1
|
Lu J, Liu J, Li H, Sun Y, Liu S, Wang M, Li Y. Toxicity Assay and Pathogenic Process Analysis of Clonostachys rogersoniana Infecting Cephalcia chuxiongica. Microorganisms 2025; 13:709. [PMID: 40284545 PMCID: PMC12029400 DOI: 10.3390/microorganisms13040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Cephalcia chuxiongica has caused significant damage to pine forests, becoming a major biological disaster that hinders the sustainable development of forestry in China. To investigate the efficacy of biological control measures, entomopathogenic fungi were isolated and purified from the larvae of Ce. chuxiongica that had succumbed to diseases. The pathogenic capacity of strains was assessed using bioassay methods, and their infection process was observed using scanning electron microscopy. ITS, LSU, and TEF analysis disclosed Clonostachys rogersoniana as the highly virulent strain responsible for the death of Ce. chuxiongica. The optimal medium for its mycelial growth and sporulation was found to be PPDA. In addition, the bioassay revealed that the median lethal time (LT50) for Ce. chuxiongica was 24.34 h and median lethal concentration (LC50) was 2.35 × 105 conidia/mL, indicating that C. rogersoniana possesses potent virulence and demonstrates rapid pathogenicity. Furthermore, scanning electron microscopy demonstrated that C. rogersoniana initially entered the body of Ce. chuxiongica through the spiracle and progressively made its way into the body wall, resulting in the insect's death. The mode of infection for C. rogersoniana is exceedingly rare. As a consequence, the results of this study can serve as a reference for the management of chewing insects, such as Ce. chuxiongica.
Collapse
Affiliation(s)
- Junjia Lu
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (J.L.); (J.L.)
| | - Jian Liu
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (J.L.); (J.L.)
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Huali Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yajiao Sun
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (J.L.); (J.L.)
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Shuwen Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Mengyao Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yonghe Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Bao X, Lu H, Zhao J, Yang T, Wu L, Zou J, Chen Q, Zhang B. Screening and identification of two novel phosphate-solubilizing Pyrenochaetopsis tabarestanensis strains and their role in enhancing phosphorus uptake in rice. Front Microbiol 2025; 15:1494859. [PMID: 39850137 PMCID: PMC11754195 DOI: 10.3389/fmicb.2024.1494859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Low phosphorus (P) use efficiency significantly impacts rice yields. An environmentally friendly approach to increase phosphorus absorption and utilization in rice involves the exploration of phosphorus-solubilizing fungal resources. This study aimed to isolate and characterize fungal strains from the rice rhizosphere and assess their phosphate solubilization capabilities, plant-growth-promoting (PGP) traits, and mechanisms involved. An initial comparative sequence analysis of the hypervariable regions of the ITS rDNA and morphological analysis identified two strains belonging to the genus Pyrenochaetopsis, designated Pyrenochaetopsis tabarestanensis WFY-1 (PtWFY-1) and WFY-2 (PtWFY-2). Both strains demonstrated the ability to solubilize tricalcium phosphate, magnesium phosphate, phosphate rock powder, and calcium phytate phosphorus in vitro through acidification via the exudation of oxoglutaric acid, acetic acid, citric acid, and pyruvic acid. The amounts of oxoglutaric acid, acetic acid, citric acid, and pyruvic acid secreted were 1,900.03, 1,478.47, 579.11, and 685.90 mg L-1, respectively, for the PtWFY-1 strain and 2,441.67, 1,519.18, 867.65, and 888.30 mg L-1, respectively, for the PtWFY-2 strain relative to the control (0.00 mg L-1). These organic acids acidify the rhizosphere, increasing the availability of phosphorus for plant uptake. Inoculation with PtWFY-1 increased available soil P by 5.8% after 30 days, increasing the plant P concentration by 69.8% and the dry weight of the rice seedlings by 24.5%. Similarly, the PtWFY-2 strain increased these parameters by 7.7%, 60.3%, and 14.5%, respectively. PtWFY-1 showed slightly stronger effects on P availability and plant growth compared to PtWFY-2. The secretion of phytohormones was responsible for the growth promotion in rice by the PtWFY-1 and PtWFY-2 strains, along with P absorption The principal phytohormone in the PtWFY-1 and PtWFY-2 broths was L-tryptophan, which is a precursor substance for IAA synthesis, accounting for 84.68% and 83.46%, respectively. Assessment of the antifungal activities of the PtWFY-1 and PtWFY-2 strains against Magnaporthe oryzae demonstrated that rice grew healthier, indirectly promoting rice phosphorus absorption. These findings highlight the potential of using Pyrenochaetopsis strains as biofertilizers to sustainably improve phosphorus use efficiency in rice agriculture.
Collapse
Affiliation(s)
- Xiaozhe Bao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Haifei Lu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China
| | - Jinyao Zhao
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Taotao Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Longmei Wu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jixiang Zou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qingchun Chen
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Bin Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
3
|
Wimalasena MK, Wijayawardene NN, Bamunuarachchige TC, Zhang GQ, Udeni Jayalal RG, Bhat DJ, Dawoud TM, de Zoysa HKS, Dai DQ. Ectophoma salviniae sp. nov., Neottiosporina mihintaleensis sp. nov. and four other endophytes associated with aquatic plants from Sri Lanka and their extracellular enzymatic potential. Front Cell Infect Microbiol 2025; 14:1475114. [PMID: 39844839 PMCID: PMC11750795 DOI: 10.3389/fcimb.2024.1475114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 01/24/2025] Open
Abstract
Endophytic fungi associated with selected aquatic plants, Eichhornia crassipes, Nymphaea nouchali, Salvinia minima and S. molesta were evaluated. Ectophoma salviniae sp. nov. and Neottiosporina mihintaleensis sp. nov. are introduced as novel taxa from Salvinia spp. from Sri Lanka. Chaetomella raphigera is reported as a new geographical record, Colletotrichum siamense and C. truncatum are reported as novel host records in aquatic plants, while Phyllosticta capitalensis has been identified on the same host (Nymphaea nouchali) in the North-Central Province of Sri Lanka. Identification of the fungi was based on morphological characteristics and multi-locus phylogenetic analyses using ITS, LSU, SSU, ACT, CHS-1, GAPDH, tub2, rpb2, and tef1-α molecular markers. The identified fungi were analysed for extracellular enzymatic properties. According to the qualitative analysis, Ectophoma salviniae sp. nov. exhibited the highest amylase production, Chaetomella raphigera exhibited the highest cellulase enzyme production, and Neottiosporina mihintaleensis sp. nov. exhibited the highest laccase production. The results demonstrate the aquatic fungal diversity in this region and their extracellular enzymatic potentials, providing valuable insights for future biotechnological approaches.
