1
|
Ben Chéhida S, Devi Bunwaree H, Hoareau M, Moubset O, Julian C, Blondin L, Filloux D, Lavergne C, Roumagnac P, Varsani A, Martin DP, Lett JM, Lefeuvre P. Increase of niche filling with increase of host richness for plant-infecting mastreviruses. Virus Evol 2024; 10:veae107. [PMID: 39717705 PMCID: PMC11665825 DOI: 10.1093/ve/veae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
Now that it has been realized that viruses are ubiquitous, questions have been raised on factors influencing their diversity and distribution. For phytoviruses, understanding the interplay between plant diversity and virus species richness and prevalence remains cardinal. As both the amplification and the dilution of viral species richness due to increasing host diversity have been theorized and observed, a deeper understanding of how plants and viruses interact in natural environments is needed to explore how host availability conditions viral diversity and distributions. From a unique dataset, this study explores interactions of Mastrevirus species (family Geminiviridae) with Poales order hosts across 10 sites from three contrasting ecosystems on La Réunion. Among 273 plant pools, representing 61 Poales species, 15 Mastrevirus species were characterized from 22 hosts. The analysis revealed a strong association of mastreviruses with hosts from agroecosystems, the rare presence of viruses in coastal grasslands, and the absence of mastreviruses in subalpine areas, areas dominated by native plants. This suggests that detected mastreviruses were introduced through anthropogenic activities, emphasizing the role of humans in shaping the global pathobiome. By reconstructing the realized host-virus infection network, besides revealing a pattern of increasing viral richness with increasing host richness, we observed increasing viral niche occupancies with increasing host species richness, implying that virus realized richness at any given site is conditioned on the global capacity of the plant populations to host diverse mastreviruses. Whether this tendency is driven by synergy between viruses or by an interplay between vector population and plant richness remains to be established.
Collapse
Affiliation(s)
| | | | | | - Oumaima Moubset
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Charlotte Julian
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Laurence Blondin
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Denis Filloux
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Christophe Lavergne
- Conservatoire Botanique National de Mascarin, St Leu, La Réunion F-97436, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287-5001, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | | | | |
Collapse
|
2
|
Gómez-Márquez J. The Lithbea Domain. Adv Biol (Weinh) 2024; 8:e2300679. [PMID: 38386280 DOI: 10.1002/adbi.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Indexed: 02/23/2024]
Abstract
The tree of life is the evolutionary metaphor for the past and present connections of all cellular organisms. Today, to speak of biodiversity is not only to speak of archaea, bacteria, and eukaryotes, but they should also consider the "new biodiversity" that includes viruses and synthetic organisms, which represent the new forms of life created in laboratories. There is even a third group of artificial entities that, although not living systems, pretend to imitate the living. To embrace and organize all this new biodiversity, I propose the creation of a new domain, with the name Lithbea (from life-on-the-border entites) The criteria for inclusion as members of Lithbea are: i) the acellular nature of the living system, ii) its origin in laboratory manipulation, iii) showing new biological traits, iv) the presence of exogenous genetic elements, v) artificial or inorganic nature. Within Lithbea there are two subdomains: Virworld (from virus world) which includes all viruses, regarded as lifeless living systems, and classified according to the International Committee on Taxonomy of Viruses (ICTV), and ii) Humade (from human-made) which includes all synthetic organisms and artificial entities. The relationships of Lithbea members to the three classical woesian domains and their implications are briefly discussed.
