1
|
Camcıoğlu Ş, Özyurt B, Oturan N, Portehault D, Trellu C, Oturan MA. Heterogeneous catalysts for electro-Fenton degradation of cytostatic drug cytarabine. CHEMOSPHERE 2025; 370:143892. [PMID: 39638122 DOI: 10.1016/j.chemosphere.2024.143892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
In the present work, a reduced graphene oxide (rGO) modified-Fe3O4 doped bifunctional carbon felt cathode (rGO-Fe3O4/CF) that is capable of generating and converting H2O2 into hydroxyl radicals (•OH) on-site was fabricated, thus removing the need for an external catalyst. In addition, an rGO-modified cathode (rGO/CF) with high H2O2 production efficiency and a heterogeneous Fenton catalyst (CNT-Fe3O4) with magnetic properties were fabricated. The study examined the degradation and mineralization of the cytostatic drug cytarabine (CYT) using two HEF configurations: (i) a bifunctional cathode rGO-Fe3O4/CF and (ii) a combination of the rGO/CF cathode with CNT-Fe3O4 catalyst. The effects of parameters such as catalyst concentration, initial pH, and applied current were studied. HPLC and ion chromatography analyses were used to identify carboxylic acids and inorganic end-products, respectively. The results show that 0.1 mM CYT was completely degraded within 18 min at an applied current of 300 mA in the HEF system with the rGO-Fe3O4/CF bifunctional cathode. Total organic carbon (TOC) analysis revealed that the bifunctional cathode system achieved 98.2% mineralization of CYT after 4 h of treatment at 300 mA. Using the rGO/CF cathode and CNT-Fe3O4 catalyst cell, total degradation of 0.1 mM CYT occurred within 7 min, and nearly total mineralization (97.3% TOC removal) was achieved at 300 mA after 4 h.
Collapse
Affiliation(s)
- Şule Camcıoğlu
- Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkiye; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - Baran Özyurt
- Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkiye; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - David Portehault
- Sorbonne Université, CNRS, Laboratoire de Chimie de La Matière Condensée de Paris (CMCP), 4 Place Jussieu, Paris, France.
| | - Clément Trellu
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - Mehmet A Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| |
Collapse
|
2
|
Wang SY, Wang YX, Yue SS, Shi XC, Lu FY, Wu SQ, Herrera-Balandrano DD, Laborda P. G-site residue S67 is involved in the fungicide-degrading activity of a tau class glutathione S-transferase from Carica papaya. J Biol Chem 2024; 300:107123. [PMID: 38417796 PMCID: PMC10958117 DOI: 10.1016/j.jbc.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024] Open
Abstract
Thiram is a toxic fungicide extensively used for the management of pathogens in fruits. Although it is known that thiram degrades in plant tissues, the key enzymes involved in this process remain unexplored. In this study, we report that a tau class glutathione S-transferase (GST) from Carica papaya can degrade thiram. This enzyme was easily obtained by heterologous expression in Escherichia coli, showed low promiscuity toward other thiuram disulfides, and catalyzed thiram degradation under physiological reaction conditions. Site-directed mutagenesis indicated that G-site residue S67 shows a key influence for the enzymatic activity toward thiram, while mutation of residue S13, which reduced the GSH oxidase activity, did not significantly affect the thiram-degrading activity. The formation of dimethyl dithiocarbamate, which was subsequently converted into carbon disulfide, and dimethyl dithiocarbamoylsulfenic acid as the thiram degradation products suggested that thiram undergoes an alkaline hydrolysis that involves the rupture of the disulfide bond. Application of the GST selective inhibitor 4-chloro-7-nitro-2,1,3-benzoxadiazole reduced papaya peel thiram-degrading activity by 95%, indicating that this is the main degradation route of thiram in papaya. GST from Carica papaya also catalyzed the degradation of the fungicides chlorothalonil and thiabendazole, with residue S67 showing again a key influence for the enzymatic activity. These results fill an important knowledge gap in understanding the catalytic promiscuity of plant GSTs and reveal new insights into the fate and degradation products of thiram in fruits.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yan-Xia Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Sheng-Shuo Yue
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Feng-Yi Lu
- School of Life Sciences, Nantong University, Nantong, China
| | - Si-Qi Wu
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China.
