1
|
Dong Y, Ren M, Tu J, Chen Y. Artificial intelligence-enabled microsphere imaging immunosensor based on magnetic metal-organic frameworks-assisted sample pretreatment for detecting aflatoxin B 1 in peanuts. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138410. [PMID: 40286656 DOI: 10.1016/j.jhazmat.2025.138410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Sensitive and rapid detection of aflatoxin B1 (AFB1) is vital for safeguarding food safety, considering its potent carcinogenic toxicity. Herein, an artificial intelligence-enabled microsphere imaging (AI-MI) immunosensor based on magnetic metal-organic frameworks-assisted sample pretreatment was developed for detecting AFB1 in peanuts. In this work, Fe3O4@MIL-101(Fe) served as a magnetic adsorbent to efficiently enrich AFB1. Based on the competitive immunoreaction, the enriched AFB1 modulated the amount of horseradish peroxidase (HRP)-labeled goat anti-mouse antibody conjugated on the polystyrene (PS) immuno-microsphere. The HRP can catalyze the rapid formation of polydopamine on the surface of the PS microsphere with additional hydrogen peroxide. Due to the abundant functional groups, the polydopamine coating could adsorb amino-functionalized magnetic nanoparticles to form PS probes. The PS probes were magnetically separated, visualized with an optical microscope, and counted using a computer vision algorithm. Finally, the changes in the number of PS probes were correlated with the amount of AFB1. Under optimized conditions, Fe3O4@MIL-101(Fe) exhibited remarkable enrichment capacity (1.59 mg/g), and the AI-MI immunosensor showed a high sensitivity (4.90 pg/mL, 19-fold improvement over enzyme-linked immunosorbent assay) and a wide linear range (from 0.01 to 500 ng/mL) for AFB1. This AI-MI immunosensor holds significant promise for intelligent detection of trace toxins.
Collapse
Affiliation(s)
- Yongzhen Dong
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Meijie Ren
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jia Tu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yiping Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
2
|
Sun B, Liu R, Zhao F, He S, Wang Y, Wang X, Huang H, Yi M, Zhu S. Efficiently Degrading RhB Using Bimetallic Co 3O 4/ZnO Oxides: Ultra-Fast and Persistent Activation of Permonosulfate. Molecules 2025; 30:2237. [PMID: 40430410 PMCID: PMC12114238 DOI: 10.3390/molecules30102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/18/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
To address the issues of poor Co2+ regeneration and limited interfacial electron transfer in heterogeneous catalytic systems, this study proposes the synthesis of highly efficient and stable Co3O4/ZnO composites through the pyrolysis-oxidation reaction of Co/Zn MOFs for the degradation of rhodamine B (RhB) using activated peroxymonosulfate (PMS). The results confirmed that the catalyst exhibited a high electron transfer capacity, and the synergistic effect between the bimetals enhanced the reversible redox cycle of Co3+/Co2+. Under optimal conditions, complete removal of RhB was achieved in just 6 min using the Co3O4/ZnO composite, which demonstrated excellent stability after five cycles. Furthermore, the catalyst exhibited a high degradation efficiency in real water samples with a total organic carbon (TOC) removal rate of approximately 65% after 60 min. The electrochemical measurements, identification of active species, and X-ray photoelectron spectroscopy (XPS) analysis revealed that non-radicals (1O2 and direct charge transfer) played a major role in the degradation of RhB. Finally, the potential mechanisms and degradation pathways for RhB degradation using this catalyst were systematically investigated. This study opens new avenues for the development of efficient and stable PMS catalysts, and provides insights into the preparation of other emerging metal oxides.
