1
|
Puteri MN, Gew LT, Ong HC, Ming LC. Technologies to eliminate microplastic from water: Current approaches and future prospects. ENVIRONMENT INTERNATIONAL 2025; 199:109397. [PMID: 40279687 DOI: 10.1016/j.envint.2025.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/13/2025] [Accepted: 03/17/2025] [Indexed: 04/27/2025]
Abstract
Microplastic (MP) pollution has become a widespread environmental threat which must be addressed as it affects the water bodies, soil as well as air. MPs originally from synthetic textiles, tire abrasion, plastic waste, etc. pose the significant risks to both the environment and health due to its structure, ability to absorb toxins and act as carriers of harmful substances. This characteristic enables MPs to accumulate toxic substances and spread them within the food chain which leads to adverse effects on both the environment and human health including possible endocrine disruption. This problem needs to be solved in order to protect the self-regulatory systems of the environment and safeguard for human health. This review investigates various methods developed to eliminate MPs from water which each method exposes its own strengths and limitations. Conventional methods, such as filtration, coagulation-flocculation, and sedimentation serve as the primary line of defense but often struggle with smaller particles. Membrane filtration, magnetic separation, and electrochemical methods have shown better performance particularly for a wider MPs size range. However, their adoption is limited due to high costs and high energy requirement. A chemical approach focuses on the use of reactors to degrade MPs as a means of overcoming the problem posed by the persistent particles. Biological approaches, including bioremediation through bacteria, fungi, and algae offer eco-friendly alternatives by breaking down MPs into less harmful components. Future directions in MPs management involve the integration of these technologies for enhanced removal efficiency, the development of novel materials, and improved system designs to reduce costs and environmental impact. In summary, advancing research in biotechnological solutions and optimizing existing methods is critical to address the widespread and complex nature of MPs pollution to ensure healthier ecosystems and safer water supplies.
Collapse
Affiliation(s)
| | - Lai Ti Gew
- Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Hwai Chyuan Ong
- School of Engineering, Faculty of Engineering and Technology, Sunway University, Sunway City, Malaysia; School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
| | - Long Chiau Ming
- Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India
| |
Collapse
|
2
|
García-Rollán M, Sanz-Santos E, Belver C, Bedia J. Key adsorbents and influencing factors in the adsorption of micro- and nanoplastics: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125394. [PMID: 40262493 DOI: 10.1016/j.jenvman.2025.125394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
Microplastics and nanoplastics (MNPs) are emerging contaminants in drinking water sources that pose serious risks to human health and ecosystems. Several removal strategies, such as adsorption, exist but present challenges for their industrial scalability. This review provides a concise overview of MNP adsorption mechanisms and highlights the limited but critical exploration of column adsorption in the literature, emphasizing its importance for large-scale applications. Special attention is given to carbon-based materials due to their cost-effectiveness, environmental friendliness and sustainability. Other adsorbents (e.g., metal-organic frameworks, clays) are also discussed for their promising performance in realistic water matrixes. To predict and optimize the efficiency of adsorbents, leading simulation models are reviewed. Taken together, this work provides a comprehensive overview of the fundamental factors, such as adsorption mechanisms, adsorbent selection and experimental conditions, to optimize MNP adsorption. By highlighting the underexplored area of column-based processes, it provides valuable information to advance adsorption as a viable industrial-scale solution for MNP contamination.
Collapse
Affiliation(s)
- M García-Rollán
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, E-28049, Spain.
| | - E Sanz-Santos
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, E-28049, Spain
| | - C Belver
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, E-28049, Spain
| | - J Bedia
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, E-28049, Spain.