Collapse
Affiliation(s)
- Jaime Gómez-Márquez
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Santiago de Compostela, Galicia, 15782, Spain
| |
Collapse
|
3
|
Roughgarden J. Lytic/Lysogenic Transition as a Life-History Switch. Virus Evol 2024; 10:veae028. [PMID: 38756985 PMCID: PMC11097211 DOI: 10.1093/ve/veae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
The transition between lytic and lysogenic life cycles is the most important feature of the life-history of temperate viruses. To explain this transition, an optimal life-history model is offered based a discrete-time formulation of phage/bacteria population dynamics that features infection of bacteria by Poisson sampling of virions from the environment. The time step is the viral latency period. In this model, density-dependent viral absorption onto the bacterial surface produces virus/bacteria coexistence and density dependence in bacterial growth is not needed. The formula for the transition between lytic and lysogenic phases is termed the 'fitness switch'. According to the model, the virus switches from lytic to lysogenic when its population grows faster as prophage than as virions produced by lysis of the infected cells, and conversely for the switch from lysogenic to lytic. A prophage that benefits the bacterium it infects automatically incurs lower fitness upon exiting the bacterial genome, resulting in its becoming locked into the bacterial genome in what is termed here as a 'prophage lock'. The fitness switch qualitatively predicts the ecogeographic rule that environmental enrichment leads to microbialization with a concomitant increase in lysogeny, fluctuating environmental conditions promote virus-mediated horizontal gene transfer, and prophage-containing bacteria can integrate into the microbiome of a eukaryotic host forming a functionally integrated tripartite holobiont. These predictions accord more with the 'Piggyback-the-Winner' hypothesis than with the 'Kill-the-Winner' hypothesis in virus ecology.
Collapse
Affiliation(s)
- Joan Roughgarden
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Gómez-Márquez J. Reflections upon a new definition of life. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:53. [PMID: 37917201 DOI: 10.1007/s00114-023-01882-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
What is life? Multiple definitions have been proposed to answer this question, but unfortunately, none of them has reached the consensus of the scientific community. Here, the strategy used to define what life is was based on first establishing which characteristics are common to all living systems (organic nature, entropy-producing system, self-organizing, reworkable pre-program, capacity to interact and adapt, reproduction and evolution) and from them constructing the definition taking into account that reproduction and evolution are not essential for life. On this basis, life is defined as an interactive process occurring in entropy-producing, adaptive, and informative (organic) systems. An unforeseen consequence of the inseparable duality between the system (living being) and the process (life) is the interchangeability of the elements of the definition to obtain other equally valid alternatives. In addition, in the light of this definition, cases of temporarily lifeless living systems (viruses, dormant seeds, and ultracold cells) are analyzed, as well as the status of artificial life entities and the hypothetical nature of extraterrestrial life. All living systems are perishable because the passage of time leads to increasing entropy. Life must create order by continuously producing disorder and exporting it to the environment and so we move and stay in the phase transition between order and chaos, far from equilibrium, thanks to the input of energy from the outside. However, the passage of time eventually leads us to an end in which life disappears and entropy increases.
Collapse
Affiliation(s)
- Jaime Gómez-Márquez
- Department of Biochemistry and Molecular Biology, Bldg. CIBUS-Faculty of Biology, University of Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
5
|
DeLong JP, Van Etten JL, Dunigan DD. Lessons from Chloroviruses: the Complex and Diverse Roles of Viruses in Food Webs. J Virol 2023; 97:e0027523. [PMID: 37133447 PMCID: PMC10231191 DOI: 10.1128/jvi.00275-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Viruses can have large effects on the ecological communities in which they occur. Much of this impact comes from the mortality of host cells, which simultaneously alters microbial community composition and causes the release of matter that can be used by other organisms. However, recent studies indicate that viruses may be even more deeply integrated into the functioning of ecological communities than their effect on nutrient cycling suggests. In particular, chloroviruses, which infect chlorella-like green algae that typically occur as endosymbionts, participate in three types of interactions with other species. Chlororviruses (i) can lure ciliates from a distance, using them as a vector; (ii) depend on predators for access to their hosts; and (iii) get consumed as a food source by, at least, a variety of protists. Therefore, chloroviruses both depend on and influence the spatial structures of communities as well as the flows of energy through those communities, driven by predator-prey interactions. The emergence of these interactions are an eco-evolutionary puzzle, given the interdependence of these species and the many costs and benefits that these interactions generate.