Collapse
Affiliation(s)
- Bai Sun
- Engineering Research Center of Building Energy Efficiency Control and Evaluation, Ministry of Education, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
- Environmental Materials and Pollution Control Laboratory, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Rui Liu
- Engineering Research Center of Building Energy Efficiency Control and Evaluation, Ministry of Education, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Fengshou Zhao
- Engineering Research Center of Building Energy Efficiency Control and Evaluation, Ministry of Education, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Shengnan He
- Engineering Research Center of Building Energy Efficiency Control and Evaluation, Ministry of Education, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Yun Wang
- Engineering Research Center of Building Energy Efficiency Control and Evaluation, Ministry of Education, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Xiangxiang Wang
- Engineering Research Center of Building Energy Efficiency Control and Evaluation, Ministry of Education, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Hao Huang
- Engineering Research Center of Building Energy Efficiency Control and Evaluation, Ministry of Education, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Mingjian Yi
- Engineering Research Center of Building Energy Efficiency Control and Evaluation, Ministry of Education, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Shuguang Zhu
- Engineering Research Center of Building Energy Efficiency Control and Evaluation, Ministry of Education, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
3
|
Peña-Velasco G, Jiménez-Amezcua RM, Aranda-García FJ, Peregrina-Lucano AA. Fe-based metal-organic frameworks: performance and advantages on removal organophosphate pesticides in water for human consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36312-8. [PMID: 40146351 DOI: 10.1007/s11356-025-36312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
The study of real-world applications of adsorbent materials for water treatment enhances the feasibility of wastewater reuse and upgrades purifying processes for water supplies, thereby decreasing risks to public health. This study examined the removal of organophosphate pesticides from agricultural runoff samples using MIL-101(Fe). Rapid microwave-assisted synthesis, stability up to 350 °C, environmental safety, and potential reusability were promising features related to synthesized MIL-101(Fe). The MIL-101(Fe) performance in the simultaneous adsorptive removal of glyphosate (GLY), glufosinate (GLU), and aminomethylphosphonic acid (AMPA) was evaluated. It achieved a 99.2% removal efficiency (%RE) for GLY within 15 min of contact and 85.4 and 64.2% for AMPA and GLU after 120 min, respectively. Good experimental adsorption capacities (≥ 97 mg/g) for the three pollutants were obtained. Characterization analysis after adsorption indicates the possible synergistic effects of hydrogen bonding, active sites of material, pore filling, and inner-sphere surface complex as likely to predominate the mechanism of adsorption. MIL-101(Fe) exhibited satisfactory recycling results for GLY and AMPA, with %RE that decreased from 99 to 83% and 87 to 59%, respectively, after 5 recycles. The high stability of the adsorbent was confirmed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). Finally, the MIL-101(Fe) potential for practical applications was demonstrated with the successful removal in real water samples above 92, 80 and 60% for GLY, AMPA, and GLU, respectively. The obtained findings provide further progress in the MIL-101(Fe) remarkable use for large-scale future applications for pesticide removal in complex aqueous environments.
Collapse
Affiliation(s)
- Gabriela Peña-Velasco
- Department of Pharmacobiology, CUCEI, University of Guadalajara, Marcelino Garcia Barragan Street, Number 1451, Guadalajara, Jalisco, 44430, Mexico
| | - Rosa María Jiménez-Amezcua
- Department of Engineering Chemical, CUCEI, University of Guadalajara, Marcelino Garcia Barragan Street, Number 1451, Guadalajara, Jalisco, 44430, Mexico
| | - Francisco José Aranda-García
- Department of Engineering, CUCSUR, University of Guadalajara, Av. Independencia Nacional Number 151, Autlán, Jalisco, 48900, Mexico
| | - Alejandro Aarón Peregrina-Lucano
- Department of Pharmacobiology, CUCEI, University of Guadalajara, Marcelino Garcia Barragan Street, Number 1451, Guadalajara, Jalisco, 44430, Mexico.
| |
Collapse
|
4
|
Li W, Xu Y, Zhong D, Tang D, Xiang T, Fan C, Yang Y. Efficient Activation of Peroxymonosulfate for Degradation of Rhodamine B by Anchoring CoFe 2O 4 on MoS 2 Nanoflower-Modified Biochar. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6903-6919. [PMID: 40036751 DOI: 10.1021/acs.langmuir.4c05204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In this study, CoFe2O4 anchored by MoS2 modified biochar (CoFe2O4@MoS2-BC) was synthesized using a hydrothermal approach and utilized to activate peroxymonosulfate (PMS) to degrade rhodamine B (RhB). The effects of pH value, catalyst and PMS dosage, RhB concentration, and coexisting compounds were systematically investigated. Within 7 min, CoFe2O4@MoS2-BC achieved a removal rate of 99.63% for 100 mg·L-1 RhB. The outstanding stability and environmental compatibility of CoFe2O4@MoS2-BC was verified by cycling and metal ion leaching experiments. The contribution of 1O2, SO4•-, •OH, and •O2- in the degradation procedure was revealed by quenching experiments, among which 1O2 was the predominant active species. Electrochemical characterization indicated that CoFe2O4@MoS2-BC exhibited enhanced current density, redox activity, and superior electron transfer capability. Comprehensive characterization analysis and experimental data revealed that the high efficiency of CoFe2O4@MoS2-BC was attributed to Co2+/Co3+, Fe2+/Fe3+, and Mo4+/Mo6+ redox cycling on the CoFe2O4@MoS2-BC surface. The cycles of Co2+/Co3+ and Fe2+/Fe3+ were enhanced by Mo, while unsaturated S increased the reactivity of Mo, thereby accelerating the redox of metal ions; oxygen vacancies (Ov) enhance the mobility of surrounding oxygen ions mobility and promoted the conversion from lattice oxygen (Olat) to reactive oxygen species (O*), thereby activating PMS effectively. This research is expected to provide innovative insights that will inform the design and development of excellent activity and stability of heterogeneous metal-based catalysts.
