1
|
Caldas-Garcia GB, Santos VC, Fonseca PLC, de Almeida JPP, Costa MA, Aguiar ERGR. The Viromes of Six Ecosystem Service Provider Parasitoid Wasps. Viruses 2023; 15:2448. [PMID: 38140687 PMCID: PMC10747428 DOI: 10.3390/v15122448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 12/24/2023] Open
Abstract
Parasitoid wasps are fundamental insects for the biological control of agricultural pests. Despite the importance of wasps as natural enemies for more sustainable and healthy agriculture, the factors that could impact their species richness, abundance, and fitness, such as viral diseases, remain almost unexplored. Parasitoid wasps have been studied with regard to the endogenization of viral elements and the transmission of endogenous viral proteins that facilitate parasitism. However, circulating viruses are poorly characterized. Here, RNA viromes of six parasitoid wasp species are studied using public libraries of next-generation sequencing through an integrative bioinformatics pipeline. Our analyses led to the identification of 18 viruses classified into 10 families (Iflaviridae, Endornaviridae, Mitoviridae, Partitiviridae, Virgaviridae, Rhabdoviridae, Chuviridae, Orthomyxoviridae, Xinmoviridae, and Narnaviridae) and into the Bunyavirales order. Of these, 16 elements were described for the first time. We also found a known virus previously identified on a wasp prey which suggests viral transmission between the insects. Altogether, our results highlight the importance of virus surveillance in wasps as its service disruption can affect ecology, agriculture and pest management, impacting the economy and threatening human food security.
Collapse
Affiliation(s)
- Gabriela B. Caldas-Garcia
- Virus Bioinformatics Laboratory, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil; (G.B.C.-G.); (P.L.C.F.)
| | - Vinícius Castro Santos
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil; (V.C.S.); (J.P.P.d.A.)
| | - Paula Luize Camargos Fonseca
- Virus Bioinformatics Laboratory, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil; (G.B.C.-G.); (P.L.C.F.)
- Department of Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil
| | - João Paulo Pereira de Almeida
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil; (V.C.S.); (J.P.P.d.A.)
| | - Marco Antônio Costa
- Departament of Biological Sciences, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil;
| | - Eric Roberto Guimarães Rocha Aguiar
- Virus Bioinformatics Laboratory, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Brazil; (G.B.C.-G.); (P.L.C.F.)
| |
Collapse
|
2
|
Alizon S. Multiple infection theory rather than 'socio-virology'? A commentary on Leeks et al. 2023. J Evol Biol 2023; 36:1571-1576. [PMID: 37975504 DOI: 10.1111/jeb.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Samuel Alizon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
3
|
Zach M, Greslehner GP. Understanding immunity: an alternative framework beyond defense and strength. BIOLOGY & PHILOSOPHY 2023; 38:7. [PMID: 36819127 PMCID: PMC9929241 DOI: 10.1007/s10539-023-09893-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/10/2023] [Indexed: 05/25/2023]
Abstract
In this paper we address the issue of how to think about immunity. Many immunological writings suggest a straightforward option: the view that the immune system is primarily a system of defense, which naturally invites the talk of strong immunity and strong immune response. Despite their undisputable positive role in immunology, such metaphors can also pose a risk of establishing a narrow perspective, omitting from consideration phenomena that do not neatly fit those powerful metaphors. Building on this analysis, we argue two things. First, we argue that the immune system is involved not only in defense. Second, by disentangling various possible meanings of 'strength' and 'weakness' in immunology, we also argue that such a construal of immunity generally contributes to the distortion of the overall picture of what the immune system is, what it does, and why it sometimes fails. Instead, we propose to understand the nature of the immune system in terms of contextuality, regulation, and trade-offs. We suggest that our approach provides lessons for a general understanding of the organizing principles of the immune system in health and disease. For all this to work, we discuss a wide range of immunological phenomena.
