1
|
Man GT, Iordache AM, Zgavarogea R, Nechita C. Recycling Lithium-Ion Batteries-Technologies, Environmental, Human Health, and Economic Issues-Mini-Systematic Literature Review. MEMBRANES 2024; 14:277. [PMID: 39728727 DOI: 10.3390/membranes14120277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource. Classical technologies for recovering lithium from batteries are associated with various environmental issues, so lithium recovery remains challenging. However, the emergence of membrane processes has opened new research directions in lithium recovery, offering hope for more efficient and environmentally friendly solutions. These processes can be integrated into current industrial recycling flows, having a high recovery potential and paving the way for a more sustainable future. A second method, biolexivation, is eco-friendly, but this point illustrates significant drawbacks when used on an industrial scale. We discussed toxicity induced by metals associated with Li to iron-oxidizing bacteria, which needs further study since it causes low recycling efficiency. One major environmental problem is the low efficiency of the recovery of Li from the water cycle, which affects global-scale safety. Still, electromembranes can offer promising solutions in the future, but there is needed to update regulations to actual needs for both producing and recycling LIB.
Collapse
Affiliation(s)
- Geani Teodor Man
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research and Development Institute for Cryogenics and Isotopic Technologies-ICSI Ramnicu Valcea, 4 Uzinei Street, 240050 Ramnicu Valcea, Romania
| | - Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies-ICSI Ramnicu Valcea, 4 Uzinei Street, 240050 Ramnicu Valcea, Romania
| | - Ramona Zgavarogea
- National Research and Development Institute for Cryogenics and Isotopic Technologies-ICSI Ramnicu Valcea, 4 Uzinei Street, 240050 Ramnicu Valcea, Romania
| | - Constantin Nechita
- National Research and Development Institute for Forestry "Marin Drăcea"-INCDS, 128 Boulvard Eroilor, 077190 Voluntari, Romania
| |
Collapse
|
2
|
Wang W, Wang C, Huang R, Hong G, Zhang Y, Zhang X, Shao L. Boosting lithium/magnesium separation performance of selective electrodialysis membranes regulated by enamine reaction. WATER RESEARCH 2024; 268:122729. [PMID: 39531798 DOI: 10.1016/j.watres.2024.122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Monovalent cation exchange membranes (MCEMs) have progressively played an important role in the field of ion separation. However, according to transition state theory (TST), synchronously tuning the enthalpy barrier (△H) and entropy barrier (△S) for cation transport to improve ion separation performance is challenging. Here, the enamine reaction between the -NH- and -CHO groups is applied to regulate the subsequent Schiff-base reaction between the -CHO and -NH2 groups, which reduces the positive charges of the selective layer but increases the steric hindrance. The increased -T△S (△S term) for cation transport plays an important role in improving Li+/Mg2+ separation performance. The optimal positively-charged glutaraldehyde@piperazine/polyethyleneimine assembled membrane (M-Glu@PIP/PEI) has a perm-selectivity (Li+/Mg2+) of 31.83 with a Li+ flux of 1.87 mol·m-2·h-1, surpassing the Li+/Mg2+ separation performance of state-of-the-art monovalent ion selective membranes (MISMs). Most importantly, the selective electrodialysis (S-ED) process with M-Glu@PIP/PEI can be directly applied to treat simulated salt-lake brines (SLBs), and its superior Li+/Mg2+ separation performance and operational stability enables 74.44 % of the lithium resources with a Li+ purity of 34.02 % to be recovered. This study presents new insights into the design of high-performance MCEMs for energy-efficient resource recovery.
Collapse
Affiliation(s)
- Wenguang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chao Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Renyao Huang
- Beijing OriginWater Membrane Technology Co., Ltd, Beijing 101400, China
| | - Guanghui Hong
- Center for Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin 150001, China
| | - Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xigui Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
3
|
Tan M, Zhao J, Liu Y, Liu F, Zhang Y. Enhanced separation of monovalent and divalent ions in high salinity wastewater by selective electrodialysis: Experimental investigation and performance prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174103. [PMID: 38908603 DOI: 10.1016/j.scitotenv.2024.174103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
To fulfill the industrial requirements of salt fractionation and recovery from saline wastewater, a two-chamber selective electrodialysis (SED) stack incorporating commercial monovalent selective anion exchange membranes was employed and investigated in this study. Three different initial concentration ratios of NaCl/Na2SO4, namely 1:1 (10 g/L:10 g/L), 3:1 (30 g/L:10 g/L), and 5:1 (50 g/L:10 g/L) were examined to simulate various scenarios of saline wastewater. The influence of applied current density on membrane selectivity and overall system efficiency was further evaluated. The results indicated that an increase in the NaCl fraction within the feed solution directly correlates with enhanced concentration and purity of Na2SO4 in the product, achieving purities exceeding 92 %. A lower current density contributed to improved concentration and purity of Na2SO4, whereas higher current densities were conducive to augmenting the concentration and purity of NaCl. Additionally, a linear correlation was observed between the volumetric water transport and NaCl migration. Through numerical simulations, the concentrations of Na2SO4 and NaCl in the effluent were predicted, facilitating a comparative analysis with the salt fractionation efficiency of commercial nanofiltration membranes. Subsequent assessments of energy consumption and current efficiency revealed that the SED system ensured high product concentration and purity at reasonably low energy consumption (0.22-0.28 kWh per kg NaCl) alongside a high current efficiency (83-89 %). These findings offer critical insights into the optimization of salt fractionation process and highlight its economic and technical feasibility for the sustainable management of industrial saline wastewater.