Collapse
Affiliation(s)
- John P. DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - James L. Van Etten
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln Nebraska, USA
| | - David D. Dunigan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln Nebraska, USA
| |
Collapse
|
6
|
Bolinska A, Martin JD. The tragedy of the canon; or, path dependence in the history and philosophy of science. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2021; 89:63-73. [PMID: 34385096 DOI: 10.1016/j.shpsa.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 07/04/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
We have previously argued that historical cases must be rendered canonical before they can plausibly serve as evidence for philosophical claims, where canonicity is established through a process of negotiation among historians and philosophers of science (Bolinska and Martin, 2020). Here, we extend this proposal by exploring how that negotiation might take place in practice. The working stock of historical examples that philosophers tend to employ has long been established informally, and, as a result, somewhat haphazardly. The composition of the historical canon of philosophy of science is therefore path dependent, and cases often become stock examples for reasons tangential to their appropriateness for the purposes at hand. We show how the lack of rigor around the canonization of case studies has muddied the waters in selected philosophical debates. This, in turn, lays the groundwork for proposing ways in which they can be improved.
Collapse
Affiliation(s)
- Agnes Bolinska
- Department of Philosophy, University of South Carolina, United States.
| | | |
Collapse
|
7
|
Abstract
Background Many traditional biological concepts continue to be debated by biologists, scientists and philosophers of science. The specific objective of this brief reflection is to offer an alternative vision to the definition of life taking as a starting point the traits common to all living beings. Results and Conclusions Thus, I define life as a process that takes place in highly organized organic structures and is characterized by being preprogrammed, interactive, adaptative and evolutionary. If life is the process, living beings are the system in which this process takes place. I also wonder whether viruses can be considered living things or not. Taking as a starting point my definition of life and, of course, on what others have thought about it, I am in favor of considering viruses as living beings. I base this conclusion on the fact that viruses satisfy all the vital characteristics common to all living things and on the role they have played in the evolution of species. Finally, I argue that if there were life elsewhere in the universe, it would be very similar to what we know on this planet because the laws of physics and the composition of matter are universal and because of the principle of the inexorability of life.
Collapse
|
8
|
D'Abramo F, Neumeyer S. A historical and political epistemology of microbes. CENTAURUS; INTERNATIONAL MAGAZINE OF THE HISTORY OF SCIENCE AND MEDICINE 2020; 62:321-330. [PMID: 32834061 PMCID: PMC7404376 DOI: 10.1111/1600-0498.12300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 05/26/2023]
Abstract
This article traces the historical co-evolution of microbiology, bacteriology, and virology, framed within industrial and agricultural contexts, as well as their role in colonial and national history between the end of the 19th century and the first decades of the 20th century. The epistemology of germ theory, coupled with the economic interests of European colonies, has shaped the understanding of human-microbial relationships in a reductionist way. We explore a brief history of the medical and biological sciences, focusing on microbes and the difficulty of implementing germ theory outside of biology laboratories. Furthermore, we highlight the work of Lynn Margulis, who conceptualized microbes within their ecological contexts. Such research shows the active role microbes play in handling life-sustaining biological and biochemical processes. We outline how the industrial and technological advancements of the last two centuries not only impacted almost all human societies, but also changed the world on microbial, biological, and geological levels. The narration of these histories is a complex task, and depends on how national, international, and intergovernmental institutions (such as the World Health Organization) conceive of the selective environmental pressures exerted by industry and biotechnological companies.