Collapse
Affiliation(s)
- Martin Zach
- Department of Analytic Philosophy, Institute of Philosophy, Czech Academy of Sciences, Jilská 352/1, 110 00 Prague, Czech Republic
| | - Gregor P. Greslehner
- Department of Philosophy, University of Vienna, Universitätsstraße 7, 1010 Vienna, Austria
| |
Collapse
|
4
|
Kulabhusan PK, Pishva P, Çapkın E, Tambe P, Yüce M. Aptamer-based Emerging Tools for Viral Biomarker Detection: A Focus on SARS-CoV-2. Curr Med Chem 2023; 30:910-934. [PMID: 35156569 DOI: 10.2174/1568009622666220214101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
Viral infections can cause fatal illnesses to humans as well as animals. Early detection of viruses is therefore crucial to provide effective treatment to patients. Recently, the Covid-19 pandemic has undoubtedly given an alarming call to develop rapid and sensitive detection platforms. The viral diagnostic tools need to be fast, affordable, and easy to operate with high sensitivity and specificity equivalent or superior to the currently used diagnostic methods. The present detection methods include direct detection of viral antigens or measuring the response of antibodies to viral infections. However, the sensitivity and quantification of the virus are still a significant challenge. Detection tools employing synthetic binding molecules like aptamers may provide several advantages over the conventional methods that use antibodies in the assay format. Aptamers are highly stable and tailorable molecules and are therefore ideal for detection and chemical sensing applications. This review article discusses various advances made in aptamer-based viral detection platforms, including electrochemical, optical, and colorimetric methods to detect viruses, specifically SARS-Cov-2. Considering the several advantages, aptamers could be game-changing in designing high-throughput biosensors for viruses and other biomedical applications in the future.
Collapse
Affiliation(s)
- Prabir Kumar Kulabhusan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Parsa Pishva
- Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Eda Çapkın
- Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Prajakta Tambe
- Wellcome-- Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Meral Yüce
- Sabanci University, SUNUM Nanotechnology Research, and Application Centre, Istanbul, 34956, Turkey
| |
Collapse
|
5
|
Abstract
The debate over whether viruses are living organisms tends to be paradigmatically determined. The metabolic paradigm denies that they are, while new research evidences the opposite. The purpose of this paper is to deliver a generic model for viral contexts that explains why viruses are alive. It will take a systems biology approach, with a qualitative part (using metacybernetics) to provide deeper explanations of viral contexts, and a quantitative part (using Fisher Information deriving from the variational principle of Extreme Physical Information) which is in principle able to take measurements and predict outcomes. The modelling process provides an extended view of the epigenetic processes of viruses. The generic systems biology model will depict viruses as autonomous entities with metaphysical processes of autopoietic self-organisation and adaptation, enabling them to maintain their physical viability and hence, within their populations, mutate and evolve. The autopoietic epigenetic processes are shown to describe their capability to change, and these are both qualitatively and quantitatively explored, the latter providing an approach to make measurements of physical phenomena under uncertainty. Viruses maintain their fitness when they are able to maintain their stability, and this is indicated by information flow efficacy. A brief case study is presented on the COVID-19 virus from the perspective that it is a living system, and this includes outcome predictions given Fisher Information conditions for known contexts.
Collapse
|
6
|
Cassedy A, Parle-McDermott A, O’Kennedy R. Virus Detection: A Review of the Current and Emerging Molecular and Immunological Methods. Front Mol Biosci 2021; 8:637559. [PMID: 33959631 PMCID: PMC8093571 DOI: 10.3389/fmolb.2021.637559] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Viruses are ubiquitous in the environment. While many impart no deleterious effects on their hosts, several are major pathogens. This risk of pathogenicity, alongside the fact that many viruses can rapidly mutate highlights the need for suitable, rapid diagnostic measures. This review provides a critical analysis of widely used methods and examines their advantages and limitations. Currently, nucleic-acid detection and immunoassay methods are among the most popular means for quickly identifying viral infection directly from source. Nucleic acid-based detection generally offers high sensitivity, but can be time-consuming, costly, and require trained staff. The use of isothermal-based amplification systems for detection could aid in the reduction of results turnaround and equipment-associated costs, making them appealing for point-of-use applications, or when high volume/fast turnaround testing is required. Alternatively, immunoassays offer robustness and reduced costs. Furthermore, some immunoassay formats, such as those using lateral-flow technology, can generate results very rapidly. However, immunoassays typically cannot achieve comparable sensitivity to nucleic acid-based detection methods. Alongside these methods, the application of next-generation sequencing can provide highly specific results. In addition, the ability to sequence large numbers of viral genomes would provide researchers with enhanced information and assist in tracing infections.