| |
Collapse
|
3
|
Jiang L, Wang M, He S, Ren J, Zhang T, Cheng Z. Bibliometrics and visualization analysis of microplastics research in water from 2011 to 2023. JOURNAL OF WATER AND HEALTH 2025; 23:322-335. [PMID: 40156211 DOI: 10.2166/wh.2025.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/04/2025] [Indexed: 04/01/2025]
Abstract
Microplastics in water have emerged as a significant public concern in recent years due to their potential adverse impacts on both human and animal health. This study conducts an analysis of articles published in key journals indexed in the Web of Science from 2011 to 2023, employing CiteSpace and VOSviewer for data extraction and visualization. The results elucidate a marked increase in both the number of publications and citations since 2018. Initially, the United Kingdom was at the forefront of research output in this domain, with a publication proportion of 16.59% from 2011 to 2017 and 4.37% from 2018 to 2023. However, the proportion of publications in China has increased from 10.31 to 40.45%. Notably, the Marine Pollution Bulletin has not only been an early contributor to this field but also holds the record for the highest number of published articles. Keyword analysis indicates research trends and hotspots. Recent investigations on microplastic removal techniques have predominantly centered on adsorption. Moreover, studies focusing on microplastics in surface water have also garnered considerable attention. This study offers a comprehensive review of existing research and provides guidance for future directions in microplastic research.
Collapse
Affiliation(s)
- Lei Jiang
- School of Environment Science, Liaoning University, Shenyang 110036, China
| | - Meiyi Wang
- School of Environment Science, Liaoning University, Shenyang 110036, China
| | - Shan He
- School of Environment Science, Liaoning University, Shenyang 110036, China
| | - Jiabo Ren
- School of Environment Science, Liaoning University, Shenyang 110036, China
| | - Tong Zhang
- School of Environment Science, Liaoning University, Shenyang 110036, China
| | - Zhihui Cheng
- School of Environment Science, Liaoning University, Shenyang 110036, China E-mail:
| |
Collapse
|
4
|
Al Harraq A, Brahana PJ, Bharti B. Colloid and Interface Science for Understanding Microplastics and Developing Remediation Strategies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4412-4421. [PMID: 39951827 DOI: 10.1021/acs.langmuir.4c03856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Microplastics (MPs) originate from industrial production of <1 mm polymeric particles and from the progressive breakdown of larger plastic debris. Their environmental behavior is governed by their interfacial properties, which dominate due to their small size. This Perspective highlights the complex surface chemistry of MPs under environmental stressors and discusses how physical attributes like shape and roughness could influence their fate. We further identify wastewater treatment plants (WWTPs) as critical hotspots for MP accumulation, where the MPs are inadvertently transferred to sewage sludge and reintroduced into the environment. We emphasize the potential of colloid and interfacial science not only to improve our fundamental understanding of MPs but also to advance mitigation strategies in hotspots such as WWTPs.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, United States
| | - Philip J Brahana
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
5
|
Yadav B, Gupta P, Kumar V, Umesh M, Sharma D, Thomas J, Kumar Bhagat S. Potential health, environmental implication of microplastics: A review on its detection. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 268:104467. [PMID: 39608219 DOI: 10.1016/j.jconhyd.2024.104467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/23/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Microplastic contamination of terrestrial and aquatic environment has gained immense research attention due to their potential ecotoxicity and biomagnification property when enterer into food chain. Heterogenous nature of microplastics coupled with their ability to combine with other emerging pollutants have increased the severity of this crisis. Existing detection methods often fails to accurately quantify the amount of microplastic components present in environmental and biological samples. Thus, a great deal of research gap always exists in our current understanding about microplastics including the limitations in screening, detection and mitigation. This review work presents a comprehensive out look on the impact of microplastics on both terrestrial and aquatic environment. Furthermore, an in-depth discussion on various microplastic detection techniques recently used for microplastic quantification along with their significance and limitations is summarised in this review. The review also elaborates various physical, chemical and biological methods used for the mitigation of microplastics from environmental samples.