Collapse
Affiliation(s)
- Flavio D'Abramo
- Max Planck Institute for the History of ScienceBerlinGermany
| | | |
Collapse
|
9
|
de Farias ST, Jheeta S, Prosdocimi F. Viruses as a survival strategy in the armory of life. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2019; 41:45. [PMID: 31612293 DOI: 10.1007/s40656-019-0287-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Viruses have generally been thought of as infectious agents. New data on mimivirus, however, suggests a reinterpretation of this thought. Earth's biosphere seems to contain many more viruses than previously thought and they are relevant in the maintenance of ecosystems and biodiversity. Viruses are not considered to be alive because they are not free-living entities and do not have cellular units. Current hypotheses indicate that some viruses may have been the result of genomic reduction of cellular life forms. However, new studies relating to the origins of biological systems suggest that viruses could also have originated during the transition from First to the Last Universal Common Ancestor (from FUCA to LUCA). Within this setting, life has been established as chemical informational system and could be interpreted as a macrocode of multiple layers. The first entity to acquire these features was the First Universal Common Ancestor (FUCA) that evolved to an intermediate ancestral that could be named T-LUCA (Transitional-LUCA) and be equated to Woese's concept of progenotes. T-LUCA may have remained as undifferentiated subsystems with viruses-like structures. The net result is that both cellular life forms and viruses shared protein synthesis apparatuses. In short, virus is a strategy of life reached by two paths: T-LUCAs like entities and the reduction of cellular life forms.
Collapse
Affiliation(s)
- Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
- Departamento de Filosofia, Programa de Pós-Graduação em Filosofia, Universidade Federal de Santa Catarina, Florianopólis, Santa Catarina, Brazil.
| | - Sohan Jheeta
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
| | - Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Horas EL, Theodosiou L, Becks L. Why Are Algal Viruses Not Always Successful? Viruses 2018; 10:v10090474. [PMID: 30189587 PMCID: PMC6165140 DOI: 10.3390/v10090474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 12/14/2022] Open
Abstract
Algal viruses are considered to be key players in structuring microbial communities and biogeochemical cycles due to their abundance and diversity within aquatic systems. Their high reproduction rates and short generation times make them extremely successful, often with immediate and strong effects for their hosts and thus in biological and abiotic environments. There are, however, conditions that decrease their reproduction rates and make them unsuccessful with no or little immediate effects. Here, we review the factors that lower viral success and divide them into intrinsic—when they are related to the life cycle traits of the virus—and extrinsic factors—when they are external to the virus and related to their environment. Identifying whether and how algal viruses adapt to disadvantageous conditions will allow us to better understand their role in aquatic systems. We propose important research directions such as experimental evolution or the resurrection of extinct viruses to disentangle the conditions that make them unsuccessful and the effects these have on their surroundings.
Collapse
Affiliation(s)
- Elena L Horas
- Community Dynamics Group, Max-Planck for Evolutionary Biology, 24306 Plön, Germany.
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, 78464 Konstanz, Germany.
| | - Loukas Theodosiou
- Community Dynamics Group, Max-Planck for Evolutionary Biology, 24306 Plön, Germany.
- Department of Microbial Population Biology, Max-Planck for Evolutionary Biology, 24306 Plön, Germany.
| | - Lutz Becks
- Community Dynamics Group, Max-Planck for Evolutionary Biology, 24306 Plön, Germany.
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, 78464 Konstanz, Germany.