Collapse
Affiliation(s)
- A. Cassedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - R. O’Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
- Hamad Bin Khalifa University, Doha, Qatar
- Qatar Foundation, Doha, Qatar
| |
Collapse
|
7
|
Sariola S, Gilbert SF. Toward a Symbiotic Perspective on Public Health: Recognizing the Ambivalence of Microbes in the Anthropocene. Microorganisms 2020; 8:E746. [PMID: 32429344 PMCID: PMC7285259 DOI: 10.3390/microorganisms8050746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Microbes evolve in complex environments that are often fashioned, in part, by human desires. In a global perspective, public health has played major roles in structuring how microbes are perceived, cultivated, and destroyed. The germ theory of disease cast microbes as enemies of the body and the body politic. Antibiotics have altered microbial development by providing stringent natural selection on bacterial species, and this has led to the formation of antibiotic-resistant bacterial strains. Public health perspectives such as "Precision Public Health" and "One Health" have recently been proposed to further manage microbial populations. However, neither of these take into account the symbiotic relationships that exist between bacterial species and between bacteria, viruses, and their eukaryotic hosts. We propose a perspective on public health that recognizes microbial evolution through symbiotic associations (the hologenome theory) and through lateral gene transfer. This perspective has the advantage of including both the pathogenic and beneficial interactions of humans with bacteria, as well as combining the outlook of the "One Health" model with the genomic methodologies utilized in the "Precision Public Health" model. In the Anthropocene, the conditions for microbial evolution have been altered by human interventions, and public health initiatives must recognize both the beneficial (indeed, necessary) interactions of microbes with their hosts as well as their pathogenic interactions.
Collapse
Affiliation(s)
- Salla Sariola
- Faculty of Social Sciences, Sociology, University of Helsinki, 00014 Helsinki, Finland;
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|
8
|
Alizon S, Bravo IG, Farrell PJ, Roberts S. Towards a multi-level and a multi-disciplinary approach to DNA oncovirus virulence. Philos Trans R Soc Lond B Biol Sci 2020; 374:20190041. [PMID: 30955496 DOI: 10.1098/rstb.2019.0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One out of 10 cancers is estimated to arise from infections by a handful of oncogenic viruses. These infectious cancers constitute an opportunity for primary prevention through immunization against the viral infection, for early screening through molecular detection of the infectious agent, and potentially for specific treatments, by targeting the virus as a marker of cancer cells. Accomplishing these objectives will require a detailed understanding of the natural history of infections, the mechanisms by which the viruses contribute to disease, the mutual adaptation of viruses and hosts, and the possible viral evolution in the absence and in the presence of the public health interventions conceived to target them. This issue showcases the current developments in experimental tissue-like and animal systems, mathematical models and evolutionary approaches to understand DNA oncoviruses. Our global aim is to provide proximate explanations to the present-day interface and interactions between virus and host, as well as ultimate explanations about the adaptive value of these interactions and about the evolutionary pathways that have led to the current malignant phenotype of oncoviral infections. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Samuel Alizon
- 1 French National Center for Scientific Research (CNRS), Laboratory MIVEGEC (CNRS, IRD, UM) , 34394 Montpellier , France
| | - Ignacio G Bravo
- 1 French National Center for Scientific Research (CNRS), Laboratory MIVEGEC (CNRS, IRD, UM) , 34394 Montpellier , France
| | | | - Sally Roberts
- 3 Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham B15 2SY , UK
| |
Collapse
|
9
|
Berdahl A, Brelsford C, Bacco CD, Dumas M, Ferdinand V, Grochow JA, Hébert-Dufresne L, Kallus Y, Kempes CP, Kolchinsky A, Larremore DB, Libby E, Power EA, Stern CA, Tracey BD. Dynamics of beneficial epidemics. Sci Rep 2019; 9:15093. [PMID: 31641147 PMCID: PMC6805938 DOI: 10.1038/s41598-019-50039-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/28/2019] [Indexed: 11/08/2022] Open
Abstract
Pathogens can spread epidemically through populations. Beneficial contagions, such as viruses that enhance host survival or technological innovations that improve quality of life, also have the potential to spread epidemically. How do the dynamics of beneficial biological and social epidemics differ from those of detrimental epidemics? We investigate this question using a breadth-first modeling approach involving three distinct theoretical models. First, in the context of population genetics, we show that a horizontally-transmissible element that increases fitness, such as viral DNA, spreads superexponentially through a population, more quickly than a beneficial mutation. Second, in the context of behavioral epidemiology, we show that infections that cause increased connectivity lead to superexponential fixation in the population. Third, in the context of dynamic social networks, we find that preferences for increased global infection accelerate spread and produce superexponential fixation, but preferences for local assortativity halt epidemics by disconnecting the infected from the susceptible. We conclude that the dynamics of beneficial biological and social epidemics are characterized by the rapid spread of beneficial elements, which is facilitated in biological systems by horizontal transmission and in social systems by active spreading behavior of infected individuals.