Collapse
Affiliation(s)
- Madhara K. Wimalasena
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan, China
- Faculty of Graduate Studies, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan, China
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
- Tropical Microbiology Research Foundation, Colombo, Sri Lanka
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Gui-Qing Zhang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan, China
| | - R. G. Udeni Jayalal
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - Darbhe J. Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Vishnugupta Vishwavidyapeetam, Gokarna, India
| | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Heethaka K. S. de Zoysa
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale, Sri Lanka
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan, China
| |
Collapse
|
4
|
Keller V, Calchera A, Otte J, Schmitt I. Genomic features of lichen-associated black fungi. IUBMB Life 2025; 77:e2934. [PMID: 39710945 DOI: 10.1002/iub.2934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/06/2024] [Indexed: 12/24/2024]
Abstract
Lichens are mutualistic associations consisting of a primary fungal host, and one to few primary phototrophic symbiont(s), usually a green alga and/or a cyanobacterium. They form complex thallus structures, which provide unique and stable habitats for many other microorganisms. Frequently isolated from lichens are the so-called black fungi, or black yeasts, which are mainly characterized by melanized cell walls and extremophilic lifestyles. It is presently unclear in which ways these fungi interact with other members of the lichen symbiosis. Genomic resources of lichen-associated black fungi are needed to better understand the physiological potential of these fungi and shed light on the complexity of the lichen consortium. Here, we present high-quality genomes of 14 black fungal lineages, isolated from lichens of the rock-dwelling genus Umbilicaria. Nine of the lineages belong to the Eurotiomycetes (Chaetothyriales), four to the Dothideomycetes, and one to the Arthoniomycetes, representing the first genome of a black fungus in this class. The PacBio-based assemblies are highly contiguous (5-42 contigs per genome, mean coverage of 79-502, N50 of 1.0-7.3 mega-base-pair (Mb), Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness generally ≥95.4%). Most contigs are flanked by a telomere sequence, suggesting we achieved near chromosome-level assemblies. Genome sizes range between 26 and 44 Mb. Transcriptome-based annotations yielded ~11,000-18,000 genes per genome. We analyzed genome content with respect to repetitive elements, biosynthetic genes, and effector genes. Each genome contained a polyketide synthase gene related to the dihydroxynaphthalene-melanin pathway. This research provides insights into genome content and metabolic potential of these relatively unknown, but frequently encountered lichen associates.
Collapse
Affiliation(s)
- Victoria Keller
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
5
|
Eisvand P, Mehrabi-Koushki M, Crous PW. A revision of the family Cucurbitariaceae with additional new taxa from forest trees in Iran. Mycol Prog 2024; 23:14. [DOI: 10.1007/s11557-024-01953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 01/05/2025]
|
6
|
Razaghi P, Raza M, Han S, Ma Z, Cai L, Zhao P, Chen Q, Phurbu D, Liu F. Sporocadaceae revisited. Stud Mycol 2024; 109:155-272. [PMID: 39717655 PMCID: PMC11663424 DOI: 10.3114/sim.2024.109.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/01/2024] [Indexed: 12/25/2024] Open
Abstract
Sporocadaceae is a species-rich and cosmopolitan fungal family including species of plant pathogens, endophytes or saprobes, and parasites of humans and animals. The taxonomy of Sporocadaceae has recently been revised using a polyphasic approach. However, much remains unknown about the diversity of species and their host associations. A collection of 488 strains, mostly from China and associated with 129 host plant species, was studied based on morphological comparisons and multi-locus (LSU, ITS, tef-1α, tub2, and rpb2) phylogenies. Our results revealed that they belonged to 86 species, one new genus (Cavernicola gen. nov.) and seven known genera, including Discosia, Monochaetia, Neopestalotiopsis, Pestalotiopsis, Seimatosporium, Seiridium and Sporocadus. Of these, 43 new species and three new combinations (Dis. kaki, Mon. bulbophylli, and Neo. keteleeriae) are proposed in this paper. In addition, Neo. vaccinii, Pes. kaki and Pes. nanjingensis are synonymised under Neo. hispanica, Pes. menhaiensis and Pes. sichuanensis, respectively. We also corrected seven problematic sequences of type materials of previously published species, namely Neo. iranensis (tef-1α, ITS, tub2), Pes. jesteri (tef-1α), Pes. photinicola (ITS, tub2) and Pes. yunnanensis (ITS). Based on this study, Pestalotiopsis and Neopestalotiopsis are the most commonly detected genera within the Sporocadaceae family, associated with 84 and 70 plant species, respectively. Furthermore, considering the importance of Sporocadaceae and the fact that commonly used loci provide little valid information for species delimitation in this family, especially for Neopestalotiopsis and Pestalotiopsis, we initiated a phylogenomic project in this study. It will not only contribute to the knowledge of species boundaries but will also provide an important basis for evolutionary studies and research on secondary metabolites in Sporocadaceae. Taxonomic novelties: New genus: Cavernicola P. Razaghi, F. Liu & L. Cai. New species: Cavernicola guangxiensis P. Razaghi, F. Liu & L. Cai, Discosia ascidiata P. Razaghi, F. Liu & L. Cai, Discosia jiangxiensis P. Razaghi, F. Liu & L. Cai, Discosia navicularis P. Razaghi, F. Liu & L. Cai, Neopestalotiopsis ageratinae P. Razaghi, F. Liu & L. Cai, Neopestalotiopsis castanopsidis P. Razaghi, F. Liu & L. Cai, Neopestalotiopsis celtidis P. Razaghi, F. Liu, M. Raza & L. Cai, Neopestalotiopsis collariata P. Razaghi, F. Liu & L. Cai, Neopestalotiopsis dimorphospora P. Razaghi, F. Liu & L. Cai, Neopestalotiopsis dolichoconidiophora P. Razaghi, F. Liu & L. Cai, Neopestalotiopsis fijiensis P. Razaghi, F. Liu & L. Cai, Neopestalotiopsis fimbriata P. Razaghi, F. Liu & L. Cai, Neopestalotiopsis fuzhouensis P. Razaghi, F. Liu & L. Cai, Neopestalotiopsis guangxiensis P. Razaghi, F. Liu, M. Raza & L. Cai, Neopestalotiopsis guizhouensis