1
|
Chen T, Li X, Yu F, Tang W, Wo Y, Yang J, Wan H, Gao Z. TA-APTES Coating Facilitated Secondary Reactions for Synthesis of Multifunctional Porous Melamine Sponge and Application in Wastewater Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10853-10872. [PMID: 40275716 DOI: 10.1021/acs.langmuir.4c05352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Secondary reactions induced by functional surface coating are of critical significance and have attracted substantial interest, as the surface coating can function as a versatile platform for designing multifunctional coatings by tailoring the surface performance. The surface coating incorporated tannic acid, and 3-aminopropyltriethoxysilane (TA-APTES) contains plentiful nanospheres with secondary reaction sites, which is favorable for surface modification. In this research, a TA-APTES coating with a unique hierarchical structure was grown in situ on the skeleton of a porous melamine sponge under mild conditions. The secondary reactions triggered by the TA-APTES coating were comprehensively employed to construct a multifunctional melamine sponge for various applications. The TA-APTES-coated melamine sponge was first immersed in silver ammonia solutions for the reduction of silver ammonia ions. The decoration of Ag NPs endowed the sponge with catalytic and antibacterial activity, which could be applied for dye reduction and bacterial disinfection in wastewater. The surface energy of the TA-APTES-coated melamine sponge was subsequently decreased by long-chain alkyl molecules. After the condensation polymerization reaction with octadecyltrimethoxysilane, the surface of the melamine sponge coated with TA-APTES was converted into a superhydrophobic state, making it suitable for efficient separation of oil and water mixtures. The prepared superhydrophobic sponge demonstrated remarkable water repellency and strong oil affinity with a water contact angle of 156.5° and oil contact angle of 0°. Significantly, the superhydrophobic sponge retained a relatively stable oil absorption capacity and separation efficiency after multiple recycling utilization. The proposed routine for fabrication and design of TA-APTES coating demonstrates the potential to develop a multifunctional porous melamine sponge in solving water pollution issues.
Collapse
Affiliation(s)
- Teng Chen
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Xin Li
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Fei Yu
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Wenwei Tang
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Yunjiang Wo
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Jie Yang
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Hongri Wan
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Zhaojian Gao
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| |
Collapse
|
2
|
Wang J, Shi Q. Poly(vinyl alcohol) nanofiber incorporated graphene oxide/gelatin composite aerogels modified by chemical vapor deposition with superwetting character for efficient separation of oil and water. Int J Biol Macromol 2025; 306:141719. [PMID: 40043991 DOI: 10.1016/j.ijbiomac.2025.141719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/21/2025] [Accepted: 03/02/2025] [Indexed: 05/03/2025]
Abstract
Superhydrophobic/superoleophilic nanofibrous aerogel is a good candidate for oil/water separation because of its superwetting character, highly open structure and tunable porosity. However, developing a facile and green strategy to fabricate nanofibrous aerogel with specific wettability remains challenging. Herein, poly(vinyl alcohol) (PVA) nanofiber incorporated graphene oxide (GO)/gelatin composite aerogels were prepared, and the obtained aerogels were modified with methyltrimethoxysilane (MTMS) by chemical vapor deposition. The entire fabrication process was completed without usage of organic solvents. When exposed to different oils and organic solvents, the as-prepared nanofibrous aerogels showed exceptional absorption capacity. Due to high elasticity of the aerogels, it was possible to recover oils by mechanical squeezing. In addition, it was found that oils could be selectively absorbed from oil/water mixtures by the composite aerogels with superhydrophobicity and superoleophilicity to realize effective separation of oil and water. Importantly, surfactant-stabilized water-in-oil emulsions could also be separated by the composite aerogels without external pressure. Furthermore, the aerogels could be used to continuously collect oil pollutants from oil/water mixtures with a simple pumping device. The current work offered an environmentally friendly method for creating superwetting nanofibrous aerogels for wastewater treatment.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Qingru Shi
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| |
Collapse
|
3
|