Collapse
Affiliation(s)
- Andrew Berdahl
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Christa Brelsford
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Arizona State University, Tempe, AZ, 85281, USA
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Caterina De Bacco
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Marion Dumas
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- London School of Economics and Political Science, London, United Kingdom
| | - Vanessa Ferdinand
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Melbourne School of Psychological Sciences, Melbourne, Australia
| | - Joshua A Grochow
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Departments of Computer Science and Mathematics, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Laurent Hébert-Dufresne
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, 05401, USA
| | - Yoav Kallus
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | | | - Artemy Kolchinsky
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel B Larremore
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Department of Computer Science and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Eric Libby
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, 901 87, Sweden
| | - Eleanor A Power
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Department of Methodology, London School of Economics and Political Science, London, United Kingdom
| | | | - Brendan D Tracey
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
10
|
de Farias ST, Jheeta S, Prosdocimi F. Viruses as a survival strategy in the armory of life. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2019; 41:45. [PMID: 31612293 DOI: 10.1007/s40656-019-0287-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Viruses have generally been thought of as infectious agents. New data on mimivirus, however, suggests a reinterpretation of this thought. Earth's biosphere seems to contain many more viruses than previously thought and they are relevant in the maintenance of ecosystems and biodiversity. Viruses are not considered to be alive because they are not free-living entities and do not have cellular units. Current hypotheses indicate that some viruses may have been the result of genomic reduction of cellular life forms. However, new studies relating to the origins of biological systems suggest that viruses could also have originated during the transition from First to the Last Universal Common Ancestor (from FUCA to LUCA). Within this setting, life has been established as chemical informational system and could be interpreted as a macrocode of multiple layers. The first entity to acquire these features was the First Universal Common Ancestor (FUCA) that evolved to an intermediate ancestral that could be named T-LUCA (Transitional-LUCA) and be equated to Woese's concept of progenotes. T-LUCA may have remained as undifferentiated subsystems with viruses-like structures. The net result is that both cellular life forms and viruses shared protein synthesis apparatuses. In short, virus is a strategy of life reached by two paths: T-LUCAs like entities and the reduction of cellular life forms.
Collapse
Affiliation(s)
- Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
- Departamento de Filosofia, Programa de Pós-Graduação em Filosofia, Universidade Federal de Santa Catarina, Florianopólis, Santa Catarina, Brazil.
| | - Sohan Jheeta
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
| | - Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Mirahmadizadeh A, Yaghobi R, Soleimanian S. Viral ecosystem: An epidemiological hypothesis. Rev Med Virol 2019; 29:e2053. [PMID: 31206234 DOI: 10.1002/rmv.2053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022]
Abstract
Viruses are incomplete elements that require other organisms to survive and multiply, hence constantly mutate during its evolution, resulting from adaptations in response to environmental changes such as the immune response of the host. In this line, they are responsible for many diseases, but today, there is evidence that viruses have many benefits and even have a unique ecosystem to control the different species or strain of themselves. While highlighting the benefits of some viruses and the undesirable effects of their eradication, the present review expresses the idea of the viral ecosystem and its importance, which has been supported in several studies. There are countless articles about virus-related illnesses and the undesirable effects of therapeutic interventions in eliminating the less pathogenic viruses or manipulating viral ecosystems. By simulating the viral ecosystem with an ecosystem found among the snakes, it can be assumed that the viruses have concentric zones, which its inner zone includes the most dangerous viruses for humans and each zone is surrounded and controlled by an outer zone of less dangerous viruses for humans. The outermost zone consists of viruses that are least dangerous to humans such as common cold that protect humans and possibly other living organisms against more dangerous viruses in inner zone, causing the activation of immune system by playing a unique and pivotal role in the ecosystems. Therefore, manipulating the ecosystem and disrupting the balance might have epidemics and harmful consequences for the plants, animals, and human.