Collapse
Affiliation(s)
- Bhawana Yadav
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248001, Uttarakhand, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248001, Uttarakhand, India.
| | - Vinay Kumar
- Biomaterials and Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India.
| | - Mridul Umesh
- Department of Life Sciences, Christ University, Bangalore 560029, Karnataka, India
| | - Deepak Sharma
- Department of Biotechnology, Chandigarh College of Technology, Chandigarh Group of Colleges Landran, 140307, Mohali, Punjab, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Suraj Kumar Bhagat
- Marwadi University Research Center, Department of Civil Engineering, Faculty of Engineering & Technology, Marwadi University, Gujarat, Rajkot, 360003, India
| |
Collapse
|
6
|
Ojha PC, Satpathy SS, Ojha R, Dash J, Pradhan D. Insight into the removal of nanoplastics and microplastics by physical, chemical, and biological techniques. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1055. [PMID: 39404908 DOI: 10.1007/s10661-024-13247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/10/2024] [Indexed: 11/14/2024]
Abstract
Plastic pollutants create health crises like physical damage to tissues, upset reproductive processes, altered behaviour, oxidative stress, neurological disorders, DNA damage, gene expression, and disrupt physiological functions, as the biosphere accumulates them inadvertently through the food web. Water resources have become the generic host of plastic wastes irrespective of their particle size, resulting in widespread distribution in aquatic environments. The pre-treatment step of the traditional water treatment process can easily remove coarse-sized plastic wastes. However, the fine plastic particles, with sizes ranging from nanometres to millimetres, are indifferent to the traditional water treatment. To address the escalating problems, the upgradation of different traditional physical, chemical, and biological remediation techniques offers a promising avenue for tackling tiny plastic particles from the water environment. Further, new techniques and hybrid incorporations to the existing water treatment techniques have been explored, specifically removing tiny plastic debris. A detailed understanding of the sources, fate, and impact of plastic wastes in the environment, as well as an evaluation of the above treatment techniques and their limitations and challenges, can only show the way for their upgradation, hybridization, and development of new techniques. This review paper provides a comprehensive overview of the current knowledge and techniques for the remediation of nanoplastics and microplastics.
Collapse
Affiliation(s)
- Priti Chhanda Ojha
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Swati Sucharita Satpathy
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Ritesh Ojha
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Jyotilagna Dash
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Debabrata Pradhan
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India.
| |
Collapse
|
7
|
Wang M, Mu L, Tang X, Fan W, Liu Q, Qiu C, Hu X. Effect and mechanism of coexistence of microplastics on arsenate adsorption capacity in water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116600. [PMID: 38896901 DOI: 10.1016/j.ecoenv.2024.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Arsenic pollution control technology in water was important to ensure environmental health and quality safety of agricultural products. Therefore, the adsorption performance of three adsorbents for chitosan, sepiolite, and Zeolitic Imidazolate Framework-8 (ZIF-8) were investigated in arsenate contaminated water. The results revealed that the adsorption capacity of ZIF-8 was higher than that of chitosan and sepiolite. The analysis of adsorption isotherm models showed that the behavior of ZIF-8 was more consistent with the Langmuir model. Furthermore, the adsorption mechanisms of three adsorbents for arsenate were investigated by Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The analysis of FTIR showed that ZIF-8 maintained the stability of the interaction with arsenate by forming As-O chemical bonds. However, the effect of chitosan and sepiolite with arsenate was mainly physical adsorption. The analysis of XPS showed that the absorption of ZIF-8 with arsenate involved metal sites and nitrogen through the characteristic peak and the change of the binding energy. Furthermore, the impact of microplastics as a widespread coexistence pollutant in the water on adsorbent performance was investigated. The results indicated that the adsorption capacity of ZIF-8 was almost not affected by microplastics. The maximum adsorption amount of arsenate was changed from 73.45 mg/g to 81.89 mg/g. However, the maximum adsorption amount of chitosan and sepiolite decreased by 31.4 % and 11.6 %, respectively. The analysis of FTIR and XPS revealed that ZIF-8 enhances arsenate adsorption by forming N-O-As bonds in the presence of microplastics. This study provides scientific evidence for the management of arsenate pollution in water bodies, especially in complex water bodies containing microplastics.