| |
Collapse
|
3
|
Singh A, Majumder A, Saidulu D, Bhattacharya A, Bhatnagar A, Gupta AK. Oxidative treatment of micropollutants present in wastewater: A special emphasis on transformation products, their toxicity, detection, and field-scale investigations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120339. [PMID: 38401495 DOI: 10.1016/j.jenvman.2024.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Micropollutants have become ubiquitous in aqueous environments due to the increased use of pharmaceuticals, personal care products, pesticides, and other compounds. In this review, the removal of micropollutants from aqueous matrices using various advanced oxidation processes (AOPs), such as photocatalysis, electrocatalysis, sulfate radical-based AOPs, ozonation, and Fenton-based processes has been comprehensively discussed. Most of the compounds were successfully degraded with an efficiency of more than 90%, resulting in the formation of transformation products (TPs). In this respect, degradation pathways with multiple mechanisms, including decarboxylation, hydroxylation, and halogenation, have been illustrated. Various techniques for the analysis of micropollutants and their TPs have been discussed. Additionally, the ecotoxicity posed by these TPs was determined using the toxicity estimation software tool (T.E.S.T.). Finally, the performance and cost-effectiveness of the AOPs at the pilot scale have been reviewed. The current review will help in understanding the treatment efficacy of different AOPs, degradation pathways, and ecotoxicity of TPs so formed.
Collapse
Affiliation(s)
- Adarsh Singh
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Animesh Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
4
|
Camcıoğlu Ş, Özyurt B, Oturan N, Portehault D, Trellu C, Oturan MA. Heterogeneous electro-Fenton treatment of chemotherapeutic drug busulfan using magnetic nanocomposites as catalyst. CHEMOSPHERE 2023; 341:140129. [PMID: 37690550 DOI: 10.1016/j.chemosphere.2023.140129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The rapid and efficient mineralization of the chemotherapeutic drug busulfan (BSF) as the target pollutant has been investigated for the first time by three different heterogeneous EF systems that were constructed to ensure the continuous electro-generation of H2O2 and •OH consisting of: i) a multifunctional carbon felt (CF) based cathode composed of reduced graphene oxide (rGO), iron oxide nanoparticles and carbon black (CB) (rGO-Fe3O4/CB@CF), ii) rGO modified cathode (rGO/CB@CF) and rGO supported Fe3O4 (rGO-Fe3O4) catalyst and iii) rGO modified cathode (rGO/CB@CF) and multi walled carbon nanotube supported Fe3O4 (MWCNT-Fe3O4) catalyst. The effects of main variables, including the catalyst amount, applied current and initial pH were investigated. Based on the results, H2O2 was produced by oxygen reduction reaction (ORR) on the liquid-solid interface of both fabricated cathodes. •OH was generated by the reaction of H2O2 with the active site of ≡FeII on the surface of the multifunctional cathode and heterogeneous EF catalysts. Utilizing carbon materials with high conductivity, the redox cycling between ≡FeII and ≡FeIII was effectively facilitated and therefore promoted the performance of the process. The results demonstrated almost complete mineralization of BSF through the heterogeneous systems over a wide applicable pH range. According to the reusability and stability tests, multifunctional cathode exhibited outstanding performance after five consecutive cycles which is promising for the efficient mineralization of refractory organic pollutants. Moreover, intermediates products of BSF oxidation were identified and a plausible oxidation pathway was proposed. Therefore, this study demonstrates efficient and stable cathodes and catalysts for the efficient treatment of an anticancer active substance.
Collapse
Affiliation(s)
- Şule Camcıoğlu
- Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkey; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - Baran Özyurt
- Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkey; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France
| | - David Portehault
- Sorbonne Université, CNRS, Laboratoire de Chimie de La Matière Condensée de Paris (CMCP), 4 Place Jussieu, Paris, France
| | - Clément Trellu
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France
| | - Mehmet A Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| |
Collapse
|
5
|
Li Q, Liu GH, Qi L, Wang H, Xian G. Chlorine-mediated electrochemical advanced oxidation process for ammonia removal: Mechanisms, characteristics and expectation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165169. [PMID: 37400024 DOI: 10.1016/j.scitotenv.2023.165169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Chlorine-Mediated Electrochemical Advanced Oxidation (Cl-EAO) technology is a promising approach for ammonia removal from wastewater due to its numerous advantages, including small infrastructure, short processing time, easy operation, high security, and high nitrogen selectivity. This paper provides a review of the ammonia oxidation mechanisms, characteristics, and anticipated applications of Cl-EAO technology. The mechanisms of ammonia oxidation encompass breakpoint chlorination and chlorine radical oxidation, although the contributions of active chlorine, Cl, and ClO remain uncertain. This study critically examines the limitations of existing research and suggests that a combination of determining free radical concentration and simulating a kinetic model would help elucidate the contributions of active chlorine, Cl, and ClO to ammonia oxidation. Furthermore, this review comprehensively summarizes the characteristics of ammonia oxidation, including kinetic properties, influencing factors, products, and electrodes. The amalgamation of Cl-EAO technology with photocatalytic and concentration technologies has the potential to enhance ammonia oxidation efficiency. Future research should concentrate on clarifying the contributions of active chlorine, Cl, and ClO to ammonia oxidation, the production of chloramines and other byproducts, and the development of more efficient anodes for the Cl-EAO process. The main objective of this review is to enhance the understanding of the Cl-EAO process. The findings presented herein contribute to the advancement of Cl-EAO technology and provide a foundation for future studies in this field.