Collapse
Affiliation(s)
- Alireza Mirahmadizadeh
- Non-communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Chitarra W, Cuozzo D, Ferrandino A, Secchi F, Palmano S, Perrone I, Boccacci P, Pagliarani C, Gribaudo I, Mannini F, Gambino G. Dissecting interplays between Vitis vinifera L. and grapevine virus B (GVB) under field conditions. MOLECULAR PLANT PATHOLOGY 2018; 19:2651-2666. [PMID: 30055094 PMCID: PMC6638183 DOI: 10.1111/mpp.12735] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant virus infections are often difficult to characterize as they result from a complex molecular and physiological interplay between a pathogen and its host. In this study, the impact of the phloem-limited grapevine virus B (GVB) on the Vitis vinifera L. wine-red cultivar Albarossa was analysed under field conditions. Trials were carried out over two growing seasons by combining agronomic, molecular, biochemical and ecophysiological approaches. The data showed that GVB did not induce macroscopic symptoms on 'Albarossa', but affected the ecophysiological performances of vines in terms of assimilation rates, particularly at the end of the season, without compromising yield and vigour. In GVB-infected plants, the accumulation of soluble carbohydrates in the leaves and transcriptional changes in sugar- and photosynthetic-related genes seemed to trigger defence responses similar to those observed in plants infected by phytoplasmas, although to a lesser extent. In addition, GVB activated berry secondary metabolism. In particular, total anthocyanins and their acetylated forms accumulated at higher levels in GVB-infected than in GVB-free berries, consistent with the expression profiles of the related biosynthetic genes. These results contribute to improve our understanding of the multifaceted grapevine-virus interaction.
Collapse
Affiliation(s)
- Walter Chitarra
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)Via XVIII Aprile 26Conegliano31015Italy
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Danila Cuozzo
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Alessandra Ferrandino
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Francesca Secchi
- Department of Agricultural, Forest, and Food SciencesUniversity of Turin (DISAFA)Largo Paolo Braccini 2Grugliasco10095Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Irene Perrone
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Franco Mannini
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)Strada delle Cacce 73Torino10135Italy
| |
Collapse
|
13
|
Forterre P. Viruses in the 21st Century: From the Curiosity-Driven Discovery of Giant Viruses to New Concepts and Definition of Life. Clin Infect Dis 2018; 65:S74-S79. [PMID: 28859344 DOI: 10.1093/cid/cix349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The curiosity-driven discovery of giant DNA viruses infecting amoebas has triggered an intense debate about the origin, nature, and definition of viruses. This discovery was delayed by the current paradigm confusing viruses with small virions. Several new definitions and concepts have been proposed either to reconcile the unique features of giant viruses with previous paradigms or to propose a completely new vision of the living world. I briefly review here how several other lines of research in virology converged during the last 2 decades with the discovery of giant viruses to change our traditional perception of the viral world. This story emphasizes the power of multidisciplinary curiosity-driven research, from the hospital to the field and the laboratory. Notably, some philosophers have now also joined biologists in their quest to make sense of the abundance and diversity of viruses and related capsidless mobile elements in the biosphere.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut Pasteur, Département de Microbiologie, Paris; and Institut Intégré de Biologie Cellulaire, Département de Microbiologie, Centre National de la Recherche Scientifique, Université Paris-Saclay, France
| |
Collapse
|
14
|
Gauthier J, Gayral P, Le Ru BP, Jancek S, Dupas S, Kaiser L, Gyapay G, Herniou EA. Genetic footprints of adaptive divergence in the bracovirus ofCotesia sesamiaeidentified by targeted resequencing. Mol Ecol 2018; 27:2109-2123. [DOI: 10.1111/mec.14574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Jérémy Gauthier
- Institut de Recherche sur la Biologie de l'Insecte; UMR 7261; CNRS-Université de Tours; Tours France
| | - Philippe Gayral
- Institut de Recherche sur la Biologie de l'Insecte; UMR 7261; CNRS-Université de Tours; Tours France
| | - Bruno Pierre Le Ru
- ICIPE; IRD UMR 247; Nairobi Kenya