Collapse
Affiliation(s)
- Mengyuan Wang
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xin Tang
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Weixin Fan
- Tianjin Key Laboratory of Aqueous Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Qinghong Liu
- Tianjin Key Laboratory of Aqueous Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Chunsheng Qiu
- Tianjin Key Laboratory of Aqueous Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Karunattu Sajan M, Kirubalan MR, Rajendran AS, Natesan ALF. Exploring the effective adsorption of polystyrene microplastics from aqueous solution with magnetically separable nickel/reduced graphene oxide (Ni/rGO) nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38099-38116. [PMID: 38795296 DOI: 10.1007/s11356-024-33726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/15/2024] [Indexed: 05/27/2024]
Abstract
Microplastics (MPs) are a potential threat to both humans and aquatic environment as they serve as carriers of various contaminants necessitating the development of reliable, efficient, and ecofriendly techniques to remove MPs from water. In this study, reduced graphene oxide (rGO) magnetized using nickel nanoparticles was utilized as a potent adsorbent for the effective removal of microplastics from water. The synthesized nickel/reduced graphene oxide (Ni/rGO) nanocomposite was characterized by X-ray diffraction (XRD), Raman spectra, vibrating sample magnetometer (VSM), scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX), thermogravimetric analysis, and Brunauer-Emmett Teller (BET) analysis. Magnetic Ni/rGO nanocomposite exhibited significant adsorption capability for polystyrene (PS) microspheres allowing the formation of PS-Ni/rGO complex which can be easily separated out using a magnet. The SEM images of PS-Ni/rGO complex confirmed the adsorption of PS microspheres onto the nano adsorbent due to hydrophobic interaction. The adsorbent demonstrated a maximum adsorption capacity of 1250 mg/g. The analysis of isotherm and kinetic models demonstrated that the adsorption mechanism conformed to the Langmuir isotherm and followed pseudo second order kinetics. This study paves a new pathway for the application of magnetically modified reduced graphene oxide for the expedient removal of microplastics from water with the ease of separation using a magnet. The adsorbent was recycled and reused for three times.
Collapse
Affiliation(s)
- Merija Karunattu Sajan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603203, India
| | - Mani Rahulan Kirubalan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603203, India
| | - Annie Sujatha Rajendran
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603203, India
| | - Angeline Little Flower Natesan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603203, India.
| |
Collapse
|
9
|
Bogush AA, Kourtchev I. Disposable surgical/medical face masks and filtering face pieces: Source of microplastics and chemical additives in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123792. [PMID: 38518974 DOI: 10.1016/j.envpol.2024.123792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The production and consumption of disposable face masks (DFMs) increased intensely during the COVID-19 pandemic, leading to a high amount of them being found in the terrestrial and aquatic environment. The main goal of this research study is to conduct a comparative evaluation of the water-leachability of microplastics (MPs) and chemical additives from various types of disposable surgical/medical face masks (MM DFMs) and filtering face pieces (FFPs). Fourier-Transform Infrared Spectroscopy was used for MPs analysis. Liquid Chromatography/High Resolution Mass Spectrometry was used to analyse analytes presented in the water-leachates of DFMs. FFPs released 3-4 times more microplastic particles compared to MM DFMs. The release of MPs into water from all tested DFMs without mechanical stress suggests potential MP contamination originating from the DFM production process. Our study for the first time identified bisphenol B (0.25-0.42 μg/L) and 1,4-bis(2-ethylhexyl) sulfosuccinate (163.9-115.0 μg/L) as leachables from MM DFMs. MPs in the water-leachates vary in size, with predominant particles <100 μm, and the release order from DFMs is MMIIR > MMII > FFP3>FFP2>MMI. The main type of microplastics identified in the water leachates of the investigated face masks was polypropylene, accounting for 93-97% for MM DFMs and 82-83% for FFPs. Other polymers such as polyethylene, polycarbonate, polyester/polyethylene terephthalate, polyamide/Nylon, polyvinylchloride, and ethylene-propylene copolymer were also identified, but in smaller amounts. FFPs released a wider variety and a higher percentage (17-18%) of other polymers compared to MM DFMs (3-7%). Fragments and fibres were identified in all water-leachate samples, and fragments, particularly debris of polypropylene fibres, were the most common MP morphotype. The findings in this study are important in contributing additional data to develop science-based policy recommendations on the health and environmental impacts of MPs and associated chemical additives originated from DFMs.