Babazadeh-Mamaqani M, Roghani-Mamaqani H, Rezaei M, Salami-Kalajahi M. Photo-induced time-dependent controllable wettability of dual-responsive multi-functional electrospun MXene/polymer fibers. J Colloid Interface Sci 2025; 678:1048-1063. [PMID: 39332123 DOI: 10.1016/j.jcis.2024.09.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Switchable wettability potential in smart fibers is of paramount importance in various applications. Light-induced controllable changes in surface wettability have a significant role in this area. Herein, smart waterborne homopolymer, functional copolymer with different polarity and flexibility, and multi-functional terpolymer particles containing a time-dependent dual-responsive acrylated spiropyran, as a polymerizable monomer, were successfully synthesized through eco-friendly single-step emulsifier-free emulsion polymerization. Presence of 10 wt% of butyl acrylate and dimethylaminoethyl methacrylate relative to methylmethacrylate as functional comonomers decreased the Tg of the samples almost 20 ℃ and increased their polarity. The optical properties of the particles were investigated, and the UV-vis and fluorescence spectroscopy results showed that not only polarity and flexibility of the polymer chains may have a positive effect on improving the optical properties, but also the simultaneous presence of functional groups has a synergistic effect. The smart polymer particles with flexibility and polarity features exhibited higher absorption and emission compared to other samples. Inspired by these findings, multi-functional smart polymer fibers were prepared using the electrospinning method. The smart multi-functional electrospun fibers containing few-layer Ti3C2 MXenes were synthesized to improve the fibers' properties and change the surface wettability due to the hydrophilic functional groups of MXene. Field-emission scanning electron microscopy images displayed the successful preparation of few-layer MXenes. Smooth and bead-free fibers with bright red fluorescence emission under UV irradiation were shown using fluorescence microscopy. The study on the surface wettability of fibers revealed that UV and visible light irradiation induced reversible time-dependent changes in the wettability of the smart multi-functional MXene/polymer electrospun fibers from hydrophobic to hydrophilic, reaching a water contact angle of 10° from an initial water contact angle of 100° under UV light and also changing to superhydrophilic state with passing time. Upon visible light exposure, the fibers returned to their original state. Furthermore, the fibers demonstrated a high stability over five alternating cycles of UV and visible light irradiation. This study shows that the fabrication of time-dependent smart fibers, utilizing the flexibility and polarity in the presence of MXenes, significantly improves and controls surface wettability changes. The outstanding dynamically photo-switchable wettability of these fibers may offer exciting opportunities in various applications, especially in the separation of oil from water contaminants.
Collapse
Affiliation(s)
- Milad Babazadeh-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Mostafa Rezaei
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
4
|
Zhang M, Xi Q, Wang L, Xie Q, Li Z, Zhang M. Efficient and low resistance multi-functional UV resistant polyphenylene sulfide non-woven hollow membrane. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123717. [PMID: 39689541 DOI: 10.1016/j.jenvman.2024.123717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
The heat and corrosion resistance of traditional membranes is inadequate, thus making them inadequate for the separation/filtration needs of harsh environments. Polyphenylene sulfide(PPS) can be used to develop new-generation membrane materials, but PPS has problems such as hydrophobicity and UV resistance. This article proposes a PPS membrane for efficient separation/filtration under extreme conditions, which uses melt-blown PPS non-woven fabric and undergoes oxidation and nitrification modification. Combining the advantages of metal-organic framework material (ZIF-67), a hollow ZIF-67/PPS non-woven fabric membrane has been successfully prepared, solving PPS's hydrophobic and UV-resistant problems. It is ideal for wastewater treatment and air filtration in harsh environments yet retains hydrophilicity even in intense alkaline and high-temperature conditions. The hollow ZIF-67/PPS membrane exhibits a very high pure water flux (34,261 L m-2 h-1). Surprisingly, the ZIF-67/PPS membrane exhibits strong chemical/thermal performance, maintaining good separation/filtration performance even after multiple cyclic tests in extreme conditions. The ZIF-67/PPS membrane with large-scale production capacity has reasonable prospects of dealing with environmental problems under extreme conditions.