- Laboratoire Evolution; Génomes, Comportement et Ecologie; UMR CNRS 9191; IRD 247 and Université Paris Sud; Université Paris-Saclay; Gif sur Yvette France
| | - Séverine Jancek
- Institut de Recherche sur la Biologie de l'Insecte; UMR 7261; CNRS-Université de Tours; Tours France
| | - Stéphane Dupas
- Laboratoire Evolution; Génomes, Comportement et Ecologie; UMR CNRS 9191; IRD 247 and Université Paris Sud; Université Paris-Saclay; Gif sur Yvette France
| | - Laure Kaiser
- Laboratoire Evolution; Génomes, Comportement et Ecologie; UMR CNRS 9191; IRD 247 and Université Paris Sud; Université Paris-Saclay; Gif sur Yvette France
| | - Gabor Gyapay
- Commissariat à l'Energie Atomique; Génoscope (Centre National de Séquençage, CEA); Evry Cedex France
| | - Elisabeth A. Herniou
- Institut de Recherche sur la Biologie de l'Insecte; UMR 7261; CNRS-Université de Tours; Tours France
| |
Collapse
|
15
|
Tennant P, Fermin G. Beneficial Interactions with Viruses. Viruses 2018. [DOI: 10.1016/b978-0-12-811257-1.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
16
|
Chiu L, Bazin T, Truchetet ME, Schaeverbeke T, Delhaes L, Pradeu T. Protective Microbiota: From Localized to Long-Reaching Co-Immunity. Front Immunol 2017; 8:1678. [PMID: 29270167 PMCID: PMC5725472 DOI: 10.3389/fimmu.2017.01678] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
Resident microbiota do not just shape host immunity, they can also contribute to host protection against pathogens and infectious diseases. Previous reviews of the protective roles of the microbiota have focused exclusively on colonization resistance localized within a microenvironment. This review shows that the protection against pathogens also involves the mitigation of pathogenic impact without eliminating the pathogens (i.e., “disease tolerance”) and the containment of microorganisms to prevent pathogenic spread. Protective microorganisms can have an impact beyond their niche, interfering with the entry, establishment, growth, and spread of pathogenic microorganisms. More fundamentally, we propose a series of conceptual clarifications in support of the idea of a “co-immunity,” where an organism is protected by both its own immune system and components of its microbiota.
Collapse
Affiliation(s)
- Lynn Chiu
- University of Bordeaux, CNRS, ImmunoConcept, UMR 5164, Bordeaux, France
| | - Thomas Bazin
- University of Bordeaux, INRA, Mycoplasmal and Chlamydial Infections in Humans, EA 3671, Bordeaux, France.,Department of Hepato-Gastroenterology, Bordeaux Hospital University Center, Pessac, France
| | | | - Thierry Schaeverbeke
- University of Bordeaux, INRA, Mycoplasmal and Chlamydial Infections in Humans, EA 3671, Bordeaux, France.,Department of Rheumatology, Bordeaux Hospital University Center, Bordeaux, France
| | - Laurence Delhaes
- Department of Parasitology and Mycology, Bordeaux Hospital University Center, Bordeaux, France.,University of Bordeaux, INSERM, Cardio-Thoracic Research Centre of Bordeaux, U1045, Bordeaux, France
| | - Thomas Pradeu
- University of Bordeaux, CNRS, ImmunoConcept, UMR 5164, Bordeaux, France
| |
Collapse
|
17
|
Grasis JA. The Intra-Dependence of Viruses and the Holobiont. Front Immunol 2017; 8:1501. [PMID: 29170664 PMCID: PMC5684104 DOI: 10.3389/fimmu.2017.01501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 10/24/2017] [Indexed: 12/30/2022] Open
Abstract
Animals live in symbiosis with the microorganisms surrounding them. This symbiosis is necessary for animal health, as a symbiotic breakdown can lead to a disease state. The functional symbiosis between the host, and associated prokaryotes, eukaryotes, and viruses in the context of an environment is the holobiont. Deciphering these holobiont associations has proven to be both difficult and controversial. In particular, holobiont association with viruses has been of debate even though these interactions have been occurring since cellular life began. The controversy stems from the idea that all viruses are parasitic, yet their associations can also be beneficial. To determine viral involvement within the holobiont, it is necessary to identify and elucidate the function of viral populations in symbiosis with the host. Viral metagenome analyses identify the communities of eukaryotic and prokaryotic viruses that functionally associate within a holobiont. Similarly, analyses of the host in response to viral presence determine how these interactions are maintained. Combined analyses reveal how viruses interact within the holobiont and how viral symbiotic cooperation occurs. To understand how the holobiont serves as a functional unit, one must consider viruses as an integral part of disease, development, and evolution.