Collapse
Affiliation(s)
- Wantao Li
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yunlan Xu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Dengjie Zhong
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Danli Tang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Tanxia Xiang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chunmiao Fan
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yuanfang Yang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
5
|
Tang J, Chen J, Xu R, Xu J, Peng X, Wang Y. Bimetallic metal-organic frameworks as electrode modifiers for enhanced electrochemical sensing of chloramphenicol. Mikrochim Acta 2025; 192:104. [PMID: 39847169 DOI: 10.1007/s00604-024-06930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
An electrochemical sensor is presented for the detection of the chloramphenicol (CAP) based on a bimetallic MIL-101(Fe/Co) MOF electrocatalyst. The MIL-101(Fe/Co) was prepared by utilizing mixed-valence Fe (III) and Co (II) as metal nodes and terephthalic acid as ligands with a simple hydrothermal method and characterized by SEM, TEM, XRD, FTIR, and XPS. Electrochemical measurements such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) showed that bimetallic MIL-101(Fe/Co) had the faster electron transfer, larger electroactive area, and higher electrocatalytic activity compared with their monometallic counterparts due to the strong synergistic effect between bimetals. Inspired by these results, the MIL-101(Fe/Co)-based sensor was used to detect CAP. Some experiment parameters of pH, Fe and Co molar ratio, MIL-101(Fe/Co) volume, and DPV quiet time were optimized. The direct reduction mechanism of CAP was verified to involve four electrons and four protons process. Finally, the sensitive and selective CAP detection in the concentration range 1 to 200 μM with a detection limit of 0.3 μM was realized by the proposed sensor. The satisfactory recoveries in tap water and lake water indicated the practicability of the proposed electrochemical sensor. It is expected that this work may open up a paradigm for the preparation of MOF-based electrode modifiers with desired electrocatalytic performance for environmental pollution monitoring.
Collapse
Affiliation(s)
- Jiazhen Tang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China
| | - Jiawei Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China
| | - Ruijie Xu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China
| | - Junhui Xu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China
| | - Xiaolun Peng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Yazhen Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
6
|
Zou Y, Wang W, Duan F, Yun W, Chen H, Li Y, Yang L. Highly sensitive fluorescence detection of chloramphenicol based on product catalysis of tetrahedral DNA framework and fluorescent quenching of MIL-101(Fe). Food Chem 2025; 463:141144. [PMID: 39255702 DOI: 10.1016/j.foodchem.2024.141144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
An ultrasensitive fluorescence detection strategy of chloramphenicol (CAP) was developed based on product catalysis of tetrahedral DNA framework (TDF) and fluorescent quenching of MIL-101(Fe). The product was used to catalyze the reaction. As the concentration of catalyst increased, the reaction time was significantly shorted to 21 min which was much shorter than other isothermal amplification technologies. Moreover, the multiple fluorophores of TDF and high efficient quenching ability of MIL-101(Fe) provided better performance with a linear range for CAP detecting from 1.6 pM to 80 pM and the limit of detection (LOD) as low as 0.67 pM. In addition, it also demonstrated good specificity and resistance to interference from other related antibiotics. Importantly, this strategy exhibited satisfactory relative standard deviation and recovery results for practical application, exhibiting a favorable application prospect in CAP analysis.
Collapse
Affiliation(s)
- Yu Zou
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wanshan Wang
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Fengyin Duan
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wen Yun
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Hong Chen
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai 200438, China.
| | - Yiping Li
- The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, Sichuan 621000, China.
| | - Lizhu Yang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
7
|
Muthukumar C, Panchal J, Reddy K, B G PK. Synergistic photocatalytic degradation of ciprofloxacin under natural sunlight using hot dip galvanization and medical incineration waste residues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124692. [PMID: 39127335 DOI: 10.1016/j.envpol.2024.124692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
To improve the photodegradation capacity, for the first time, a simple yet efficient photocatalyst was prepared by solely employing hot dip galvanization waste (GW) and fly ash (FA) disposed from medical waste incinerators. Impressively, the as-synthesized photocatalyst (GW-FA) in the ratio 3:1 displayed an outstanding ciprofloxacin degradation efficiency of 98.3% under natural sunlight within 60 min and possessed superior reusability. Herein, adjusting the amount of GW evidenced effective tuning of the electronic band structure and increased active sites. Detailed microscopic morphology, chemical structure, magnetic, and optical properties of GW-FA were studied by UV-DRS, FESEM-EDX, HRTEM, XRD, XPS, ESR, VSM, and AFM, which confirmed the successful fabrication of GW-FA and their outstanding ability to reduce the recombination rate. Besides, the effects of crucial experimental parameters (concentration, pH, and photocatalyst loading) on ciprofloxacin degradation were examined using RSM-BBD. Further, OH• was manifested to be the main active species for the photodegradation of ciprofloxacin. Eventually, GC-MS analysis was employed to deduce plausible photodegradation pathways, and ICP-AES analysis proved that the concentration of leached heavy metals was lower than that of the standard limits for irrigation water. This work establishes a new route for effectively reutilizing waste generated from medical waste incinerators and galvanization industries as a photocatalyst, which otherwise would be disposed in landfills.