Collapse
Affiliation(s)
- Qiangang Li
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China.
| | - Lu Qi
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China
| | - Hongchen Wang
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China
| | - Guang Xian
- Logistics Command Department, Army Logistics Academy, Chongqing 401331, China
| |
Collapse
|
6
|
Vigil-Castillo HH, Ruiz-Ruiz EJ, López-Velázquez K, Hinojosa-Reyes L, Gaspar-Ramírez O, Guzmán-Mar JL. Assessment of photo electro-Fenton and solar photo electro-Fenton processes for the efficient degradation of asulam herbicide. CHEMOSPHERE 2023; 338:139585. [PMID: 37478989 DOI: 10.1016/j.chemosphere.2023.139585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The degradation of asulam herbicide by photo electro-Fenton (PEF) and solar photo electro-Fenton (SPEF) processes was studied using an undivided electrochemical BDD/carbon-felt cell to generate H2O2 continuously. A central composite design combined with response surface methodology was applied to determine the optimal operating conditions of current intensity = 0.30 A, [Fe2+] = 0.3 mM, and [Na2SO4] = 0.11 M at pH 3 to achieve the complete degradation of asulam by electro-Fenton. Subsequently, the SPEF process was more efficient treatment compared to PEF, achieving a complete degradation of asulam and 98% of mineralization in 180 min. Moreover, 4-aminobenzenesulfonamide, 4-aminophenol, and 4-benzoquinone were detected as aromatic intermediates, whereas acetic acid, oxalic acid, and NO3- ions were identified as final degradation by-products. Thus, the SPEF process is an efficient alternative for the complete degradation and mineralization of herbicide asulam in an aqueous solution under natural sunlight.
Collapse
Affiliation(s)
- Héctor H Vigil-Castillo
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455, San Nicolás de Los Garza, Nuevo León, México
| | - Edgar J Ruiz-Ruiz
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455, San Nicolás de Los Garza, Nuevo León, México
| | - Khirbet López-Velázquez
- Universidad Politécnica de Tapachula, Carretera Tapachula - Puerto Madero, Km. 24 + 300, CP 30830, Tapachula, Chiapas, México
| | - Laura Hinojosa-Reyes
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455, San Nicolás de Los Garza, Nuevo León, México
| | - Octavio Gaspar-Ramírez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Sede Noreste, Vía de La Innovación 404, Autopista Monterrey-Aeropuerto Km 10, Parque, PIIT, C.P. 66628, Apodaca, Nuevo León, México
| | - Jorge L Guzmán-Mar
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455, San Nicolás de Los Garza, Nuevo León, México.
| |
Collapse
|
7
|
Fast and Complete Destruction of the Anti-Cancer Drug Cytarabine from Water by Electrocatalytic Oxidation Using Electro-Fenton Process. Catalysts 2022. [DOI: 10.3390/catal12121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The fast and complete removal of the anti-cancer drug cytarabine (CYT) from water was studied, for the first time, by the electro-Fenton process using a BDD anode and carbon felt cathode. A catalytic amount (10−4 M) of ferrous iron was initially added to the solution as catalyst and it was electrochemically regenerated in the process. Complete degradation of 0.1 mM (24.3 mg L−1) CYT was achieved quickly in 15 min at 300 mA constant current electrolysis by hydroxyl radicals (●OH) electrocatalytically generated in the system. Almost complete mineralization (91.14% TOC removal) of the solution was obtained after 4 h of treatment. The mineralization current efficiency (MCE) and energy consumption (EC) during the mineralization process were evaluated. The absolute (second order) rate constant for the hydroxylation reaction of CYT by hydroxyl radicals was assessed by applying the competition kinetics method and found to be 5.35 × 109 M−1 s−1. The formation and evolution of oxidation reaction intermediates, short-chain carboxylic acids and inorganic ions were identified by gas chromatography-mass spectrometry, high performance liquid chromatography and ion chromatography analyses, respectively. Based on the identified intermediate and end-products, a plausible mineralization pathway for the oxidation of CYT by hydroxyl radicals is proposed.