Collapse
Affiliation(s)
- Juris A Grasis
- Department of Biology, San Diego State University, San Diego, CA, United States.,School of Natural Sciences, University of California at Merced, Merced, CA, United States
| |
Collapse
|
18
|
Abstract
The popular textbook image of viruses as noxious and selfish genetic parasites greatly underestimates the beneficial contributions of viruses to the biosphere. Given the crucial dependency of viruses to reproduce in an intracellular environment, viruses that engage in excessive killing (lysis) can drive their cellular hosts to extinction and will not survive. The lytic mode of virus propagation must, therefore, be tempered and balanced by non-lytic modes of virus latency and symbiosis. Here, we review recent bioinformatics and metagenomic studies to argue that viral endogenization and domestication may be more frequent mechanisms of virus persistence than lysis. We use a triangle diagram to explain the three major virus persistence strategies that explain the global scope of virus-cell interactions including lysis, latency and virus-cell symbiosis. This paradigm can help identify novel directions in virology research where scientists could artificially gain control over switching lytic and beneficial viral lifestyles. Also see the Video Abstract: http://youtu.be/GwXWz4N8o8.
Collapse
Affiliation(s)
- Arshan Nasir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.,Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Kyung Mo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
19
|
Galinier R, Tetreau G, Portet A, Pinaud S, Duval D, Gourbal B. First characterization of viruses from freshwater snails of the genus Biomphalaria, the intermediate host of the parasite Schistosoma mansoni. Acta Trop 2017; 167:196-203. [PMID: 28012902 DOI: 10.1016/j.actatropica.2016.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/16/2016] [Accepted: 12/18/2016] [Indexed: 12/11/2022]
Abstract
We report the genome sequence and organization of five viruses infecting snails of both Biomphalaria glabrata and Biomphalaria pfeifferi, which are vectors of the intestinal schistosomiasis. Four viruses presented a polyadenylated positive single strand RNA genome encoding one or two large open reading frames (ORFs) flanked by untranslated region. Conserved protein motifs typical of the picorna-like virus superfamily were identified in these viruses but they all presented different genome organization. Phylogenetic analysis confirmed their assignment to this superfamily. The partially characterized fifth virus presented sequence similarity for Totiviridae, a family of non-polyadenylated double-strand RNA viruses. Virus distribution and relative abundance between the five strains of Biomphalaria originating from different geographical areas was determined. Our results provide valuable information of new viruses from Biomphalaria and pave the way for future studies dedicated to their impact on snail fitness and Biomphalaria/Schistosoma interactions.
Collapse
|
20
|
O'Malley MA. The ecological virus. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:71-79. [PMID: 26972871 DOI: 10.1016/j.shpsc.2016.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Ecology is usually described as the study of organisms interacting with one another and their environments. From this view of ecology, viruses - not usually considered to be organisms - would merely be part of the environment. Since the late 1980s, however, a growing stream of micrographic, experimental, molecular, and model-based (theoretical) research has been investigating how and why viruses should be understood as ecological actors of the most important sort. Viruses, especially phage, have been revealed as participants in the planet's most crucial food webs, even though viruses technically consume nothing (they do not metabolize by themselves). Even more impressively, viruses have been identified as regulators of planetary biogeochemistry, in which they control cycles such as carbon, nitrogen and phosphorus - cycles on which all life depends. Although much biogeochemical research black-boxes the entities filling functional roles, it is useful to focus a little more closely to understand how viruses can be held responsible for the global processes of life. This paper will give a brief overview of the history of virus ecology and tease out the implications of large-scale ecological modelling with viruses. This analysis suggests that viruses should be conceptualized as ecological actors that are at least comparable and possibly equal to organismal actors. Ecological agency can therefore be distinguished from standard interpretations of biological agency.
