration treatment. The adsorption efficiency of the PH-CPSF microspheres was evaluated by variety of cationic and anionic dyes, with high adsorption capacity toward cationic dyes (100%) and less than 10% toward anionic dyes. These results manifest that PH-CPSF microspheres are a potential adsorbent with long-term purification capabilities, which are expected to be used in small and large-scale sewage treatment.
Collapse
Affiliation(s)
- Shangying Zhang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Fengna Dai
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Zhao Ke
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Qi Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Chunhai Chen
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China.
| | - Guangtao Qian
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China.
| | - Youhai Yu
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China.
| |
Collapse
|