Collapse
Affiliation(s)
- Ming Tan
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, PR China; Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jingchao Zhao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, PR China
| | - Yang Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, PR China; Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Fei Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, PR China; Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Yang Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, PR China; Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
4
|
Zhao C, Feng F, Hou J, Hu J, Su Y, Liu JZ, Hill M, Freeman BD, Wang H, Zhang H. Unlocking Direct Lithium Extraction in Harsh Conditions through Thiol-Functionalized Metal-Organic Framework Subnanofluidic Membranes. J Am Chem Soc 2024; 146:14058-14066. [PMID: 38733559 DOI: 10.1021/jacs.4c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Metal-organic framework (MOF) membranes with high ion selectivity are highly desirable for direct lithium-ion (Li+) separation from industrial brines. However, very few MOF membranes can efficiently separate Li+ from brines of high Mg2+/Li+ concentration ratios and keep stable in ultrahigh Mg2+-concentrated brines. This work reports a type of MOF-channel membranes (MOFCMs) by growing UiO-66-(SH)2 into the nanochannels of polymer substrates to improve the efficiency of MOF membranes for challenging Li+ extraction. The resulting membranes demonstrate excellent monovalent metal ion selectivity over divalent metal ions, with Li+/Mg2+ selectivity up to 103 since Mg2+ should overcome a higher energy barrier than Li+ when transported through the MOF pores, as confirmed by molecular dynamics simulations. Under dual-ion diffusion, as the Mg2+/Li+ mole ratio of the feed solution increases from 0.2 to 30, the membrane Li+/Mg2+ selectivity decreases from 1516 to 19, corresponding to the purity of lithium products between 99.9 and 95.0%. Further research on multi-ion diffusion that involves Mg2+ and three monovalent metal ions (K+, Na+, and Li+, referred to as M+) in the feed solutions shows a significant improvement in Li+/Mg2+ separation efficiency. The Li+/Mg2+ selectivity can go up to 1114 when the Mg2+/M+ molar concentration ratio is 1:1, and it remains at 19 when the ratio is 30:1. The membrane selectivity is also stable for 30 days in a highly concentrated solution with a high Mg2+/Li+ concentration ratio. These results indicate the feasibility of the MOFCMs for direct lithium extraction from brines with Mg2+ concentrations up to 3.5 M. This study provides an alternative strategy for designing efficient MOF membranes in extracting valuable minerals in the future.
Collapse
Affiliation(s)
- Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Fan Feng
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jian Hu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Yuyu Su
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew Hill
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Benny D Freeman
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
5
|
Li S, Bai L, Ding J, Liu Z, Li G, Liang H. Nanofiltration Membranes with Salt-Responsive Ion Valves for Enhanced Separation Performance in Brackish Water Treatment: A Battle against the Limitation of Salt Concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14452-14463. [PMID: 37712407 DOI: 10.1021/acs.est.3c03919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Utilizing brackish water resources has imposed a high requirement on the design and construction of nanofiltration membranes. To overcome the limitation of high salt concentration on the nanofiltration separation performance resulting from the weakened Donnan effect, a nanofiltration membrane with the effect of salt-responsive ion valves was developed by incorporating zwitterionic nanospheres into the polyamide layer (PA-ZNs). The interaction between the nanospheres and membranes at high salinity was revealed through a combination analysis from the perspectives of water transport model, positron annihilation spectroscopy, and solute rejection, contributing to the formation of the valve effect. The PA-ZNs membrane presented a breakthrough in overcoming the limitation of increased salt concentrations on nanofiltration separation performance, achieving a high selectivity of 105 for mono/multivalent anions. To reveal the role of the ion valve effect in ion transport through the membrane, the membrane conductance was determined at different salt concentrations, confirming channel-controlled transport at low salinity and ion valve-controlled transport at high salinity. Moreover, the main membrane separation mechanisms were systematically studied. The concept of salt-responsive ion valves may contribute to expanding the application of nanofiltration in brackish water treatment.