Collapse
Affiliation(s)
- Mengen Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Qiyang Xi
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Linlin Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Qinxing Xie
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Zhenhuan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin, 300387, PR China.
| | - Maliang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, PR China; School of Material Science and Engineering, Tiangong University, Tianjin, 300387, PR China.
| |
Collapse
|
5
|
Jiang L, Dong G, Song D, Liu W, Geng X, Meng D, Nie L, Liao J, Zhou Q. Covalent organic framework-functionalized magnetic MXene nanocomposite for efficient pre-concentration and detection of organophosphorus and organochlorine pesticides in tea samples before gas chromatography-triple quadrupole mass spectrometry analysis. Food Chem 2024; 459:140352. [PMID: 38991447 DOI: 10.1016/j.foodchem.2024.140352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
In this study, a hydrophobic covalent organic framework-functionalized magnetic composite (CoFe2O4@Ti3C2@TAPB-TFTA) with a high specific area with 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,3,5,6-tetrafluoroterephthalaldehyde (TFTA) was designed and synthesized through Schiff base reaction. An efficient magnetic solid-phase extraction method was established and combined with gas chromatography-triple quadrupole mass spectrometry to sensitively determine 10 organochlorine and organophosphorus pesticides in tea samples. The established method exhibited good linearity in the range of 0.05-120 μg/L and had low limits of detection (0.013-0.018 μg/L). The method was evaluated with tea samples, and the spiked recoveries of pesticides in different tea samples reached satisfactory values of 85.7-96.8%. Moreover, the adsorption of pesticides was spontaneous and followed Redlich-Peterson isotherm and pseudo-second-order kinetic models. These results demonstrate the sensitivity, effectiveness, and reliability of the proposed method for monitoring organochlorine and organophosphorus pesticides in tea samples, providing a preliminary basis for researchers to reasonably design adsorbents for the efficient extraction of pesticides.
Collapse
Affiliation(s)
- Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Wenjing Liu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaodie Geng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Dejing Meng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiawei Liao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China..
| |
Collapse
|
6
|
Cheng X, Qin X, Zhao R, Chen J, Zheng X, Liu K, Xin M. Construction of Co-Modified MXene/PES Catalytic Membrane for Effective Separation and Degradation of Tetracycline Antibiotics in Aqueous Solutions. Molecules 2024; 29:4995. [PMID: 39519638 PMCID: PMC11547915 DOI: 10.3390/molecules29214995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/10/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
The application of antibiotics has advanced modern medicine significantly. However, the abuse and discharge of antibiotics have led to substantial antibiotic residues in water, posing great harm to natural organisms and humans. To address the problem of antibiotic degradation, this study developed a novel catalytic membrane by depositing Co catalysts onto MXene nanosheets and fabricating the polyethersulfone composite (Co@MXene/PES) using vacuum-assisted self-assembly. The dual role of MXene as both a carrier for Co atoms and an enhancer of interlayer spacing led to improved flux and catalytic degradation capabilities of the membrane. Experimental results confirmed that the Co@MXene/PES membrane effectively degraded antibiotics through peroxymonosulfate activation, achieving up to 95.51% degradation at a cobalt concentration of 0.01 mg/mL. The membrane demonstrated excellent antibacterial properties, minimal flux loss after repeated use, and robust anti-fouling performance, making it a promising solution for efficient antibiotic removal and stable water treatment.