P. Razaghi, F. Liu, M. Raza & L. Cai, Neopestalotiopsis jiangxiensis P. Razaghi, F. Liu & L. Cai, Neopestalotiopsis liquidambaris P. Razaghi, F. Liu & L. Cai, Neopestalotiopsis machili P. Razaghi, F. Liu & L. Cai, Neopestalotiopsis megabetaspora P. Razaghi, F. Liu, M. Raza & L. Cai, Neopestalotiopsis moniliformis P. Razaghi, F. Liu & L. Cai, Neopestalotiopsis nanningensis P. Razaghi, F. Liu, M. Raza & L. Cai, Neopestalotiopsis phyllostachydis P. Razaghi, F. Liu, M. Raza & L. Cai, Neopestalotiopsis poae P. Razaghi, F. Liu & L. Cai, Neopestalotiopsis smilacis P. Razaghi, F. Liu, M. Raza & L. Cai, Pestalotiopsis alloschemones P. Razaghi, F. Liu & L. Cai, Pestalotiopsis americana P. Razaghi, F. Liu & L. Cai, Pestalotiopsis biappendiculata P. Razaghi, F. Liu & L. Cai, Pestalotiopsis cratoxyli P. Razaghi, F. Liu, M. Raza & L. Cai, Pestalotiopsis exudata P. Razaghi, F. Liu & L. Cai, Pestalotiopsis fusiformis P. Razaghi, F. Liu & L. Cai, Pestalotiopsis ganzhouensis P. Razaghi, F. Liu & L. Cai, Pestalotiopsis leucospermi P. Razaghi, F. Liu & L. Cai, Pestalotiopsis lobata P. Razaghi, F. Liu & L. Cai, Pestalotiopsis machili P. Razaghi, F. Liu & L. Cai, Pestalotiopsis multiappendiculata P. Razaghi, F. Liu & L. Cai, Pestalotiopsis pruni P. Razaghi, F. Liu & L. Cai, Pestalotiopsis rubrae P. Razaghi, F. Liu, M. Raza & L. Cai, Pestalotiopsis wulichongensis P. Razaghi, F. Liu, M. Raza & L. Cai, Seimatosporium tibetense P. Razaghi, F. Liu & L. Cai, Seiridium rhododendri P. Razaghi, F. Liu & L. Cai, Sporocadus cavernicola P. Razaghi, F. Liu & L. Cai, Sporocadus hyperici P. Razaghi, F. Liu & L. Cai, Sporocadus tibetensis P. Razaghi, F. Liu & L. Cai. New combinations: Discosia kaki (Kaz. Tanaka et al.) P. Razaghi, F. Liu & L. Cai, Monochaetia bulbophylli (S.F. Ran & Yong Wang bis) P. Razaghi, F. Liu & L. Cai, Neopestalotiopsis keteleeriae (Y. Song et al.) P. Razaghi, F. Liu & L. Cai. Citation: Razaghi P, Raza M, Han SL, Ma ZY, Cai L, Zhao P, Chen Q, Phurbu D, Liu F (2024). Sporocadaceae revisited. Studies in Mycology 109: 155-272. doi: 10.3114/sim.2024.109.03.
Collapse
Affiliation(s)
- P. Razaghi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - M. Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Integrated Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - S.L. Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Z.Y. Ma
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - D. Phurbu
- Tibet Plateau Institute of Biology, Lhasa 850000, China
| | - F. Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Absalan S, Armand A, Jayawardena RS, McKenzie EHC, Hyde KD, Lumyong S. Diversity of Pleosporalean Fungi Isolated from Rice ( Oryza sativa L.) in Northern Thailand and Descriptions of Five New Species. J Fungi (Basel) 2024; 10:763. [PMID: 39590682 PMCID: PMC11595767 DOI: 10.3390/jof10110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Pleosporales represents the largest order within the class Dothideomycetes (Fungi), comprising phytopathogenic, saprobic, and endophytic taxa with a widespread presence in terrestrial and aquatic environments. Rice (Oryza sativa) is a primary economic crop in numerous tropical countries, particularly in Thailand. Studying fungal species associated with rice holds the potential to enhance our understanding of fungal diversity, lifestyles, and biology of rice, offering valuable insights for future research aimed at disease management and yield improvement. Thirty-nine pleosporalean isolates were obtained from various parts of rice plants collected across diverse regions in Chiang Rai Province, Thailand. Species identification involved a combination of morphology and molecular phylogeny, utilizing multi-locus sequence analyses of the ITS, LSU, SSU, gapdh, rpb2, tef1, and tub2 genes. The isolates were identified in 18 taxa distributed across five families and ten genera, including five new species (Bipolaris chiangraiensis, Ophiosphaerella oryzae, Paraphaeosphaeria oryzae, Pyrenochaetopsis oryzicola, and Setophoma oryzicola). Additionally, six new host records and two new geographical records are documented. Photoplates, detailed morphological descriptions, and phylogenetic trees are provided to elucidate the placement of both known and novel taxa.
Collapse
Affiliation(s)
- Sahar Absalan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
| | - Alireza Armand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Eric H. C. McKenzie
- Landcare Research-Manaaki Whenua, Private Bag 92170, Auckland 1072, New Zealand;
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Wijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, et alWijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, Youssef NH, Zandijk A, Zhang GQ, Zhang JY, Zhao H, Zhao R, Zverkov OA, Thines M, Karpov SA. Classes and phyla of the kingdom Fungi. FUNGAL DIVERS 2024; 128:1-165. [DOI: 10.1007/s13225-024-00540-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/03/2024] [Indexed: 01/05/2025]
Abstract
AbstractFungi are one of the most diverse groups of organisms with an estimated number of species in the range of 2–3 million. The higher-level ranking of fungi has been discussed in the framework of molecular phylogenetics since Hibbett et al., and the definition and the higher ranks (e.g., phyla) of the ‘true fungi’ have been revised in several subsequent publications. Rapid accumulation of novel genomic data and the advancements in phylogenetics now facilitate a robust and precise foundation for the higher-level classification within the kingdom. This study provides an updated classification of the kingdom Fungi, drawing upon a comprehensive phylogenomic analysis of Holomycota, with which we outline well-supported nodes of the fungal tree and explore more contentious groupings. We accept 19 phyla of Fungi, viz. Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota, Sanchytriomycota, and Zoopagomycota. In the phylogenies, Caulochytriomycota resides in Chytridiomycota; thus, the former is regarded as a synonym of the latter, while Caulochytriomycetes is viewed as a class in Chytridiomycota. We provide a description of each phylum followed by its classes. A new subphylum, Sanchytriomycotina Karpov is introduced as the only subphylum in Sanchytriomycota. The subclass Pneumocystomycetidae Kirk et al. in Pneumocystomycetes, Ascomycota is invalid and thus validated. Placements of fossil fungi in phyla and classes are also discussed, providing examples.