Collapse
Affiliation(s)
- Chandhini Muthukumar
- Department of Chemical Engineering, BITS Pilani, Dubai Campus, International Academic City, Dubai, United Arab Emirates
| | - Jayesh Panchal
- Cleanco Waste Treatment LLC, Abu Dhabi, United Arab Emirates
| | - Kiran Reddy
- Cleanco Waste Treatment LLC, Abu Dhabi, United Arab Emirates
| | - Prakash Kumar B G
- Department of Chemical Engineering, BITS Pilani, Dubai Campus, International Academic City, Dubai, United Arab Emirates.
| |
Collapse
|
8
|
Bamisaye A, Abati SM, Ige AR, Etafo NO, Alli YA, Bamidele MO, Okon-Akan OA, Adegoke KA, Abiola-Kuforiji OT, Idowu MA, Bello OS. Metal-oxide nanocatalysts for spontaneous sequestration of endocrine-disrupting compounds from wastewater. CHEMOSPHERE 2024; 367:143569. [PMID: 39426752 DOI: 10.1016/j.chemosphere.2024.143569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
The quest for a good life, urbanization, and industrialization have led to the widespread distribution of endocrine-disrupting chemicals (EDCs) in water bodies through anthropogenic activities. This poses an imminent threat to both human and environmental health. In recent years, the utilization of advance materials for the removal of EDCs from wastewater has attracted a lot of attention. Metal-oxide nanocatalysts have emerged as promising candidates due to their high surface area, reactivity, and tunable properties, as well as enhanced surface properties such as mesoporous structures and hierarchical morphologies that allow for increased adsorption capacity, improved photocatalytic activity, and enhanced selectivity towards specific EDCs. As a result, they have shown extraordinary efficacy in removing a wide range of EDCs from aqueous solutions, including pharmaceuticals, agrochemicals, personal care items, and industrial chemicals. This study give insight into the unique physicochemical characteristics of metal-oxide nanocatalysts to effectively and efficiently remove harmful EDCs from wastewater. It also discussed the advances in the synthesis, and properties of metal-oxide nanocatalysts, and insight into understanding the fundamental mechanisms underlying the adsorption and degradation of EDCs on metal-oxide nanocatalysts using advanced characterization techniques such as spectroscopic analysis and electron microscopy. The findings of the study present metal-oxide nanocatalysts as a good candidate for the spontaneous sequestration of EDCs from wastewater is an intriguing approach to mitigating water pollution and safeguarding public health and the environment.
Collapse
Affiliation(s)
- Abayomi Bamisaye
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria.
| | - Shakirudeen Modupe Abati
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Ayodeji Rapheal Ige
- Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Aut'onoma de Coahuila, Ing. J. C'ardenas Valdez S/N Republica, 25280, Saltillo, Coahuila, Mexico
| | - Yakubu Adekunle Alli
- CNRS, LCC (Laboratoire de Chimie de Coordination), UPR8241, Universit'e de Toulouse, UPS, INPT, Toulouse Cedex 4, F-31077, Toulouse, France; Department of Chemical Sciences, Faculty of Science and Computing, Ahman Pategi University, Patigi-Kpada Road, Patigi, Kwara State, Nigeria; Department of Manufacturing and Materials Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100, Kuala Lumpur, Malaysia
| | - Muyideen Olaitan Bamidele
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria; Department of Food Research, Faculty of Chemical Sciences, Universidad Aut'onoma de Coahuila, Ing. J. C'ardenas Valdez S/N Republica, 25280, Saltillo, Coahuila, Mexico
| | - Omolabake Abiodun Okon-Akan
- Department of Pure and Applied Chemistry, Ladoke Akintola University, P. M. B. 4000, Ogbomoso, Nigeria; Wood and Paper Technology Department, Federal College of Forestry Jericho, Ibadan, Nigeria
| | | | | | - Mopelola Abidemi Idowu
- Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olugbenga Solomon Bello
- Department of Pure and Applied Chemistry, Ladoke Akintola University, P. M. B. 4000, Ogbomoso, Nigeria
| |
Collapse
|
9
|
Jiang R, Zhong D, Xu Y, He Y, Zhang J, Liao P. Chitosan-derived N-doped carbon supported Cu/Fe co-doped MoS 2 nanoparticles as peroxymonosulfate activator for efficient dyes degradation. Int J Biol Macromol 2024; 278:134352. [PMID: 39094868 DOI: 10.1016/j.ijbiomac.2024.134352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Peroxymonosulfate (PMS), which is dominated by free radical (SO4•-) pathway, has a good removal effect on organic pollutants in complex water matrices. In this article, a new catalyst (CFM@NC) was synthesized by hydrothermal carbonization method with chitosan (CS) as N and C precursors, and used to activate PMS to degrade dye wastewater. CFM@NC/PMS system can degrade 50 mg·L-1 rhodamine B by 99.59 % within 30 min, and the