Collapse
Affiliation(s)
- Xiaojie Cheng
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (R.Z.); (J.C.)
| | - Xiaojun Qin
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; (X.Q.); (X.Z.); (K.L.); (M.X.)
| | - Runxue Zhao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (R.Z.); (J.C.)
| | - Jiamin Chen
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (R.Z.); (J.C.)
| | - Xia Zheng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; (X.Q.); (X.Z.); (K.L.); (M.X.)
| | - Ke Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; (X.Q.); (X.Z.); (K.L.); (M.X.)
| | - Meixuan Xin
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; (X.Q.); (X.Z.); (K.L.); (M.X.)
| |
Collapse
|
7
|
Rasheed T, Ferry DB, Iqbal ZF, Imran M, Usman M. Cutting-edge developments in MXene-derived functional hybrid nanostructures: A promising frontier for next-generation water purification membranes. CHEMOSPHERE 2024; 357:141955. [PMID: 38614403 DOI: 10.1016/j.chemosphere.2024.141955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
A novel family of multifunctional nanomaterials called MXenes is quickly evolving, and it has potential applications that are comparable to those of graphene. This article provides a current explanation of the design and performance assessment of MXene-based membranes. The production of MXenes nanosheets are first described, with an emphasis on exfoliation, dispersion stability, and processability, which are essential elements for membrane construction. Further, critical discussion is also given to MXenes potential applications in Vacuum assisted filtration, casting method, Hot press method, electrospinning and electrochemical deposition and layer-by-layer assembly for the creation of MXene and MXene derived nanocomposite membranes. Additionally, the discussion is carried forward to give an insight to the modification methods for the construction of MXene-based membrane are described in the literature, including pure or intercalated nanomaterials, surface modifiers and miscellaneous two-dimensional nanomaterials. Furthermore, the review article highlights the potential utilization of MXene and MXene based membranes in separation and purification processes including removal of small organic molecules, heavy metals, oil-water separation and desalination. Finally, the perspective use of MXenes strong catalytic activity and electrical conductivity for specialized applications that are difficult for other nanomaterials to accomplish are discussed in conclusion and future prospectus section of the manuscript. Overall, important information is given to help the communities of materials science and membranes to better understand the potential of MXenes for creating cutting-edge separation and purification membranes.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Darim Badur Ferry
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Zeenat Fatima Iqbal
- Department of Chemistry, The University of Engineering and Technology, Lahore-54000, Punjab, Pakistan
| | - Muhammad Imran
- Research center for Advanced Materials Science (RCAMS), Department of chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
8
|
Feng Z, Liu C, Tang B, Yang X, Jiang W, Wang P, Tang X, Wang H, Zeng X, Zeng G. Construction of a Two-Dimensional GO/Ti 3C 2T X Composite Membrane and Investigation of Mg 2+/Li + Separation Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2777. [PMID: 37887928 PMCID: PMC10609999 DOI: 10.3390/nano13202777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
Graphene oxide (GO) two-dimensional (2D) membranes with unique layer structures and tunable layer spacing have special advantages and great potential in the field of water treatment. However, GO membranes face the issues of weak anti-swelling ability as well as poor permeability. We prepared GO/Ti3C2TX 2D composite membranes with 2D/2D structures by intercalating Ti3C2TX nanosheets with slightly smaller sizes into GO membranes. Ti3C2TX intercalation can effectively expand the layer spacing of GO, thereby substantially enhancing the flux of the composite membrane (2.82 to 6.35 L·m-2·h-1). Moreover, the GO/Ti3C2TX composite membrane exhibited a good Mg2+/Li+ separation capability. For the simulated brine, the separation factor of M2 was 3.81, and the salt solution flux was as high as 5.26 L·m-2·h-1. Meanwhile, the incorporation of Ti3C2TX nanosheets significantly improved the stability of GO/Ti3C2TX membranes in different pH environments. This study provides a unique insight into the preparation of highly permeable and ion-selective GO membranes.
Collapse
Affiliation(s)
- Zhenhua Feng
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province, Chengdu Mineral Resources Supervision and Testing Center, Ministry of Land and Resources, Chengdu 610081, China; (Z.F.); (B.T.); (W.J.)
- Chengdu Analytical & Testing Center for Mineral and Rocks, Sichuan Bureau of Geology and Mineral Resources, Chengdu 610081, China
| | - Chengwen Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; (C.L.); (H.W.); (X.Z.)
| | - Binbin Tang
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province, Chengdu Mineral Resources Supervision and Testing Center, Ministry of Land and Resources, Chengdu 610081, China; (Z.F.); (B.T.); (W.J.)