Collapse
|
9
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
10
|
Fu S, Sun JE, Tarafder E, Wijayawardene NN, Hu Y, Wang Y, Li Y. Pezizomycotina species associated with rotten plant materials in Guizhou Province, China. MycoKeys 2024; 106:265-285. [PMID: 38974463 PMCID: PMC11224676 DOI: 10.3897/mycokeys.106.125920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
Nine Pezizomycotina strains were isolated from rotten dead branches and leaves collected from Guizhou Province. To obtain their accurate taxonomic placement, we provided the morphological characteristics of conidiophore cells and conidia. Phylogenetic relationships, based on ITS, rpb2, SSU, LSU and tub2 gene sequences, confirmed our strains represented three novel species, Peglioniafalcata, Neoascochytapseudofusiformis and Neomicrosphaeropsiscylindrica. Peglioniafalcata produced falcate conidia and Neoa.pseudofusiformis generated fusiform conidia, while Neom.cylindrica possessed cylindrical conidia. The phylogenetic results also supported them as novel taxa. All the new species in the present study were found as saprophytic on forest litter with high rainfall, which suggest they may have a certain effect on nutrient decomposition and redistribution in forest ecosystems. Thus, it opened a way for further research on related ecological roles and their application production.
Collapse
Affiliation(s)
- Shamin Fu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang Guizhou 550025, China
| | - Jing-E Sun
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang Guizhou 550025, China
| | - Entaj Tarafder
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Nalin N. Wijayawardene
- Guizhou Zhunongjia Agricultural Science and Technology Service Co., Ltd, Guiyang, Guizhou 550025, China
| | - Yan Hu
- Institute of Plant Health and Medicine, College of Agriculture, Guizhou University, Guiyang Guizhou 550025, China
| | - Yong Wang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Wang Y, Tu Y, Chen X, Jiang H, Ren H, Lu Q, Wei C, Lv W. Didymellaceae species associated with tea plant ( Camelliasinensis) in China. MycoKeys 2024; 105:217-251. [PMID: 38846425 PMCID: PMC11153891 DOI: 10.3897/mycokeys.105.119536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Tea plant is one of the most important commercial crops worldwide. The Didymellaceae fungi can cause leaf blight disease of tea plant. In this study, 240 isolates were isolated from tea plant leaves of 10 provinces in China. Combined with multi-locus (ITS, LSU, RPB2 and TUB2) phylogenetic analysis and morphological characteristics, these isolates were identified as 25 species of six genera in Didymellaceae, including 19 known species Didymellacoffeae-arabicae, D.pomorum, D.segeticola, D.sinensis, Epicoccumcatenisporum, E.dendrobii, E.draconis, E.italicum, E.latusicollum, E.mackenziei, E.oryzae, E.poaceicola, E.rosae, E.sorghinum, E.tobaicum, Neoascochytamortariensis, Paraboeremialitseae, Remotididymellaanemophila and Stagonosporopsiscaricae, of which 15 species were new record species and six novel species, named D.yunnanensis, E.anhuiense, E.jingdongense, E.puerense, N.yunnanensis and N.zhejiangensis. Amongst all isolates, D.segeticola was the most dominant species. Pathogenicity tests on tea plant leaves showed that E.anhuiense had the strongest virulence, while E.puerense had the weakest virulence. Besides, D.pomorum, D.yunnanensis, E.dendrobii, E.italicum, E.jingdongense, E.mackenziei, E.oryzae, E.rosae, E.tobaicum, N.mortariensis, N.yunnanensis, N.zhejiangensis and R.anemophila were non-pathogenic to the tea plant.
Collapse
Affiliation(s)
- Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| | - Yiyi Tu
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| | - Xueling Chen
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| | - Hong Jiang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| | - Hengze Ren
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| | - Qinhua Lu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, ChinaInstitute of Sericulture and Tea, Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, ChinaAnhui Agricultural UniversityHefeiChina
| | - Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| |
Collapse
|
12
|
Xu Z, Xu L, Liu J, Chen D, Cui H, Xue L, Li C. High Diversity of Epicoccum Species Associated with Leaf Spot on Italian Ryegrass in Southwestern China: Six New Records and Three New Species. PLANT DISEASE 2024; 108:1308-1319. [PMID: 37953231 DOI: 10.1094/pdis-06-23-1044-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Italian ryegrass is widely cultivated for the production of forage, hay, and silage because of its high nutritional value and good palatability. Leaf spots caused by fungi pose a serious threat to forage crops. In order to expand the knowledge of fungi causing leaf spots in ryegrass (Lolium multiflorum) in Sichuan, Yunnan, Chongqing, and Guizhou of southwestern China, a comprehensive survey was undertaken from 2015 to 2022. The survey discovered that Epicoccum leaf spot (ELS) was a common and widespread disease, more serious at the late stage of growth (after late May). Symptomatic leaf samples collected from the four different provinces were analyzed, and a total of 202 Epicoccum isolates were obtained. Based on both multilocus phylogeny (ITS, LSU, TUB2, and RPB2) and morphology, 10 Epicoccum species were finally identified, including three novel species (E. endololii sp. nov., E. lolii sp. nov., and E. loliicola sp. nov.), six new host records (E. draconis, E. endophyticum, E. oryzae, E. plurivorum, E. thailandicum, and E. tobaicum), and an unknown species (Epicoccum sp.1). Pathogenicity tests showed that E. endophyticum, E. endololii, and Epicoccum sp.1 were nonpathogenic to Italian ryegrass, which were confirmed as endophytes in this study; the other six species could infect Italian ryegrass and cause leaf lesions to different degrees, of which E. draconis was more aggressive (P ≤ 0.05). Coupled with the isolation rates and geographical distributions of these species, it was found that E. plurivorum was the predominant pathogen in Yunnan while E. oryzae and E. tobaicum were the predominant pathogens in the other three provinces. This work provides an initial understanding of the taxonomy, virulence, and distribution of Epicoccum species associated with ELS in southwestern China and lays a solid foundation for the diagnosis in the field and scientific control of ELS on Italian ryegrass.
Collapse
Affiliation(s)
- Zhiting Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Lingling Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Grassland Research Center of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Jiaqi Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Dongying Chen
- Chongqing Animal Husbandry Technology Extension Station, Chongqing 401121, China
| | - Huawei Cui
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Longhai Xue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Center for Grassland Microbiome; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Grassland Research Center of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
13
|
Zhao L, Sun W, Zhang L, Yin Y, Xie Y, Zhang Y. Heart Rot Disease of Walnut Caused by Nothophoma juglandis sp. nov. and Its Endophytic Biocontrol Agent. PLANT DISEASE 2024; 108:746-756. [PMID: 37787687 DOI: 10.1094/pdis-11-22-2660-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
English walnut (Juglans regia L.) is an economically important hardwood tree species cultivated worldwide. Walnut heart rot disease leading to heartwood decay of trees has been frequently observed in a number of plantations in China. To identify the causal agent, 29 diseased stem samples were collected from walnut plantations in Beijing, and 54 fungal isolates were obtained. Koch's postulates were developed, and the results showed that Nothophoma juglandis, a species new to science, was the causal agent of walnut heart rot disease. Granulobasidium vellereum, a notable biocontrol agent, was coisolated with N. juglandis. An antagonistic assay on dual culture and walnut stems (both in the field and detached branches) proved that G. vellereum acted as a potential biocontrol agent against N. juglandis, as it could significantly inhibit the expansion of N. juglandis. The optimal temperature for mycelial growth and pathogenicity of N. juglandis was 26.6 and 27.0°C, respectively, which frequently occur in the summer of the walnut-growing regions in China.