degradation rate remains as high as 97.32 % after 5 cycles. It has good complex background matrices, acid-base anti-interference ability (pH 2.6-10.1), universality and reusability. It can degrade methyl orange and methylene blue by >98 % within 30 min. The high efficiency of the composite is due to the fact that CS-modified MoS2 as a carrier exposes a large number of active sites, which not only disperses CuFe2O4 nanoparticles and improves the stability of the catalyst, but also provides abundant electron rich groups, which promotes the activation of PMS and the production of reactive oxygen species (ROS). PMS is effectively activated by catalytic sites (Cu+/Cu2+, Fe2+/Fe3+, Mo4+/Mo6+, pyridine N, pyrrole N, edge sulfur and hydroxyl group) to produce a large number of radicals to attack RhB molecules, causing chromophore cleavage, ring opening, and mineralization. Among them, free radical SO4•- is the main ROS for RhB degradation. This work is expected to provide a new idea for the design and synthesis of environmentally friendly and efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Ran Jiang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yuanzhen He
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jiayou Zhang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Pengfei Liao
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
10
|
Kayani KF. Bimetallic metal-organic frameworks (BMOFs) for dye removal: a review. RSC Adv 2024; 14:31777-31796. [PMID: 39380644 PMCID: PMC11459228 DOI: 10.1039/d4ra06626j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024] Open
Abstract
Safe drinking water and a clean living environment are essential for good health. However, the extensive and growing use of hazardous chemicals, particularly carcinogenic dyes like methylene blue, methyl orange, rhodamine B, and malachite green, in both domestic and industrial settings, has led to a scarcity of potable water and environmental challenges. This trend poses a serious threat to human society, sustainable global development, and marine ecosystems. Consequently, researchers are exploring more advanced methods beyond traditional wastewater treatment to address the removal or degradation of these toxic dyes. Conventional approaches are often inadequate for effectively removing dyes from industrial wastewater. In this study, we investigated bimetallic metal-organic frameworks (BMOFs) as a solution to these limitations. BMOFs demonstrated outstanding dye removal and degradation capabilities due to their multifunctionality, water stability, large surface area, adjustable pore size, and recyclability. This review provides a comprehensive overview of research on dye removal from wastewater using BMOFs, including their synthesis methods, types of dyes, and processes involved in dye removal, such as degradation and adsorption. Finally, the review discusses the future potential and emerging opportunities for BMOFs in sustainable water treatment.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Chamchamal Sulaimani 46023 Kurdistan Region Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaymaniyah Kurdistan Regional Government 46001 Iraq
| |
Collapse
|
11
|
Wu H, Yi Q, Li X, Wang Y, Li L. Construction of core-shell magnetic metal-organic framework composites Fe 3O 4@MIL-101(Fe, Co) for degradation of RhB by efficiently activating PMS. RSC Adv 2024; 14:16727-16735. [PMID: 38784411 PMCID: PMC11112680 DOI: 10.1039/d3ra08768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Low catalytic efficiency and catalyst recovery are the key factors limiting the practical application of advanced oxidation processes. In this work, a core-shell magnetic nanostructure Fe3O4@MIL-101(Fe, Co) was prepared via a simple solvothermal method. The core-shell structure and magnetic recovery performance were characterized by various technologies. The results of dye degradation experiments proved that within 10 minutes, the Fe3O4@MIL-101(Fe, Co)/PMS system can degrade more than 95% of 10 mg per L Rhodamine (RhB) at an initial pH of 7, which possesses higher catalytic activity than the Fe3O4/PMS system and the MIL-101(Fe, Co)/PMS system. The effects of initial solution pH and coexisting anions in water on the degradation of RhB were further discussed. The results showed that Fe3O4@MIL-101(Fe, Co) displayed excellent degradation efficiency in a wide pH range of 3-11 and capability of resisting coexisting anions. It is worth mentioning that after five cycles, the RhB removal rate can still be maintained at over 90% after 10 minutes of reaction. Free radical quenching experiments were further studied, confirming that ˙OH and SO4-˙ were involved in the degradation of RhB, while the dominating active free radical was SO4-˙. The possible reaction mechanism of the RhB degradation process was also inferred.