Collapse
Affiliation(s)
- Shirong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Junwen Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
6
|
Designing an energy-efficient multi-stage selective electrodialysis process based on high-performance materials for lithium extraction. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
7
|
Setiawan O, Huang YH, Abdi ZG, Hung WS, Chung TS. pH-tunable and pH-responsive polybenzimidazole (PBI) nanofiltration membranes for Li+/Mg2+ separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Stenina I, Yurova P, Achoh A, Zabolotsky V, Wu L, Yaroslavtsev A. Improvement of Selectivity of RALEX-CM Membranes via Modification by Ceria with a Functionalized Surface. Polymers (Basel) 2023; 15:polym15030647. [PMID: 36771946 PMCID: PMC9919321 DOI: 10.3390/polym15030647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Ion exchange membranes are widely used for water treatment and ion separation by electrodialysis. One of the ways to increase the efficiency of industrial membranes is their modification with various dopants. To improve the membrane permselectivity, a simple strategy of the membrane surface modification was proposed. Heterogeneous RALEX-CM membranes were surface-modified by ceria with a phosphate-functionalized surface. Despite a decrease in ionic conductivity of the prepared composite membranes, their cation transport numbers slightly increase. Moreover, the modified membranes show a threefold increase in Ca2+/Na+ permselectivity (from 2.1 to 6.1) at low current densities.
Collapse
Affiliation(s)
- Irina Stenina
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky Prospect 31, 119991 Moscow, Russia
| | - Polina Yurova
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky Prospect 31, 119991 Moscow, Russia
| | - Aslan Achoh
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia
| | - Victor Zabolotsky
- Faculty of Chemistry and High Technologies, Kuban State University, 350040 Krasnodar, Russia
| | - Liang Wu
- School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky Prospect 31, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
9
|
Shi L, Liu S, Hung WS, Shi W, Lu X, Wu C. The tailoring of nanofiltration membrane structure for mono/divalent anions separation via precisely adjusting the reaction site distance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
10
|
Mills R, Baldridge KC, Bernard M, Bhattacharyya D. Recent Advances in Responsive Membrane Functionalization Approaches and Applications. SEP SCI TECHNOL 2022; 58:1202-1236. [PMID: 37063489 PMCID: PMC10103845 DOI: 10.1080/01496395.2022.2145222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022]
Abstract
In recent years, significant advances have been made in the field of functionalized membranes. With the functionalization using various materials, such as polymers and enzymes, membranes can exhibit property changes in response to an environmental stimulation, such as heat, light, ionic strength, or pH. The resulting responsive nature allows for an increased breadth of membrane uses, due to the developed functionalization properties, such as smart-gating filtration for size-selective water contaminant removal, self-cleaning antifouling surfaces, increased scalability options, and highly sensitive molecular detection. In this review, new advances in both fabrication and applications of functionalized membranes are reported and summarized, including temperature-responsive, pH-responsive, light-responsive, enzyme-functionalized, and two-dimensional material-functionalized membranes. Specific emphasis was given to the most recent technological improvements, current limitations, advances in characterization techniques, and future directions for the field of functionalized membranes.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Kevin C. Baldridge
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Matthew Bernard
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| |
Collapse
|
11
|
Loza S, Loza N, Kutenko N, Smyshlyaev N. Profiled Ion-Exchange Membranes for Reverse and Conventional Electrodialysis. MEMBRANES 2022; 12:membranes12100985. [PMID: 36295744 PMCID: PMC9609011 DOI: 10.3390/membranes12100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 05/12/2023]
Abstract
Profiled ion-exchange membranes are promising for improving the parameters of reverse electrodialysis due to the reduction of pumping power and electrical resistance. The smooth commercial heterogeneous cation-exchange MK-40 and anion-exchange MA-41 membranes were chosen as the initial membranes. Profiled membranes with three different types of surface profiles were obtained by hot pressing the initial membranes. The bilayer membranes were made on the basis of single-layer profiled membranes by casting MF-4SK film on the profiled surfaces. The diffusion permeability of all types of single-layer and bilayer profiled membranes was higher than of the initial ones due to the appearance of large defects on their surface during pressing. The conductivity of the profiled membrane was lower in the diluted solution and higher in the concentrated solution than of the initial one for all samples except for the bilayer anion-exchange membrane. The conductivity of that sample was lower than that of the initial anion-exchange MA-41 membrane over the entire range of studied concentrations. The counter-ion transport numbers for all studied membranes were calculated based on the concentration dependences of conductivity and diffusion permeability of the membrane by the microheterogeneous model. The selectivity of single layer and bilayer profiled membranes became lower after their profiling due to the increase of the solution phases of membranes. The asymmetry of the current-voltage curves for all single-layer and bilayer profiled membranes was found. The application of the single layer and bilayer profiled membranes in reverse electrodialysis did not lead to an increase in power density.
Collapse
|