Collapse
Affiliation(s)
- Lili Zhao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Wei Sun
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Lin Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yueqi Yin
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yuqing Xie
- School of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Ying Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
14
|
Luo X, Hu Y, Xia J, Zhang K, Ma L, Xu Z, Ma J. Morphological and Phylogenetic Analyses Reveal Three New Species of Didymella ( Didymellaceae, Pleosporales) from Jiangxi, China. J Fungi (Basel) 2024; 10:75. [PMID: 38248984 PMCID: PMC10821193 DOI: 10.3390/jof10010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Didymella contains numerous plant pathogenic and saprobic species associated with a wide range of hosts. Over the course of our mycological surveys of plant pathogens from terrestrial plants in Jiangxi Province, China, eight strains isolated from diseased leaves of four host genera represented three new species of Didymella, D. bischofiae sp. nov., D. clerodendri sp. nov., and D. pittospori sp. nov. Phylogenetic analyses of combined ITS, LSU, RPB2, and TUB2 sequence data, using maximum-likelihood (ML) and Bayesian inference (BI), revealed their taxonomic placement within Didymella. Both morphological examinations and molecular phylogenetic analyses supported D. bischofiae, D. clerodendri, and D. pittospori as three new taxa within Didymella. Illustrations and descriptions of these three taxa were provided, along with comparisons with closely related taxa in the genus.
Collapse
Affiliation(s)
- Xingxing Luo
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (Y.H.); (Z.X.)
| | - Yafen Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (Y.H.); (Z.X.)
| | - Jiwen Xia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Kai Zhang
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Liguo Ma
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Zhaohuan Xu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (Y.H.); (Z.X.)
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (Y.H.); (Z.X.)
| |
Collapse
|
15
|
Lee GB, Kim KD, Cho WD, Kim WG. Didymella gigantis sp. nov. Causing Leaf Spot in Korean Angelica. MYCOBIOLOGY 2023; 51:393-400. [PMID: 38179122 PMCID: PMC10763909 DOI: 10.1080/12298093.2023.2289259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
During a disease survey in October 2019, leaf spot symptoms with a yellow halo were observed on Korean angelica (Anglica gigas) plants grown in fields in Pyeongchang, Gangwon Province, Korea. Incidence of diseased leaves of the plants in the investigated fields ranged from 10% to 60%. Morphological and cultural characteristics of two single-spore isolates from the leaf lesions indicated that they belonged to the genus Didymella. Molecular phylogenetic analyses using combined sequences of LSU, ITS, TUB2, and RPB2 regions showed distinct clustering of the isolates from other Didymella species. In addition, the morphological and cultural characteristics of the isolates were somewhat different from those of closely related Didymella spp. Therefore, the novelty of the isolates was proved based on the investigations. Pathogenicity of the novel Didymella species isolates was confirmed on leaves of Korean angelica plants via artificial inoculation. This study reveals that Didymella gigantis sp. nov. causes leaf spot in Korean angelica.
Collapse
Affiliation(s)
- Gyo-Bin Lee
- Global Agro-Consulting Corporation, Suwon, Korea
- Laboratory of Plant Disease and Biocontrol, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Ki Deok Kim
- Laboratory of Plant Disease and Biocontrol, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Weon-Dae Cho
- Global Agro-Consulting Corporation, Suwon, Korea
| | - Wan-Gyu Kim
- Global Agro-Consulting Corporation, Suwon, Korea
| |
Collapse
|
16
|
O'Connell LM, Mann AE, Osagie E, Akhigbe P, Blouin T, Soule A, Obuekwe O, Omoigberale A, Burne RA, Coker MO, Richards VP. Supragingival mycobiome of HIV-exposed-but-uninfected children reflects a stronger correlation with caries-free-associated taxa compared to HIV-infected or uninfected children. Microbiol Spectr 2023; 11:e0149123. [PMID: 37874172 PMCID: PMC10715047 DOI: 10.1128/spectrum.01491-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Globally, caries is among the most frequent chronic childhood disease, and the fungal component of the microbial community responsible is poorly studied despite evidence that fungi contribute to increased acid production exacerbating enamel demineralization. HIV infection is another global health crisis. Perinatal HIV exposure with infection are caries risk factors; however, the caries experience in the context of perinatal HIV exposure without infection is less clear. Using high-throughput amplicon sequencing, we find taxonomic differences that become pronounced during late-stage caries. Notably, we show a stronger correlation with health-associated taxa for HIV-exposed-but-uninfected children when compared to unexposed and uninfected children. This aligns with a lower incidence of caries in primary teeth at age 6 or less for exposed yet uninfected children. Ultimately, these findings could contribute to improved risk assessment, intervention, and prevention strategies such as biofilm disruption and the informed design of pro-, pre-, and synbiotic oral therapies.
Collapse
Affiliation(s)
- Lauren M. O'Connell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Allison E. Mann
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Esosa Osagie
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Paul Akhigbe
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Thomas Blouin
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Ashlyn Soule
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Ozoemene Obuekwe
- Department of Oral and Maxillofacial Surgery, University of Benin Teaching Hospital, Benin, Edo State, Nigeria
| | - Augustine Omoigberale
- Department of Child Health, University of Benin Teaching Hospital, Benin, Edo State, Nigeria
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Modupe O. Coker
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Department of Oral Biology, School of Dental Medicine, Rutgers University, Newark, New Jersey, USA
| | - Vincent P. Richards
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
17
|
Testen AL, Shaw RS, Rotondo F, Moodispaw MR, Miller SA. A Quantitative PCR Method to Detect the Tomato Corky Root Rot Pathogens, Pseudopyrenochaeta lycopersici and P. terrestris. PLANT DISEASE 2023; 107:2673-2678. [PMID: 36774576 DOI: 10.1094/pdis-08-22-2009-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Corky root rot is an important disease in tomato production systems and is caused by Pseudopyrenochaeta terrestris and P. lycopersici (formerly Pyrenochaeta lycopersici Types 1 and 2, respectively). The corky root rot pathogens are slow growing and difficult to isolate and quantify in soil and plant tissue. A multiplex hydrolysis probe-based qPCR assay was designed to allow for simultaneous detection and quantification of P. lycopersici and P. terrestris with a competitive internal control to indicate if qPCR inhibitors are present. Single species and multiplex assays for Pseudopyrenochaeta spp. detected DNA levels above 0.013 pg of DNA per reaction. These highly specific assays had no nontarget amplification of other fungal and oomycete pathogens or rhizosphere-associated fungi of tomatoes that were tested. This assay can be used to quantify Pseudopyrenochaeta populations in roots and soils in tomato production systems to better determine the impacts of disease management strategies on Pseudopyrenochaeta spp. and provides a tool to study the biology of Pseudopyrenochaeta spp.