Collapse
Affiliation(s)
- Anna A Bogush
- Research Centre for Agroecology, Water and Resilience, Coventry University, Ryton-on Dunsmore, CV8 3LG, United Kingdom.
| | - Ivan Kourtchev
- Research Centre for Agroecology, Water and Resilience, Coventry University, Ryton-on Dunsmore, CV8 3LG, United Kingdom
| |
Collapse
|
10
|
Surana M, Pattanayak DS, Yadav V, Singh VK, Pal D. An insight decipher on photocatalytic degradation of microplastics: Mechanism, limitations, and future outlook. ENVIRONMENTAL RESEARCH 2024; 247:118268. [PMID: 38244970 DOI: 10.1016/j.envres.2024.118268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Plastic material manufacturing and buildup over the past 50 years has significantly increased pollution levels. Microplastics (MPs) and non-biodegradable residual plastic films have become the two most pressing environmental issues among the numerous types of plastic pollution. These tiny plastic flakes enter water systems from a variety of sources, contaminating the water. Since MPs can be consumed by people and aquatic species and eventually make their way into the food chain, their presence in the environment poses a serious concern. Traditional technologies can remove MPs to some extent, but their functional groups, stable covalent bonds, and hydrophobic nature make them difficult to eliminate completely. The urgent need to develop a sustainable solution to the worldwide contamination caused by MPs has led to the exploration of various techniques. Advanced oxidation processes (AOPs) such as photo-catalytic oxidation, photo-degradation, and electrochemical oxidation have been investigated. Among these, photocatalysis stands out as the most promising method for degrading MPs. Photocatalysis is an environmentally friendly process that utilizes light energy to facilitate a chemical reaction, breaking down MPs into carbon dioxide and water-soluble hydrocarbons under aqueous conditions. In photocatalysis, semiconductors act as photocatalysts by absorbing energy from a light source, becoming excited, and generating reactive oxygen species (ROS). These ROS, including hydroxyl radicals (•OH) and superoxide ions ( [Formula: see text] ), play a crucial role in the degradation of MPs. This extensive review provides a detailed exploration of the mechanisms and processes underlying the photocatalytic removal of MPs, emphasizing its potential as an efficient and environmentally friendly approach to address the issue of plastic pollution.
Collapse
Affiliation(s)
- Madhu Surana
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India
| | - Dhruti Sundar Pattanayak
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India
| | - Venkteshwar Yadav
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India
| | - V K Singh
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India.
| |
Collapse
|
11
|
Yu SH, Feng XY, Fan MY, Zhang YZ, Wang Y. Efficient removal of phosphorus and nitrogen from aquatic environment using sepiolite-MgO nanocomposites: preparation, characterization, removal performance, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17481-17493. [PMID: 38342832 DOI: 10.1007/s11356-024-32346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Excessive phosphorus will lead to eutrophication in aquatic environment; the efficient removal of phosphorus is crucial for wastewater engineering and surface water management. This study aimed to fabricate a nanorod-like sepiolite-supported MgO (S-MgO) nanocomposite with high specific surface area for efficient phosphate removal using a facile microwave-assisted method and calcining processes. The impact of solution pH, adsorbent dosage, contact time, initial phosphate concentrations, Ca2+ addition, and N/P ratio on the phosphate removal was extensively examined by the batch experiments. The findings demonstrated that the S-MgO nanocomposite exhibited effective removal performance for low-level phosphate (0 ~ 2.0 mM) within the pH range of 3.0 ~ 10.0. Additionally, the nanocomposite can synchronously remove phosphate and ammonium in high-level nutrient conditions (> 2.0 mM), with the maximum removal capacities of 188.49 mg P/g and 89.78 mg N/g. Quantitative and qualitative analyses confirmed the successful harvesting of struvite in effluent with high-phosphate concentrations, with the mechanisms involved attributed to a synergistic combination of sorption and struvite crystallization. Due to its proficient phosphate removal efficiency, cost-effectiveness, and substantial removal capacity, the developed S-MgO nanocomposite exhibits promising potential for application in phosphorus removal from aquatic environments.