Collapse
|
8
|
Gutiérrez-Sánchez P, Navarro P, Álvarez-Torrellas S, García J, Larriba M. Extraction of neonicotinoid pesticides from aquatic environmental matrices with sustainable terpenoids and eutectic solvents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Barroso-Martínez J, B. Romo AI, Pudar S, Putnam ST, Bustos E, Rodríguez-López J. Real-Time Detection of Hydroxyl Radical Generated at Operating Electrodes via Redox-Active Adduct Formation Using Scanning Electrochemical Microscopy. J Am Chem Soc 2022; 144:18896-18907. [PMID: 36215201 PMCID: PMC9586107 DOI: 10.1021/jacs.2c06278] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/30/2022]
Abstract
The hydroxyl radical (•OH) is one of the most attractive reactive oxygen species due to its high oxidation power and its clean (photo)(electro)generation from water, leaving no residues and creating new prospects for efficient wastewater treatment and electrosynthesis. Unfortunately, in situ detection of •OH is challenging due to its short lifetime (few ns). Using lifetime-extending spin traps, such as 5,5-dimethyl-1-pyrroline N-oxide (DMPO) to generate the [DMPO-OH]• adduct in combination with electron spin resonance (ESR), allows unambiguous determination of its presence in solution. However, this method is cumbersome and lacks the necessary sensitivity and versatility to explore and quantify •OH generation dynamics at electrode surfaces in real time. Here, we identify that [DMPO-OH]• is redox-active with E0 = 0.85 V vs Ag|AgCl and can be conveniently detected on Au and C ultramicroelectrodes. Using scanning electrochemical microscopy (SECM), a four-electrode technique capable of collecting the freshly generated [DMPO-OH]• from near the electrode surface, we detected its generation in real time from operating electrodes. We also generated images of [DMPO-OH]• production and estimated and compared its generation efficiency at various electrodes (boron-doped diamond, tin oxide, titanium foil, glassy carbon, platinum, and lead oxide). Density functional calculations, ESR measurements, and bulk calibration using the Fenton reaction helped us unambiguously identify [DMPO-OH]• as the source of redox activity. We hope these findings will encourage the rapid, inexpensive, and quantitative detection of •OH for conducting informed explorations of its role in mediated oxidation processes at electrode surfaces for energy, environmental, and synthetic applications.
Collapse
Affiliation(s)
- Jaxiry
S. Barroso-Martínez
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, 600 South Mathews Ave., Urbana, Illinois61801, United States
- Centro
de Investigación y Desarrollo Tecnológico en Electroquímica,
S.C. Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, 76703Querétaro, Mexico
| | - Adolfo I. B. Romo
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, 600 South Mathews Ave., Urbana, Illinois61801, United States
| | - Sanja Pudar
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, 600 South Mathews Ave., Urbana, Illinois61801, United States
| | - Seth T. Putnam
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, 600 South Mathews Ave., Urbana, Illinois61801, United States
| | - Erika Bustos
- Centro
de Investigación y Desarrollo Tecnológico en Electroquímica,
S.C. Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, 76703Querétaro, Mexico
| | - Joaquín Rodríguez-López
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, 600 South Mathews Ave., Urbana, Illinois61801, United States
| |
Collapse
|
10
|
Rao T, Ma X, Yang Q, Cheng S, Ren G, Wu Z, Sirés I. Upgrading the peroxi-coagulation treatment of complex water matrices using a magnetically assembled mZVI/DSA anode: Insights into the importance of ClO radical. CHEMOSPHERE 2022; 303:134948. [PMID: 35577130 DOI: 10.1016/j.chemosphere.2022.134948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical technologies for water treatment have flourished over the last decades. However, it is still challenging to treat the actual complex water effluents by a single electrochemical process, often requiring coupling of technologies. In this study, an upgraded peroxi-coagulation (PC) process with a magnetically assembled mZVI/DSA anode has been devised for the first time. COD, NH3-N and total phosphorous were simultaneously and effectively removed from livestock wastewater. The advantages, influence of key parameters and evolution of electrogenerated species were systematically investigated to fully understand this novel PC process. The fluorescent substances in livestock wastewater could also be almost removed under optimal conditions (300 mA, 0.2 g ZVI particles and pH 6.8). The interaction between OH and active chlorine yielded ClO with a high steady-state concentration of 6.85 × 10-13 M, which did not cause COD removal but accelerated the oxidation of NH3-N. The Mulliken population suggested that OH and NH3-N had similar electron-donor behavior, whereas ClO acted as an electron-withdrawing species. Besides, although the energy barrier for the reaction between OH and NH3-N (17.0 kcal/mol) was lower than that with ClO (18.8 kcal/mol), considering the tunneling in the H abstraction reaction, the Skodje-Truhlar method adopted for calculations evidenced a 17-fold faster NH3-N oxidation rate with ClO. In summary, this work describes an advantageous single electrochemical process for the effective treatment of a complex water matrix.