- Chengdu Analytical & Testing Center for Mineral and Rocks, Sichuan Bureau of Geology and Mineral Resources, Chengdu 610081, China
| | - Xiaojun Yang
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province, Chengdu Mineral Resources Supervision and Testing Center, Ministry of Land and Resources, Chengdu 610081, China; (Z.F.); (B.T.); (W.J.)
- Chengdu Analytical & Testing Center for Mineral and Rocks, Sichuan Bureau of Geology and Mineral Resources, Chengdu 610081, China
| | - Wenjie Jiang
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province, Chengdu Mineral Resources Supervision and Testing Center, Ministry of Land and Resources, Chengdu 610081, China; (Z.F.); (B.T.); (W.J.)
- Chengdu Analytical & Testing Center for Mineral and Rocks, Sichuan Bureau of Geology and Mineral Resources, Chengdu 610081, China
| | - Peng Wang
- Sichuan Salt Geology Drilling Team (Sichuan Mineral Salt Mining Engineering Technology Research Center), Zigong 643000, China; (P.W.); (X.T.)
| | - Xianjun Tang
- Sichuan Salt Geology Drilling Team (Sichuan Mineral Salt Mining Engineering Technology Research Center), Zigong 643000, China; (P.W.); (X.T.)
| | - Hongshan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; (C.L.); (H.W.); (X.Z.)
| | - Xiangdong Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; (C.L.); (H.W.); (X.Z.)
| | - Guangyong Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; (C.L.); (H.W.); (X.Z.)
| |
Collapse
|
9
|
Baig N, Khan NA, Salhi B, Abdulazeez I, Abu-Zahra N, Abdelazem S, Aljundi IH. Highly Permeable Sulfonated Polydopamine Integrated MXene Membranes for Efficient Surfactant-Stabilized Oil-in-Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13953-13967. [PMID: 37729118 DOI: 10.1021/acs.langmuir.3c01651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
MXene is an incredibly promising two-dimensional material with immense potential to serve as a high-performing separating or barrier layer to develop advanced membranes. Despite the significant progress made in MXene membranes, two major challenges still exist: (i) effectively stacking MXene nanosheets into defect-free membranes and (ii) the high fouling tendency of MXene-based membranes. To address these issues, we employed sulfonated polydopamine (SPD), which simultaneously serves as a binding agent to promote the compact assembling of Ti3C2Tx MXenes (MX) nanosheets and improves the antifouling properties of the resulting sulfonated polydopamine-functionalized MX (SPDMX) membranes. The SPDMX membrane was tested for challenging surfactant-stabilized oil-in-water separation with an impressive efficiency of 98%. Moreover, an ultrahigh permeability of 1620 LMH/bar was also achieved. The sulfonation of PD helps in improving the antifouling characteristics of SPDMX by developing a strong hydration layer and enhancing the oleophobicity of the membrane. The underwater SPDMX membrane appeared superoleophobic with an oil contact angle of 153°, whereas the ceramic membrane exhibited an oil contact angle of 137°. The SPDMX membranes showed an improved flux recovery (31%) compared to the nonsulfonated counterpart. This work highlights the appropriate functionalization of MXene as a promising approach to developing MXene membranes with high permeation flux and better antifouling characteristics for oily wastewater treatment.