Collapse
Affiliation(s)
- Sheng-Hui Yu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| | - Xin-Yi Feng
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Mei-Ying Fan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Yuan-Zhao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Yan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
12
|
Dai Y, Li L, Guo Z, Yang X, Dong D. Emerging isolation and degradation technology of microplastics and nanoplastics in the environment. ENVIRONMENTAL RESEARCH 2024; 243:117864. [PMID: 38072105 DOI: 10.1016/j.envres.2023.117864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 12/02/2023] [Indexed: 02/06/2024]
Abstract
Microplastics (MPs, less than 5 mm in size) are widely distributed in surroundings in various forms and ways, and threaten ecosystems security and human health. Its environmental behavior as pollutants carrier and the after-effects exposed to MPs has been extensively exploited; whereas, current knowledge on technologies for the separation and degradation of MPs is relatively limited. It is essential to isolate MPs from surroundings and/or degrade to safe levels. This in-depth review details the origin and distribution of MPs. Provides a comprehensive summary of currently available MPs separation and degradation technologies, and discusses the mechanisms, challenges, and application prospects of these technologies. Comparison of the contribution of various separation methods to the separation of NPs and MPs. Furthermore, the latest research trends and direction in bio-degradation technology are outlooked.
Collapse
Affiliation(s)
- Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China.
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
13
|
Shalumon CS, Ratanatamskul C. A novel simplified method for extraction of microplastic particles from face scrub and laundry wastewater. Sci Rep 2023; 13:14168. [PMID: 37644111 PMCID: PMC10465532 DOI: 10.1038/s41598-023-41457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/27/2023] [Indexed: 08/31/2023] Open
Abstract
Microplastic pollution in different environmental matrices is a serious concern in the recent times. Personal care products and washing of synthetic fabrics are some of the main sources of microplastic pollution. In this work, a novel simplified, effective and sustainable method for extraction of microplastic particles from face scrub and laundry wastewater was developed. Different parameters affecting the extraction were analysed and the extraction process was optimised. The extraction efficiency of the proposed method was found to be ~ 94.1 ± 1.65%, which was slightly better than the previously available method with an advantage of ease in extraction and lesser time and resource consuming. The developed method was used to demonstrate the extraction of microplastic particles from 12 face scrub samples with different brands. It was found that the samples contained microplastic particles of varying size. The physical and chemical structure intactness of microplastic particles during the extraction was also analysed and found to be acceptable. The developed extraction method was also applied for the extraction of microfibers from the laundry wastewater. It was found that this proposed method is suitable to make the cleaner extracted samples for an easy and more effective qualitative and quantitative analysis of MPs.
Collapse
Affiliation(s)
- C S Shalumon
- Department of Environmental Engineering, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Chavalit Ratanatamskul
- Department of Environmental Engineering, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
14
|
Osman AI, Hosny M, Eltaweil AS, Omar S, Elgarahy AM, Farghali M, Yap PS, Wu YS, Nagandran S, Batumalaie K, Gopinath SCB, John OD, Sekar M, Saikia T, Karunanithi P, Hatta MHM, Akinyede KA. Microplastic sources, formation, toxicity and remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1-41. [PMID: 37362012 PMCID: PMC10072287 DOI: 10.1007/s10311-023-01593-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/10/2023]
Abstract
Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80-90% of pollution, while ocean-based sources account for only 10-20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 μg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8-85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, BT9 5AG Northern Ireland, UK
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
| | | | - Sara Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Mohamed Farghali
- Department of Agricultural Engineering and Socio-Economics, Kobe University, Kobe, 657-8501 Japan
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, 215123 China
| | - Yuan-Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Saraswathi Nagandran
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor Bahru, Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence, Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis Malaysia
| | - Oliver Dean John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450 Ipoh, Perak Malaysia