Collapse
Affiliation(s)
- Huizhong Wu
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062 People's Republic of China
| | - Qiong Yi
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062 People's Republic of China
| | - Xiang Li
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062 People's Republic of China
| | - Yingxi Wang
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062 People's Republic of China
| | - Ling Li
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062 People's Republic of China
| |
Collapse
|
12
|
Jiang R, Zhong D, Xu Y, Chang H, He Y, Zhang J, Liao P. Chitosan derived N-doped carbon anchored Co 3O 4-doped MoS 2 nanosheets as an efficient peroxymonosulfate activator for degradation of dyes. Int J Biol Macromol 2024; 265:130519. [PMID: 38553393 DOI: 10.1016/j.ijbiomac.2024.130519] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/18/2024]
Abstract
Peroxymonosulfate (PMS), which is dominated by non-free radical pathway, has a good removal effect on organic pollutants in complex water matrices. In this article, a biodegradable cobalt-based catalyst (Co3O4/MoS2@NCS) was synthesized by a simple hydrothermal method with chitosan (CS) as nitrogen‑carbon precursor and doped with Cobaltic‑cobaltous oxide (Co3O4) and Molybdenum disulfide (MoS2), and was used to activate PMS to degrade dye wastewater. Electrochemical tests showed that Co3O4/MoS2@NCS exhibited higher current density and cycling area than MoS2@NCS and MoS2. In the Co3O4/MoS2@NCS/PMS system, the degradation rate of 30 mg·L-1 rhodamine B (RhB) reached 97.75 % within 5 min, and kept as high as 94.34 % after 5 cycles. Its rate constant was 1.91 and 8.37 times that of MoS2@NCS/PMS and MoS2/PMS, respectively. It had good complex background matrices and acid-base anti-interference ability, and had good universality and reusability. The degradation rate of methyl orange (MO) and methylene blue (MB) were more than 91 % within 5 min at pH 4.8. The experimental results demonstrated that MoS2-modified CS as a carrier exposed a large number of active sites, which not only dispersed Co3O4 nanoparticles and improved the stability of the catalyst, but also provided abundant electron rich groups, and promoted the activation of PMS and the production of reactive oxygen species (ROS). PMS was effectively activated by catalytic sites (Co3+/Co2+, Mo4+/Mo5+/Mo6+, CO, pyridine N, pyrrole N, hydroxyl group and unsaturated sulfur), producing a large number of radicals that attack RhB molecules, causing chromophore cleavage, ring opening, and mineralization. Among them, non-free radical 1O2 was the main ROS for RhB degradation. This work is expected to provide a new idea for the design and synthesis of environmentally friendly and efficient MoS2-modified cobalt-based catalysts.
Collapse
Affiliation(s)
- Ran Jiang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Haixing Chang
- School of Resources & Environmental Science, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Yuanzhen He
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jiayou Zhang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Pengfei Liao
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
13
|
Li Y, Wang CC, Wang FX, Liu XY, Wang P, Wang F, Sun M, Yu B. Efficient pollutant degradation by peroxymonosulfate activated by a Co/Mn metal-organic framework. Dalton Trans 2024; 53:5266-5273. [PMID: 38407245 DOI: 10.1039/d4dt00161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In this work, a three-dimensional bimetallic metal-organic framework (BMOF), BUC-101 (Co/Mn-H6chhc, H6chhc = cis-1,2,3,4,5,6-cyclohexane-hexacarboxylic acid, BUC = Beijing University of Civil Engineering and Architecture) was synthesized by a one-pot solvothermal method and characterized in detail by single crystal X-ray diffraction (SCXRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) element mapping analysis. BUC-101 showed excellent catalytic peroxymonosulfate (PMS) activation performance to degrade rhodamine B (RhB) without energy input. In addition, BUC-101 can maintain good stability and recyclability during the PMS activation processes, in which 99.9% RhB degradation efficiencies could be accomplished in 5 operational runs. The possible PMS activation and RhB degradation mechanisms of the BUC-101/PMS system were proposed and affirmed.
Collapse
Affiliation(s)
- Ya Li
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Fu-Xue Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xing-Yuan Liu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Fei Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Mingyi Sun
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Baoyi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences Engineering, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
14
|
Zhi K, Xu J, Li S, Luo L, Liu D, Li Z, Guo L, Hou J. Progress in the Elimination of Organic Contaminants in Wastewater by Activation Persulfate over Iron-Based Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:473. [PMID: 38470802 DOI: 10.3390/nano14050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
The release of organic contaminants has grown to be a major environmental concern and a threat to the ecology of water bodies. Persulfate-based Advanced Oxidation Technology (PAOT) is effective at eliminating hazardous pollutants and has an extensive spectrum of applications. Iron-based metal-organic frameworks (Fe-MOFs) and their derivatives have exhibited great advantages in activating persulfate for wastewater treatment. In this article, we provide a comprehensive review of recent research progress on the significant potential of Fe-MOFs for removing antibiotics, organic dyes, phenols, and other contaminants from aqueous environments. Firstly, multiple approaches for preparing Fe-MOFs, including the MIL and ZIF series were introduced. Subsequently, removal performance of pollutants such as antibiotics of sulfonamides and tetracyclines (TC), organic dyes of rhodamine B (RhB) and acid orange 7 (AO7), phenols of phenol and bisphenol A (BPA) by various Fe-MOFs was compared. Finally, different degradation mechanisms, encompassing free radical degradation pathways and non-free radical degradation pathways were elucidated. This review explores the synthesis methods of Fe-MOFs and their application in removing organic pollutants from water bodies, providing insights for further refining the preparation of Fe-MOFs.