Collapse
Affiliation(s)
- Anna L Testen
- USDA-ARS Application Technology Research Unit, Wooster, OH
| | - R Scott Shaw
- USDA-ARS Application Technology Research Unit, Wooster, OH
| | - Francesca Rotondo
- The Ohio State University Department of Plant Pathology, Wooster, OH
| | | | - Sally A Miller
- The Ohio State University Department of Plant Pathology, Wooster, OH
| |
Collapse
|
18
|
Řehulka J, Kubátová A, Hubka V. A visceral mycosis in farmed rainbow trout ( Oncorhynchus mykiss) caused by Neopyrenochaeta submersa. Med Mycol Case Rep 2023; 41:4-7. [PMID: 37274730 PMCID: PMC10232464 DOI: 10.1016/j.mmcr.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
A mycotic infection manifesting as abdominal distension with free serous fluid accumulation in the coelomic cavity is documented in farmed rainbow trout. Histological examination using PAS and silver staining revealed the presence of numerous fungal hyphae in the spleen and gastrointestinal wall. The isolated fungus was sterile and identified by using phylogenetic analysis based on four loci as Neopyrenochaeta submersa. This is the first time this fungus has been reported as pathogen.
Collapse
Affiliation(s)
- Jiří Řehulka
- Department of Zoology, Silesian Museum, 746 01, Opava, Czech Republic
| | - Alena Kubátová
- Department of Botany, Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic
| | - Vit Hubka
- Department of Botany, Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, v.v.i., 142 20, Prague 4, Czech Republic
| |
Collapse
|
19
|
Chen T, Wang S, Jiang X, Huang Y, Mo M, Yu Z. New Species of Didymellaceae within Aquatic Plants from Southwestern China. J Fungi (Basel) 2023; 9:761. [PMID: 37504749 PMCID: PMC10381294 DOI: 10.3390/jof9070761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Members of Didymellaceae have a wide geographical distribution throughout different ecosystems, and most species are associated with fruit, leaf, stem and root diseases of land plants. However, species that occur in aquatic plants are not clearly known. During a survey of the diversity of endophytes in aquatic plants in Yunnan, Sichuan, and Guizhou provinces, we obtained 51 isolates belonging to Didymellaceae based on internal transcribed spacer region (ITS) sequences. Further, the phylogenetic positions of these isolates were determined by combined sequences composed of ITS, partial large subunit nrRNA gene (28S nrDNA; LSU), RNA polymerase II second largest subunit (rpb2) and partial beta-tubulin gene (tub2). Combining morphological characteristics and multi-locus phylogenetic analyses, two new varieties belong to Boeremia and 12 new species distributed into seven genera were recognized from 51 isolates, i.e., Cumuliphoma, Didymella, Dimorphoma, Ectophoma, Leptosphaerulina, Remotididymella, and Stagonosporopsis. Among these species, only one species of Stagonosporopsis and two species of Leptosphaerulina show teleomorphic stages on OA, but have no anamorphic state. Each new species is described in detail, and the differences between new species and their phylogenetically related species are discussed here. The high frequency of new species indicates that aquatic plants may be a special ecological niche which highly promotes species differentiation. At the same time, the frequent occurrence of new species may indicate the need for extensive investigation of fungal resources in those aquatic environments where fungal diversity may be underestimated.
Collapse
Affiliation(s)
- Tong Chen
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Siyuan Wang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xinwei Jiang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ying Huang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Minghe Mo
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
| | - Zefen Yu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
| |
Collapse
|
20
|
Crous PW, Costa MM, Kandemir H, Vermaas M, Vu D, Zhao L, Arumugam E, Flakus A, Jurjević Ž, Kaliyaperumal M, Mahadevakumar S, Murugadoss R, Shivas RG, Tan YP, Wingfield MJ, Abell SE, Marney TS, Danteswari C, Darmostuk V, Denchev CM, Denchev TT, Etayo J, Gené J, Gunaseelan S, Hubka V, Illescas T, Jansen GM, Kezo K, Kumar S, Larsson E, Mufeeda KT, Piątek M, Rodriguez-Flakus P, Sarma PVSRN, Stryjak-Bogacka M, Torres-Garcia D, Vauras J, Acal DA, Akulov A, Alhudaib K, Asif M, Balashov S, Baral HO, Baturo-Cieśniewska A, Begerow D, Beja-Pereira A, Bianchinotti MV, Bilański P, Chandranayaka S, Chellappan N, Cowan DA, Custódio FA, Czachura P, Delgado G, De Silva NI, Dijksterhuis J, Dueñas M, Eisvand P, Fachada V, Fournier J, Fritsche Y, Fuljer F, Ganga KGG, Guerra MP, Hansen K, Hywel-Jones N, Ismail AM, Jacobs CR, Jankowiak R, Karich A, Kemler M, Kisło K, Klofac W, Krisai-Greilhuber I, Latha KPD, Lebeuf R, Lopes ME, Lumyong S, Maciá-Vicente JG, Maggs-Kölling G, Magistà D, Manimohan P, Martín MP, Mazur E, Mehrabi-Koushki M, Miller AN, Mombert A, Ossowska EA, Patejuk K, Pereira OL, Piskorski S, Plaza M, Podile AR, Polhorský A, Pusz W, Raza M, Ruszkiewicz-Michalska M, Saba M, Sánchez RM, Singh R, et alCrous PW, Costa MM, Kandemir H, Vermaas M, Vu D, Zhao L, Arumugam E, Flakus A, Jurjević Ž, Kaliyaperumal M, Mahadevakumar S, Murugadoss R, Shivas RG, Tan YP, Wingfield MJ, Abell SE, Marney TS, Danteswari C, Darmostuk V, Denchev CM, Denchev TT, Etayo J, Gené J, Gunaseelan S, Hubka V, Illescas T, Jansen GM, Kezo K, Kumar S, Larsson E, Mufeeda KT, Piątek M, Rodriguez-Flakus P, Sarma PVSRN, Stryjak-Bogacka M, Torres-Garcia D, Vauras J, Acal DA, Akulov A, Alhudaib K, Asif M, Balashov S, Baral