| | - Trideep Saikia
- Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati Assam, India
| | - Puvanan Karunanithi
- Department of Anatomy, Faculty of Medicine, Manipal University College Malaysia (MUCM), Melaka, Malaysia
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Hayrie Mohd Hatta
- Centre for Research and Development, Asia Metropolitan University, 81750 Johor Bahru, Johor Malaysia
| | - Kolajo Adedamola Akinyede
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, 7530 South Africa
- Biochemistry Unit, Department of Science Technology, The Federal Polytechnic, P.M.B.5351, Ado Ekiti, 360231 Ekiti State Nigeria
| |
Collapse
|
15
|
Sajid M, Ihsanullah I, Tariq Khan M, Baig N. Nanomaterials-based adsorbents for remediation of microplastics and nanoplastics in aqueous media: A review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Budhiraja V, Mušič B, Krzan A. Magnetic Extraction of Weathered Tire Wear Particles and Polyethylene Microplastics. Polymers (Basel) 2022; 14:5189. [PMID: 36501583 PMCID: PMC9740573 DOI: 10.3390/polym14235189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Magnetic extraction offers a rapid and low-cost solution to microplastic (MP) separation, in which we magnetize the hydrophobic surface of MPs to separate them from complex environmental matrices using magnets. We synthesized a hydrophobic Fe-silane based nanocomposite (Fe@SiO2/MDOS) to separate MPs from freshwater. Pristine and weathered, polyethylene (PE) and tire wear particles (TWP) of different sizes were used in the study. The weathering of MPs was performed in an accelerated weathering chamber according to ISO 4892-2:2013 standards that mimic natural weathering conditions. The chemical properties and morphology of the Fe@SiO2/MDOS, PE and TWP were confirmed by Fourier transform infrared spectroscopy and Scanning electron microscopy, respectively. The thermal properties of PE and TWP were evaluated by Thermogravimetric analysis. Using 1.00 mg of Fe@SiO2/MDOS nanocomposite, 2.00 mg of pristine and weathered PE were extracted from freshwater; whereas, using the same amount of the nanocomposite, 7.92 mg of pristine TWP and 6.87 mg of weathered TWP were extracted. The retrieval of weathered TWP was 13% less than that of pristine TWP, which can be attributed to the increasing hydrophilicity of weathered TWP. The results reveal that the effectiveness of the magnetic separation technique varies among different polymer types and their sizes; the weathering of MPs also influences the magnetic separation efficiency.
Collapse
Affiliation(s)
- Vaibhav Budhiraja
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Branka Mušič
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, 1000 Ljubljana, Slovenia
| | - Andrej Krzan
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Li Y, Li S, Pan X, Zhao X, Guo P. Pre-concentration of quartz from sea sand through superconducting high gradient magnetic separation technology. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2151471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yongkui Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Suqin Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaodong Pan
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xin Zhao
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Penghui Guo
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
18
|
Chen Z, Liu X, Wei W, Chen H, Ni BJ. Removal of microplastics and nanoplastics from urban waters: Separation and degradation. WATER RESEARCH 2022; 221:118820. [PMID: 35841788 DOI: 10.1016/j.watres.2022.118820] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
The omnipresent micro/nanoplastics (MPs/NPs) in urban waters arouse great public concern. To build a MP/NP-free urban water system, enormous efforts have been made to meet this goal via separating and degrading MPs/NPs in urban waters. Herein, we comprehensively review the recent developments in the separation and degradation of MPs/NPs in urban waters. Efficient MP/NP separation techniques, such as adsorption, coagulation/flocculation, flotation, filtration, and magnetic separation are first summarized. The influence of functional materials/reagents, properties of MPs/NPs, and aquatic chemistry on the separation efficiency is analyzed. Then, MP/NP degradation methods, including electrochemical degradation, advanced oxidation processes (AOPs), photodegradation, photocatalytic degradation, and biological degradation are detailed. Also, the effects of critical functional materials/organisms and operational parameters on degradation performance are discussed. At last, the current challenges and prospects in the separation, degradation, and further upcycling of MPs/NPs in urban waters are outlined. This review will potentially guide the development of next-generation technologies for MP/NP pollution control in urban waters.
Collapse
Affiliation(s)
- Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Hong Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (SKLISEM), School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|