| |
Collapse
|
11
|
Roux S, Solonenko NE, Dang VT, Poulos BT, Schwenck SM, Goldsmith DB, Coleman ML, Breitbart M, Sullivan MB. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. PeerJ 2016; 4:e2777. [PMID: 28003936 PMCID: PMC5168678 DOI: 10.7717/peerj.2777] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023] Open
Abstract
Background Viruses strongly influence microbial population dynamics and ecosystem functions. However, our ability to quantitatively evaluate those viral impacts is limited to the few cultivated viruses and double-stranded DNA (dsDNA) viral genomes captured in quantitative viral metagenomes (viromes). This leaves the ecology of non-dsDNA viruses nearly unknown, including single-stranded DNA (ssDNA) viruses that have been frequently observed in viromes, but not quantified due to amplification biases in sequencing library preparations (Multiple Displacement Amplification, Linker Amplification or Tagmentation). Methods Here we designed mock viral communities including both ssDNA and dsDNA viruses to evaluate the capability of a sequencing library preparation approach including an Adaptase step prior to Linker Amplification for quantitative amplification of both dsDNA and ssDNA templates. We then surveyed aquatic samples to provide first estimates of the abundance of ssDNA viruses. Results Mock community experiments confirmed the biased nature of existing library preparation methods for ssDNA templates (either largely enriched or selected against) and showed that the protocol using Adaptase plus Linker Amplification yielded viromes that were ±1.8-fold quantitative for ssDNA and dsDNA viruses. Application of this protocol to community virus DNA from three freshwater and three marine samples revealed that ssDNA viruses as a whole represent only a minor fraction (<5%) of DNA virus communities, though individual ssDNA genomes, both eukaryote-infecting Circular Rep-Encoding Single-Stranded DNA (CRESS-DNA) viruses and bacteriophages from the Microviridae family, can be among the most abundant viral genomes in a sample. Discussion Together these findings provide empirical data for a new virome library preparation protocol, and a first estimate of ssDNA virus abundance in aquatic systems.
Collapse
Affiliation(s)
- Simon Roux
- Department of Microbiology, The Ohio State University , Columbus , OH , United States
| | - Natalie E Solonenko
- Department of Microbiology, The Ohio State University , Columbus , OH , United States
| | - Vinh T Dang
- Department of Microbiology, Ha Long University , Uong Bi , Quang Ninh , Vietnam
| | - Bonnie T Poulos
- Department of Ecology and Evolutionary Biology, University of Arizona , Tucson , AZ , United States
| | - Sarah M Schwenck
- Department of Ecology and Evolutionary Biology, University of Arizona , Tucson , AZ , United States
| | - Dawn B Goldsmith
- College of Marine Science, University of South Florida , St. Petersburg , FL , United States
| | - Maureen L Coleman
- Department of the Geophysical Sciences, University of Chicago , Chicago , IL , United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida , St. Petersburg , FL , United States
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, United States; Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Pradeu T. Mutualistic viruses and the heteronomy of life. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:80-8. [PMID: 26972872 PMCID: PMC7108282 DOI: 10.1016/j.shpsc.2016.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 05/04/2023]
Abstract
Though viruses have generally been characterized by their pathogenic and more generally harmful effects, many examples of mutualistic viruses exist. Here I explain how the idea of mutualistic viruses has been defended in recent virology, and I explore four important conceptual and practical consequences of this idea. I ask to what extent this research modifies the way scientists might search for new viruses, our notion of how the host immune system interacts with microbes, the development of new therapeutic approaches, and, finally, the role played by the criterion of autonomy in our understanding of living things. Overall, I suggest that the recognition of mutualistic viruses plays a major role in a wider ongoing revision of our conception of viruses.
Collapse
Affiliation(s)
- Thomas Pradeu
- ImmunoConcept, UMR5164, CNRS, University of Bordeaux, France.
| |
Collapse
|
13
|
Pradeu T, Kostyrka G, Dupré J. Understanding viruses: Philosophical investigations. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:57-63. [PMID: 26975220 DOI: 10.1016/j.shpsc.2016.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Viruses have been virtually absent from philosophy of biology. In this editorial introduction, we explain why we think viruses are philosophically important. We focus on six issues (the definition of viruses, the individuality and diachronic identity of a virus, the possibility to classify viruses into species, the question of whether viruses are living, the question of whether viruses are organisms, and finally the biological roles of viruses in ecology and evolution), and we show how they relate to classic questions of philosophy of biology and even general philosophy.
Collapse
Affiliation(s)
| | - Gladys Kostyrka
- IHPST, UMR8590, CNRS & Paris 1 Pantheon-Sorbonne University, France
| | | |
Collapse
|