Collapse
Affiliation(s)
- Tiantong Rao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environment Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaodong Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environment Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Qiusheng Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Siyu Cheng
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environment Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Gengbo Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environment Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environment Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí I Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
11
|
Vidal J, Báez ME, Calzadilla W, Aranda M, Salazar R. Removal of chloridazon and its metabolites from soil and soil washing water by electrochemical processes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Shi G, Shen X, Ren H, Rao Y, Weng S, Tang X. Kernel principal component analysis and differential non-linear feature extraction of pesticide residues on fruit surface based on surface-enhanced Raman spectroscopy. FRONTIERS IN PLANT SCIENCE 2022; 13:956778. [PMID: 35928706 PMCID: PMC9344007 DOI: 10.3389/fpls.2022.956778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has attracted much attention because of its high sensitivity, high speed, and simple sample processing, and has great potential for application in the field of pesticide residue detection. However, SERS is susceptible to the influence of a complex detection environment in the detection of pesticide residues on the surface of fruits, facing problems such as interference from the spectral peaks of detected impurities, unclear dimension of effective correlation data, and poor linearity of sensing signals. In this work, the enhanced raw data of the pesticide thiram residues on the fruit surface using gold nanoparticle (Au-NPs) solution are formed into the raw data set of Raman signal in the IoT environment of Raman spectroscopy principal component detection. Considering the non-linear characteristics of sensing data, this work adopts kernel principal component analysis (KPCA) including radial basis function (RBF) to extract the main features for the spectra in the ranges of 653∼683 cm-1, 705∼728 cm-1, and 847∼872 cm-1, and discusses the effects of different kernel function widths (σ) to construct a qualitative analysis of pesticide residues based on SERS spectral data model, so that the SERS spectral data produce more useful dimensionality reduction with minimal loss, higher mean squared error for cross-validation in non-linear scenarios, and effectively weaken the interference features of detecting impurity spectral peaks, unclear dimensionality of effective correlation data, and poor linearity of sensing signals, reflecting better extraction effects than conventional principal component analysis (PCA) models.
Collapse
Affiliation(s)
- Guolong Shi
- School of Information and Computer, Anhui Agricultural University, Hefei, China
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, China
| | - Xinyi Shen
- School of Information and Computer, Anhui Agricultural University, Hefei, China
| | - Huan Ren
- School of Information and Computer, Anhui Agricultural University, Hefei, China
| | - Yuan Rao
- School of Information and Computer, Anhui Agricultural University, Hefei, China
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Shizhuang Weng
- National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei, China
| | - Xianghu Tang
- School of Information and Computer, Anhui Agricultural University, Hefei, China
- Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
13
|
Zhao M, Ma X, Li R, Mei J, Rao T, Ren G, Guo H, Wu Z. In-situ slow production of Fe2+ to motivate electro-Fenton oxidation of bisphenol A in a flow through dual-anode reactor using current distribution strategy: Advantages, CFD and toxicity assessment. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Liu Y, Gao C, Liu L, Yu T, Li Y. Improved degradation of tetracycline, norfloxacin and methyl orange wastewater treatment with dual catalytic electrode assisted self-sustained Fe2+ electro-Fenton system: Regulatory factors, mechanisms and pathways. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|