Collapse
Affiliation(s)
- Keke Zhi
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
| | - Jiajun Xu
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Shi Li
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Lingjie Luo
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Dong Liu
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Zhe Li
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
- Department of Petroleum, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Lianghui Guo
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Junwei Hou
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
| |
Collapse
|
15
|
Islam MA, Nazal MK, Angove MJ, Morton DW, Hoque KA, Reaz AH, Islam MT, Karim SMA, Chowdhury AN. Emerging iron-based mesoporous materials for adsorptive removal of pollutants: Mechanism, optimization, challenges, and future perspective. CHEMOSPHERE 2024; 349:140846. [PMID: 38043616 DOI: 10.1016/j.chemosphere.2023.140846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Iron-based materials (IBMs) have shown promise as adsorbents due to their unique physicochemical properties. This review provides an overview of the different types of IBMs, their synthesis methods, and their properties. Results found in the adsorption of emerging contaminants to a wide range of IBMs are discussed. The IBMs used were evaluated in terms of their maximum uptake capacity, with special consideration given to environmental conditions such as contact time, solution pH, initial pollutant concentration, etc. The adsorption mechanisms of pollutants are discussed taking into account the results of kinetic, isotherm, thermodynamic studies, surface complexation modelling (SCM), and available spectroscopic data. A current overview of molecular modeling and simulation studies related to density functional theory (DFT), surface response methodology (RSM), and artificial neural network (ANN) is presented. In addition, the reusability and suitability of IBMs in real wastewater treatment is shown. The review concludes with the strengths and weaknesses of current research and suggests ideas for future research that will improve our ability to remove contaminants from real wastewater streams.
Collapse
Affiliation(s)
- Md Aminul Islam
- Applied Research Center for Environment and Marine Studies (ARCEMS), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Division of Chemistry, Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh.
| | - Mazen K Nazal
- Applied Research Center for Environment and Marine Studies (ARCEMS), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Michael J Angove
- Colloid and Environmental Chemistry (CEC) Research Laboratory, Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Bendigo, Victoria, Australia.
| | - David W Morton
- Colloid and Environmental Chemistry (CEC) Research Laboratory, Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Bendigo, Victoria, Australia
| | - Khondaker Afrina Hoque
- Department of Chemistry, Faculty of Science, Comilla University, Cumilla, 3506, Bangladesh; Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Akter Hossain Reaz
- Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Mohammad Tajul Islam
- Department of Textile Engineering, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh
| | - S M Abdul Karim
- Division of Chemistry, Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh
| | - Al-Nakib Chowdhury
- Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh.
| |
Collapse
|
16
|
Xiao H, Zhang Z, Feng S, Wang X, Wu L. Application and prospects of metal–organic frameworks in photocatalytic self-cleaning membranes for wastewater treatment. JOURNAL OF MATERIALS CHEMISTRY A 2024; 12:31059-31073. [DOI: 10.1039/d4ta06433j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
By loading photocatalytic MOF onto the separation membrane, the self-cleaning function of the membrane can be realized. This paper discusses the structure, synthesis, and properties of photocatalytic MOFs.
Collapse
Affiliation(s)
- Haolan Xiao
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zezhen Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shuman Feng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 462000, China
| | - Xinyi Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
17
|
Tong Q, Cai T, Yuan J, He D. Enhanced visible-light activation of persulfate for the removal of RhB by supported nano-(C,N,B)-tridoped TiO 2/copper foam mixed-crystals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1964-1979. [PMID: 38051489 DOI: 10.1007/s11356-023-31270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Photocatalytic persulfate activation by TiO2 and its application in sewage treatment have aroused great interest because of its high decontamination ability and strong adaptability, but the low light energy utilization rate and poor recycling of TiO2 limited its practical application. Herein, by using C-, N-, and B-modified TiO2 and immobilizing it on copper foam, we prepared a new and efficient (C,N,B)-TiO2/copper foam photocatalyst with enhanced visible-light activation performance of persulfate for the removal of RhB. It almost completely degraded RhB within 15 min of UV-vis light photocatalysis-assisted persulfate oxidation reaction with TOC removal of 53.17% in 30 min and presented the excellent long-term recyclability and stability, which is much better or comparative than those photocatalysts in the related literatures. (C,N,B)-TiO2/copper foam exhibited the largest apparent rate constant (0.149 min-1), 1.16 times higher than (C,N,B)-TiO2 (0.128 min-1), and 2.40 times higher than that of TiO2 (0.062 min-1), respectively. C,N,B doping modified the crystalline phase of TiO2, narrowed its band gap, and reduced charge-carrier recombination rate. These, together with the synergistic effect between photocatalysis and persulfate activation for enhancing generation of active species, jointly promoted the performance enhancement of TiO2. The 1O2 was the primary oxidation active species for the degradation of RhB, and the radical species (SO4•-, •O2-, and •OH) could further accelerate the photocatalytic activation of persulfate reaction.