HO, Baturo-Cieśniewska A, Begerow D, Beja-Pereira A, Bianchinotti MV, Bilański P, Chandranayaka S, Chellappan N, Cowan DA, Custódio FA, Czachura P, Delgado G, De Silva NI, Dijksterhuis J, Dueñas M, Eisvand P, Fachada V, Fournier J, Fritsche Y, Fuljer F, Ganga KGG, Guerra MP, Hansen K, Hywel-Jones N, Ismail AM, Jacobs CR, Jankowiak R, Karich A, Kemler M, Kisło K, Klofac W, Krisai-Greilhuber I, Latha KPD, Lebeuf R, Lopes ME, Lumyong S, Maciá-Vicente JG, Maggs-Kölling G, Magistà D, Manimohan P, Martín MP, Mazur E, Mehrabi-Koushki M, Miller AN, Mombert A, Ossowska EA, Patejuk K, Pereira OL, Piskorski S, Plaza M, Podile AR, Polhorský A, Pusz W, Raza M, Ruszkiewicz-Michalska M, Saba M, Sánchez RM, Singh R, Śliwa L, Smith ME, Stefenon VM, Strasiftáková D, Suwannarach N, Szczepańska K, Telleria MT, Tennakoon DS, Thines M, Thorn RG, Urbaniak J, van der Vegte M, Vasan V, Vila-Viçosa C, Voglmayr H, Wrzosek M, Zappelini J, Groenewald JZ. Fungal Planet description sheets: 1550-1613. PERSOONIA 2023; 51:280-417. [PMID: 38665977 PMCID: PMC11041897 DOI: 10.3767/persoonia.2023.51.08] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 04/28/2024]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Argentina, Neocamarosporium halophilum in leaf spots of Atriplex undulata. Australia, Aschersonia merianiae on scale insect (Coccoidea), Curvularia huamulaniae isolated from air, Hevansia mainiae on dead spider, Ophiocordyceps poecilometigena on Poecilometis sp. Bolivia, Lecanora menthoides on sandstone, in open semi-desert montane areas, Sticta monlueckiorum corticolous in a forest, Trichonectria epimegalosporae on apothecia of corticolous Megalospora sulphurata var. sulphurata, Trichonectria puncteliae on the thallus of Punctelia borreri. Brazil, Catenomargarita pseudocercosporicola (incl. Catenomargarita gen. nov.) hyperparasitic on Pseudocercospora fijiensis on leaves of Musa acuminata, Tulasnella restingae on protocorms and roots of Epidendrum fulgens. Bulgaria, Anthracoidea umbrosae on Carex spp. Croatia, Hymenoscyphus radicis from surface-sterilised, asymptomatic roots of Microthlaspi erraticum, Orbilia multiserpentina on wood of decorticated branches of Quercus pubescens. France, Calosporella punctatispora on dead corticated twigs of Aceropalus. French West Indies (Martinique), Eutypella lechatii on dead corticated palm stem. Germany, Arrhenia alcalinophila on loamy soil. Iceland, Cistella blauvikensis on dead grass (Poaceae). India, Fulvifomes maritimus on living Peltophorum pterocarpum, Fulvifomes natarajanii on dead wood of Prosopis juliflora, Fulvifomes subazonatus on trunk of Azadirachta indica, Macrolepiota bharadwajii on moist soil near the forest, Narcissea delicata on decaying elephant dung, Paramyrothecium indicum on living leaves of Hibiscus hispidissimus, Trichoglossum syamviswanathii on moist soil near the base of a bamboo plantation. Iran, Vacuiphoma astragalicola from stem canker of Astragalus sarcocolla. Malaysia, Neoeriomycopsis fissistigmae (incl. Neoeriomycopsidaceae fam. nov.) on leaf spots on flower Fissistigma sp. Namibia, Exophiala lichenicola lichenicolous on Acarospora cf. luederitzensis. Netherlands, Entoloma occultatum on soil, Extremus caricis on dead leaves of Carex sp., Inocybe pseudomytiliodora on loamy soil. Norway, Inocybe guldeniae on calcareous soil, Inocybe rupestroides on gravelly soil. Pakistan, Hymenagaricus brunneodiscus on soil. Philippines, Ophiocordyceps philippinensis parasitic on Asilus sp. Poland, Hawksworthiomyces ciconiae isolated from Ciconia ciconia nest, Plectosphaerella vigrensis from leaf spots on Impatiens noli-tangere, Xenoramularia epitaxicola from sooty mould community on Taxus baccata. Portugal, Inocybe dagamae on clay soil. Saudi Arabia, Diaporthe jazanensis on branches of Coffea arabica. South Africa, Alternaria moraeae on dead leaves of Moraea sp., Bonitomyces buffels-kloofinus (incl. Bonitomyces gen. nov.) on dead twigs of unknown tree, Constrictochalara koukolii on living leaves of Itea rhamnoides colonised by a Meliola sp., Cylindromonium lichenophilum on Parmelina tiliacea, Gamszarella buffelskloofina (incl. Gamszarella gen. nov.) on dead insect, Isthmosporiella africana (incl. Isthmosporiella gen. nov.) on dead twigs of unknown tree, Nothoeucasphaeria buffelskloofina (incl. Nothoeucasphaeria gen. nov.), on dead twigs of unknown tree, Nothomicrothyrium beaucarneae (incl. Nothomicrothyrium gen. nov.) on dead leaves of Beaucarnea stricta, Paramycosphaerella proteae on living leaves of Protea caffra, Querciphoma foliicola on leaf litter, Rachicladosporium conostomii on dead twigs of Conostomium natalense var. glabrum, Rhamphoriopsis synnematosa on dead twig of unknown tree, Waltergamsia mpumalanga on dead leaves of unknown tree. Spain, Amanita fulvogrisea on limestone soil, in mixed forest, Amanita herculis in open Quercus forest, Vuilleminia beltraniae on Cistus symphytifolius. Sweden, Pachyella pulchella on decaying wood on sand-silt riverbank. Thailand, Deniquelata cassiae on dead stem of Cassia fistula, Stomiopeltis thailandica on dead twigs of Magnolia champaca. Ukraine, Circinaria podoliana on natural limestone outcrops, Neonematogonum carpinicola (incl. Neonematogonum gen. nov.) on dead branches of Carpinus betulus. USA, Exophiala wilsonii water from cooling tower, Hygrophorus aesculeticola on soil in mixed forest, and Neocelosporium aereum from air in a house attic. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Costa MM, Kandemir H, et al. 2023. Fungal Planet description sheets: 1550-1613. Persoonia 51: 280-417. doi: 10.3767/persoonia.2023.51.08.