Collapse
Affiliation(s)
- Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Niaz Ali Khan
- Key Laboratory of Textile Fiber and Products Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Billel Salhi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ismail Abdulazeez
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Nidal Abu-Zahra
- Department of Materials Science & Engineering College of Engineering and Applied Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Sohaib Abdelazem
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Isam H Aljundi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
10
|
Massoumılari Ş, Velioǧlu S. Can MXene be the Effective Nanomaterial Family for the Membrane and Adsorption Technologies to Reach a Sustainable Green World? ACS OMEGA 2023; 8:29859-29909. [PMID: 37636908 PMCID: PMC10448662 DOI: 10.1021/acsomega.3c01182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/29/2023] [Indexed: 08/29/2023]
Abstract
Environmental pollution has intensified and accelerated due to a steady increase in the number of industries, and exploring methods to remove hazardous contaminants, which can be typically divided into inorganic and organic compounds, have become inevitable. Therefore, the development of efficacious technology for the separation processes is of paramount importance to ensure the environmental remediation. Membrane and adsorption technologies garnered attention, especially with the use of novel and high performing nanomaterials, which provide a target-specific solution. Specifically, widespread use of MXene nanomaterials in membrane and adsorption technologies has emerged due to their intriguing characteristics, combined with outstanding separation performance. In this review, we demonstrated the intrinsic properties of the MXene family for several separation applications, namely, gas separation, solvent dehydration, dye removal, separation of oil-in-water emulsions, heavy metal ion removal, removal of radionuclides, desalination, and other prominent separation applications. We highlighted the recent advancements used to tune separation potential of the MXene family such as the manipulation of surface chemistry, delamination or intercalation methods, and fabrication of composite or nanocomposite materials. Moreover, we focused on the aspects of stability, fouling, regenerability, and swelling, which deserve special attention when the MXene family is implemented in membrane and adsorption-based separation applications.
Collapse
Affiliation(s)
- Şirin Massoumılari
- Institute
of Nanotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Sadiye Velioǧlu
- Institute
of Nanotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
- Nanotechnology
Research and Application Center, Gebze Technical
University, Gebze 41400, Kocaeli, Turkey
| |
Collapse
|
11
|
Zhang B, Peng Y, Yao Y, Hong X, Wu Y. Constructing a composite microfiltration carbon membrane by TiO 2 and Fe 2O 3 for efficient separation of oil-water emulsions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92027-92041. [PMID: 37480529 DOI: 10.1007/s11356-023-28728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Membrane-based separation technology has attracted enormous attention for oil/water emulsion treatment. Here, composite microfiltration carbon membranes (MCMs) were prepared from the precursor of phenolic resin doping with TiO2 and Fe2O3 via the processes of stereotype and pyrolysis. The functional groups, thermal stability, porous structure, microstructure, morphology, and hydrophilicity of the membrane samples were analyzed by Fourier-transform infrared spectroscopy, thermogravimetric analysis, bubble pressure method, X-ray diffraction, scanning electron microscope, and water contact angle, respectively. The effect of dopant amount on the separation performance of MCMs was investigated. The results show that a mixed matrix system is constructed by TiO2 and Fe2O3 in MCMs, which is beneficial for further optimizing the pore size, porosity, and hydrophilicity of MCMs for oily wastewater treatment by varying the dopant amount. The maximum oil rejections are achieved at 98.9% and 99.6% for MCMs with a dopant content of TiO2 and Fe2O3 at 25%, respectively. In brief, this study offers an attractive strategy for improving the separation performance of MCMs for oily wastewater.
Collapse
Affiliation(s)
- Bing Zhang
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China.
| | - Yao Peng
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| | - Yanhu Yao
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| | - Xueqian Hong
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| | - Yonghong Wu
- School of Petrochemical Engineering, Shenyang University of Technology, No. 30 Guanghua Street, Liaoyang, 111003, China
| |
Collapse
|
12
|
Cheng X, Qin X, Su Z, Gou X, Yang Z, Wang H. Research on the Antibacterial Properties of MXene-Based 2D-2D Composite Materials Membrane. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2121. [PMID: 37513132 PMCID: PMC10383113 DOI: 10.3390/nano13142121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Novel MXene-based two-dimensional (2D) membranes are widely used for water purification due to their highly controllable structure and antibacterial properties. However, in the process of membrane separation, the problems of membrane fouling, especially biological fouling, limits the further application of MXene-based membranes. In this study, in order to improve the antibacterial and separation properties of membranes, three kinds of MXene-based 2D-2D composite membranes (M2~M4) were prepared using polyethersulfone (PES) as the substrate, which were GO@MXene, O-g-C3N4@MXene and BiOCl@MXene composite membranes respectively. The results showed that the antibacterial activity of M2~M4 against Escherichia coli and Staphylococcus aureus was further improved, especially the antibacterial ratio of M4 against Escherichia coli and Staphylococcus aureus was up to 50% and 82.4%, respectively. By comparing the surface morphology of MXene membrane and modified membrane treated bacteria through scanning electron microscopy (SEM), it was found that the cell density on modified membrane was significantly lower than that of pure MXene membrane.