Collapse
Affiliation(s)
- Qin Tong
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | - Ting Cai
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | - Jing Yuan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| | - Dannong He
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
18
|
Ning J, Zhang B, Siqin L, Liu G, Wu Q, Xue S, Shao T, Zhang F, Zhang W, Liu X. Designing advanced S-scheme CdS QDs/La-Bi 2WO 6 photocatalysts for efficient degradation of RhB. EXPLORATION (BEIJING, CHINA) 2023; 3:20230050. [PMID: 37933284 PMCID: PMC10582608 DOI: 10.1002/exp.20230050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/20/2023] [Indexed: 11/08/2023]
Abstract
Finding effective strategies to design efficient photocatalysts and decompose refractory organic compounds in wastewater is a challenging problem. Herein, by coupling element doping and constructing heterostructures, S-scheme CdS QDs/La-Bi2WO6 (CS/LBWO) photocatalysts are designed and synthesized by a simple hydrothermal method. As a result, the RhB degradation efficiency of the optimized 5% CS/LBWO reached 99% within 70 min of illumination with excellent stability and recyclability. CS/LBWO shows improvement in the adsorption range of visible light and promotes electron-hole pair generation/migration/separation, attributing the superior degradation performance. The degradation RhB mechanism is proposed by a free radical capture experiment, electron paramagnetic resonance, and high-performance liquid chromatography-mass spectrometry results, indicating that h+ and •O2 - play a significant role during four degradation processes: de-ethylation, chromophore cleavage, ring opening, and mineralization. Based on in situ irradiated X-ray photoelectron spectroscopy, Mulliken electronegativity theory, and the work function results, the S-scheme heterojunction of CS/LBWO promotes the transfer of photogenerated electron-hole pairs and promotes the generation of reactive radicals. This work not only reports that 5% CS/LBWO is a promising photocatalyst for degradation experiments but also provides an approach to design advanced photocatalysts by coupling element doping and constructing heterostructures.
Collapse
Affiliation(s)
- Jing Ning
- School of Physics and Electronic InformationYan'an UniversityYan'anPeople's Republic of China
| | - Bohang Zhang
- School of Physics and Electronic InformationYan'an UniversityYan'anPeople's Republic of China
| | - Letu Siqin
- Key Laboratory of Semiconductor Photovoltaic at Universities of Inner Mongolia Autonomous Region, School of Physical Science and TechnologyInner Mongolia UniversityHuhhotInner MongoliaPeople's Republic of China
| | - Gaihui Liu
- School of Physics and Electronic InformationYan'an UniversityYan'anPeople's Republic of China
| | - Qiao Wu
- Network Information CenterYan'an UniversityYan'anPeople's Republic of China
| | - Suqin Xue
- Network Information CenterYan'an UniversityYan'anPeople's Republic of China
| | - Tingting Shao
- School of Physics and Electronic InformationYan'an UniversityYan'anPeople's Republic of China
| | - Fuchun Zhang
- School of Physics and Electronic InformationYan'an UniversityYan'anPeople's Republic of China
| | - Weibin Zhang
- Yunnan Key Laboratory of Opto‐Electronic Information TechnologyCollege of Physics and Electronics InformationYunnan Normal UniversityKunmingPeople's Republic of China
| | - Xinghui Liu
- Department of Materials Science and EngineeringCity University of Hong KongKowloonHong KongPeople's Republic of China
- Department of Materials PhysicsSaveetha School of EngineeringSaveetha Institute of Medical and Technical Sciences (SIMTS)ChennaiTamil NaduIndia
| |
Collapse
|
19
|
Fattahi M, Niazi Z, Esmaeili F, Mohammadi AA, Shams M, Nguyen Le B. Boosting the adsorptive and photocatalytic performance of MIL-101(Fe) against methylene blue dye through a thermal post-synthesis modification. Sci Rep 2023; 13:14502. [PMID: 37666958 PMCID: PMC10477185 DOI: 10.1038/s41598-023-41451-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023] Open
Abstract
Photocatalytic degradation under ultra-low powered light is a viable advanced oxidation process technique against extensive emerging contaminants. As a new and remarkable class of nanoporous materials, metal-organic frameworks (MOFs), attract interest for the supreme adsorptive and photocatalytic functionalities. An outstanding MOF, MIL-101(Fe) chosen as a photocatalyst template for the synthesis of α-Fe2O3 by a simple thermal modification to improve the structural properties toward methylene blue (MB) eradication. Octahedron-like α-Fe2O3 photocatalyst (Modified MIL-101(Fe), M-MIL-101(Fe)) was superior in dispersion and separation properties in aqueous medium. Moreover, the adsorptive and catalytic performance was increased for modified form by ~ 7.3% and ~ 17.1% compared to pristine MIL-101(Fe), respectively. Synergistic improvement of MB removal achieved by simultaneous adsorption/degradation under 5-W LED irradiation. Parametric study indicated an 18.1% and 44.5% improvement in MB removal was observed by increasing pH from 4 to 10, and M-MIL-101(Fe) dose from 0.2 to 1 g L-1, respectively. MB removal followed the pseudo-second-order kinetics model and the process efficiency dropped by 38% as MB concentration increased from 5 to 20 mg L-1. Radical trapping tests revealed the significant role of [Formula: see text] and electron radicals as the major participants in dye degradation. A significant loss in the efficiency of M-MIL-101(Fe) was observed in the reusability tests that is good to study further. In conclusion, a simple thermal post-synthesis modification on MIL-101(Fe) improved its structural, catalytic, and adsorptive properties against MB.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Zohreh Niazi
- Chemistry Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Esmaeili
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Binh Nguyen Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|