Collapse
|
21
|
Claverie JM, Abergel C. Giant viruses: The difficult breaking of multiple epistemological barriers. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:89-99. [PMID: 26972873 DOI: 10.1016/j.shpsc.2016.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
The discovery of the first "giant virus", Mimivirus, in 2003 could solely have been that of an exceptional freak, a blind alley of evolution as occasionally encountered in biology, albeit without conceptual significance. On the contrary, once broken this epistemological barrier, additional unrelated families of giant viruses such as the Pandoraviruses, the Pithoviruses and most recently Mollivirus, were quickly unraveled, suggesting that an entire chapter of microbiology had been ignored since Pasteur and Ivanovski. In this article, we examine to what extent the giant viruses challenge previous definitions of viruses, the diversity of forms they could take, and how they might have evolved from extinct ancestral cellular lineages. Inspired by the epistemology of Gaston Bachelard, we will also suggest the reasons for which giant viruses laid hidden in plain sight for more than a century. Finally, we propose a new definition for "viruses" that paradoxically emphasize the fact that they do not encode a single universally shared macromolecule or biochemical function.
Collapse
Affiliation(s)
- Jean-Michel Claverie
- Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) CNRS Aix-Marseille Université, Luminy Campus, Marseille, France; Assistance Publique des Hôpitaux de Marseille, La Timone, 13005, Marseille, France.
| | - Chantal Abergel
- Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) CNRS Aix-Marseille Université, Luminy Campus, Marseille, France
| |
Collapse
|
22
|
Forterre P. To be or not to be alive: How recent discoveries challenge the traditional definitions of viruses and life. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:100-108. [PMID: 26996409 DOI: 10.1016/j.shpsc.2016.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Three major discoveries have recently profoundly modified our perception of the viral world: molecular ecologists have shown that viral particles are more abundant than cells in natural environments; structural biologists have shown that some viruses from the three domains of life, Bacteria, Eukarya and Archaea, are evolutionarily related, and microbiologists have discovered giant viruses that rival with cells in terms of size and gene content. I discuss here the scientific and philosophical impact of these discoveries on the debates over the definition, nature (living or not), and origin of viruses. I suggest that viruses have often been considered non-living, because they are traditionally assimilated to their virions. However, the term virus describes a biological process and should integrate all aspects of the viral reproduction cycle. It is especially important to focus on the intracellular part of this cycle, the virocell, when viral information is actively expressed and reproduced, allowing the emergence of new viral genes. The virocell concept theoretically removes roadblocks that prevent defining viruses as living organisms. However, defining a "living organism" remains challenging, as indicated by the case of organelles that evolved from intracellular bacteria. To bypass this problem, I suggest considering that all biological entities that actively participate in the process of life are living.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, F-75015, Paris, France.
| |
Collapse
|
23
|
Pradeu T, Kostyrka G, Dupré J. Understanding viruses: Philosophical investigations. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:57-63. [PMID: 26975220 DOI: 10.1016/j.shpsc.2016.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Viruses have been virtually absent from philosophy of biology. In this editorial introduction, we explain why we think viruses are philosophically important. We focus on six issues (the definition of viruses, the individuality and diachronic identity of a virus, the possibility to classify viruses into species, the question of whether viruses are living, the question of whether viruses are organisms, and finally the biological roles of viruses in ecology and evolution), and we show how they relate to classic questions of philosophy of biology and even general philosophy.
Collapse
Affiliation(s)
| | - Gladys Kostyrka
- IHPST, UMR8590, CNRS & Paris 1 Pantheon-Sorbonne University, France
| | | |
Collapse
|