Collapse
Affiliation(s)
- Xiaojie Cheng
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xiaojian Qin
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Zhenglun Su
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xun Gou
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Zhaomei Yang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Hongshan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
13
|
Ma Q, Gao J, Moussa B, Young J, Zhao M, Zhang W. Electrosorption, Desorption, and Oxidation of Perfluoroalkyl Carboxylic Acids (PFCAs) via MXene-Based Electrocatalytic Membranes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37294711 DOI: 10.1021/acsami.3c03991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MXenes exhibit excellent conductivity, tunable surface chemistry, and high surface area. Particularly, the surface reactivity of MXenes strongly depends on surface exposed atoms or terminated groups. This study examines three types of MXenes with oxygen, fluorine, and chlorine as respective terminal atoms and evaluates their electrosorption, desorption, and oxidative properties. Two perfluorocarboxylic acids (PFCAs), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) are used as model persistent micropollutants for the tests. The experimental results reveal that O-terminated MXene achieves a significantly higher adsorption capacity of 215.9 mg·g-1 and an oxidation rate constant of 3.9 × 10-2 min-1 for PFOA compared to those with F and Cl terminations. Electrochemical oxidation of the two PFCAs (1 ppm) with an applied potential of +6 V in a 0.1 M Na2SO4 solution yields >99% removal in 3 h. Moreover, PFOA degrades about 20% faster than PFBA on O-terminated MXene. The density functional theory (DFT) calculations reveal that the O-terminated MXene surface yielded the highest PFOA and PFBA adsorption energy and the most favorable degradation pathway, suggesting the high potential of MXenes as highly reactive and adsorptive electrocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Qingquan Ma
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Jianan Gao
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Botamina Moussa
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Joshua Young
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mengqiang Zhao
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
14
|
Shan T, Ma X, Li H, Liu C, Shen C, Yang P, Li S, Wang Z, Liu Z, Sun H. Plant-derived hybrid coatings as adsorption layers for uranium adsorption from seawater with high performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
15
|
Wen J, Li X, Zhang H, Zheng S, Yi C, Yang L, Shi J. Architecting Janus hydrogel evaporator with polydopamine-TiO2 photocatalyst for high-efficient solar desalination and purification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
Yang Z, Lin Q, Zeng G, Zhao S, Yan G, Ang MBMY, Chiao YH, Pu S. Ternary hetero-structured BiOBr/Bi2MoO6@MXene composite membrane: Construction and enhanced removal of antibiotics and dyes from water. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Madan Bhatt A, Deshmukh S, Boda A, Singh Chauhan R, Musharaf Ali S, Sengupta A. Synthesis and application of chloroacetamides in pyridinium based ionic liquid for high temperature extraction of uranyl ion: A novel and 'green' approach for extractive mass transfer at elevated temperature. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Imsonga R, Dhar Purkayasthaa D. Dual-functional Superhydrophilic/underwater Superoleophobic 2D Ti3C2TX MXene-PAN Membrane for Efficient Oil-Water Separation and Adsorption of Organic Dyes in Wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Zhang L, Liu Y, Zeng G, Yang Z, Lin Q, Wang Y, Wang X, Pu S. Two-dimensional Na-Bentonite@MXene composite membrane with switchable wettability for selective oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Bhoir S, Pathak S, Jayabun S, Sengupta A. Development of ICP‐OES Based Analytical Method with Prior Preferential Removal of Emission Rich Matrix by Elevated Temperature Ionic Liquid Based Extractive Mass Transfer for Determination of Metallic Constituents in U‐Mo Alloy: The Next Generation Nuclear Fuel. ChemistrySelect 2022. [DOI: 10.1002/slct.202203162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seema Bhoir
- Radiochemistry Division Bhabha Atomic Research Centre Mumbai 400085 Maharashtra India
| | - Sunita Pathak
- Radiochemistry Division Bhabha Atomic Research Centre Mumbai 400085 Maharashtra India
| | - Sk. Jayabun
- Radiochemistry Division Bhabha Atomic Research Centre Mumbai 400085 Maharashtra India
| | - Arijit Sengupta
- Radiochemistry Division Bhabha Atomic Research Centre Mumbai 400085 Maharashtra India
- Homi Bhabha National Institute Mumbai 400094 Maharashtra India
| |
Collapse
|
21
|
Zhang H, Zheng Y, Zhou H, Zhu S, Yang J. Nanocellulose-intercalated MXene NF Membrane with Enhanced Swelling Resistance for Highly Efficient Antibiotics Separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Ihsanullah I, Bilal M. Potential of MXene-based membranes in water treatment and desalination: A critical review. CHEMOSPHERE 2022; 303:135234. [PMID: 35679979 DOI: 10.1016/j.chemosphere.2022.135234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
MXenes have emerged as wonderful materials that earned enormous attention in the last decade for applications in various fields. The potential of MXenes in the development of novel membranes has been explored recently by many researchers. This review critically assessed the recent advances in applications of MXene-based materials for the development of novel membranes. The synthesis routes of the MXene-based membranes are discussed, and the applications of developed membranes in water treatment and desalination are elaborated in detail. MXene-based membranes have demonstrated excellent potential in water treatment and desalination for the removal of dyes, metal ions, and salts from water. These membranes have unveiled exceptional antifouling potential and were proven to be a good choice to be employed in oil/water (O/W) separation. Besides impressive progress, numerous barriers restrict the practical applications of these membranes. The challenges related to synthesis routes of MXenes and MXene-based membranes, their stability and reusability potential, and the development of membranes on large scale are highlighted. Finally, recommendations for future work are suggested to overcome these limitations in future.
Collapse
Affiliation(s)
- Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| |
Collapse
|
23
|
Sun A, Zhan Y, Feng Q, Yang W, Dong H, Liu Y, Chen X, Chen Y. Assembly of MXene/ZnO heterojunction onto electrospun poly(arylene ether nitrile) fibrous membrane for favorable oil/water separation with high permeability and synergetic antifouling performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Zeng G, Liu Y, Lin Q, Pu S, Zheng S, Ang MBMY, Chiao YH. Constructing composite membranes from functionalized metal organic frameworks integrated MXene intended for ultrafast oil/water emulsion separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
A self-cleaning photocatalytic composite membrane based on g-C3N4@MXene nanosheets for the removal of dyes and antibiotics from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Zhang L, Zhao Y, Deng Z, Liu X, Chen Y, Zhang J, Liu Y, Zeng G. Preparation of sepiolite modified MXene composite membrane for oil/water separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Zhang
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Deyang China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Deyang China
| | - Yong Zhao
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Deyang China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Deyang China
| | - Zhibin Deng
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Deyang China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Deyang China
| | - Xiang Liu
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Deyang China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Deyang China
| | - Yonggang Chen
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Deyang China
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province Deyang China
| | - Jun Zhang
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu China
| | - Yongcong Liu
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu China
| | - Guangyong Zeng
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu China
| |
Collapse
|
27
|
Wang Z, Gao J, Zhu L, Meng J, He F. Tannic acid-based functional coating: surface engineering of membranes for oil-in-water emulsion separation. Chem Commun (Camb) 2022; 58:12629-12641. [DOI: 10.1039/d2cc05102h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress in the tannic acid-based functional coating for surface engineering of membranes toward oil-in-water emulsion separation is summarized.
Collapse
Affiliation(s)
- Zhenxing Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jie Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Lin Zhu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jinxuan Meng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Fang He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|