Collapse
Affiliation(s)
- P W Crous
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - M M Costa
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - H Kandemir
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M Vermaas
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - D Vu
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L Zhao
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - E Arumugam
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - A Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - Ž Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - M Kaliyaperumal
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - S Mahadevakumar
- Forest Pathology Department, Division of Forest Protection, KSCSTE-Kerala Forest Research Institute, Peechi - 680653, Thrissur, Kerala, India
- Botanical Survey of India, Andaman and Nicobar Regional Center, Haddo - 744102, Port Blair, South Andaman, India
| | - R Murugadoss
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - R G Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Y P Tan
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - M J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - S E Abell
- Australian Tropical Herbarium, James Cook University, Smithfield 4878, Queensland, Australia
| | - T S Marney
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - C Danteswari
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - V Darmostuk
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - C M Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - T T Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - J Etayo
- Navarro Villoslada 16, 3° cha., E-31003 Pamplona, Navarra, Spain
| | - J Gené
- Universitat Rovira i Virgili, Facultat de Medicina i Ciéncies de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - S Gunaseelan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - V Hubka
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - T Illescas
- Buenos Aires 3 Bajo 1, 14006 Córdoba, Spain
| | - G M Jansen
- Ben Sikkenlaan 9, 6703JC Wageningen, The Netherlands
| | - K Kezo
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - S Kumar
- Botanical Survey of India, Andaman and Nicobar Regional Center, Haddo - 744102, Port Blair, South Andaman, India
| | - E Larsson
- Biological and Environmental Sciences, University of Gothenburg, and Gothenburg Global Biodiversity Centre, Box 463, SE40530 Göteborg, Sweden
| | - K T Mufeeda
- Botanical Survey of India, Andaman and Nicobar Regional Center, Haddo - 744102, Port Blair, South Andaman, India
| | - M Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - P Rodriguez-Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - P V S R N Sarma
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - M Stryjak-Bogacka
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - D Torres-Garcia
- Universitat Rovira i Virgili, Facultat de Medicina i Ciéncies de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - J Vauras
- Biological Collections of Åbo Akademi University, Biodiversity Unit, Herbarium, FI-20014 University of Turku, Finland
| | - D A Acal
- Department of Invertebrate Zoology & Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - A Akulov
- Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022 Kharkiv, Ukraine
| | - K Alhudaib
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - M Asif
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - S Balashov
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - H-O Baral
- Blaihofstr. 42, Tübingen, D-72074, Germany
| | - A Baturo-Cieśniewska
- Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - D Begerow
- Universität Hamburg, Institute of Plant Science and Microbiology, Organismic Botany and Mycology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - A Beja-Pereira
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- DGAOT, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| | - M V Bianchinotti
- CERZOS-UNS-CONICET, Camino La Carrindanga Km 7, CP: 8000, Bahía Blanca, Argentina and Depto. de Biología, Bioquímica y Farmacia, UNS, San Juan 670, CP: 8000, Bahía Blanca, Argentina
| | - P Bilański
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - S Chandranayaka
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru - 570006, Karnataka, India
| | - N Chellappan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - F A Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - P Czachura
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - G Delgado
- Eurofins Built Environment, 6110 W. 34th St, Houston, TX 77092, USA
| | - N I De Silva
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - J Dijksterhuis
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M Dueñas
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - P Eisvand
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
| | - V Fachada
- Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, 40700, Jyväskylä, Finland
- MHNC-UP - Museu de História Natural e da Ciência da Universidade do Porto - Herbário PO, Universidade do Porto. Praça Gomes Teixeira, 4099-002, Porto, Portugal
| | | | - Y Fritsche
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - F Fuljer
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - K G G Ganga
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - M P Guerra
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - K Hansen
- Swedish Museum of Natural History, Department of Botany, P.O. Box 50007, SE-104 05 Stockholm, Sweden
| | - N Hywel-Jones
- Zhejiang BioAsia Institute of Life Sciences, Pinghu 31 4200, Zhejiang, People's Republic of China
| | - A M Ismail
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - C R Jacobs
- Nin.Da.Waab.Jig-Walpole Island Heritage Centre, Bkejwanong (Walpole Island First Nation), 2185 River Road North, Walpole Island, Ontario, N8A 4K9, Canada
| | - R Jankowiak
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - A Karich
- Unit of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - M Kemler
- Universität Hamburg, Institute of Plant Science and Microbiology, Organismic Botany and Mycology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - K Kisło
- University of Warsaw, Botanic Garden, Aleje Ujazdowskie 4, 00-478 Warsaw, Poland
| | - W Klofac
- Mayerhöfen 28, 3074 Michelbach, Austria
| | - I Krisai-Greilhuber
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - K P D Latha
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - R Lebeuf
- 775, rang du Rapide Nord, Saint-Casimir, Quebec, G0A 3L0, Canada
| | - M E Lopes
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - S Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - J G Maciá-Vicente
- Plant Ecology and Nature Conservation, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Department of Microbial Ecology, Netherlands Institute for Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - G Maggs-Kölling
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
- Unit for Environmental Sciences and Management, North-West University, P. Bag X1290, Potchefstroom, 2520, South Africa
| | - D Magistà
- Department of Soil, Plant and Food Sciences, University of Bari A. Moro, 70126, Bari, Italy
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126, Bari, Italy
| | - P Manimohan
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - M P Martín
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - E Mazur
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - M Mehrabi-Koushki
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
- Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - A N Miller
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
| | - A Mombert
- 3 rue de la craie, 25640 Corcelle-Mieslot, France
| | - E A Ossowska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, PL-80-308 Gdańsk, Poland
| | - K Patejuk
- Department of Plant Protection, Wtoctaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wtoctaw, Poland
| | - O L Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - S Piskorski
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - M Plaza
- La Angostura, 20, 11370 Los Barrios, Cádiz, Spain
| | - A R Podile
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - W Pusz
- Department of Plant Protection, Wtoctaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wtoctaw, Poland
| | - M Raza
- Key Laboratory of Integrated Pest Management in Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 83009, China
| | - M Ruszkiewicz-Michalska
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - M Saba
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - R M Sánchez
- CERZOS-UNS-CONICET, Camino La Carrindanga Km 7, CP: 8000, Bahía Blanca, Argentina and Depto. de Biología, Bioquímica y Farmacia, UNS, San Juan 670, CP: 8000, Bahía Blanca, Argentina
| | - R Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi - 221005, Uttar Pradesh, India
| | - L Śliwa
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - M E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, USA
| | - V M Stefenon
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - D Strasiftáková
- Slovak National Museum-Natural History Museum, Vajanského náb. 2, P.O. Box 13, 81006, Bratislava, Slovakia
| | - N Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - K Szczepańska
- Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, PL-50-363 Wroclaw, Poland
| | - M T Telleria
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - D S Tennakoon
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - M Thines
- Evolutionary Analyses and Biological Archives, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main
- Goethe University, Department of Biological Sciences, Institute of Ecology, Evolution, and Diversity, Max-von-Laue-Str. 9, 60483 Frankfurt am Main, Germany
| | - R G Thorn
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - J Urbaniak
- Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, PL-50-363 Wroclaw, Poland
| | | | - V Vasan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - C Vila-Viçosa
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- MHNC-UP - Museu de História Natural e da Ciência da Universidade do Porto - Herbário PO, Universidade do Porto. Praça Gomes Teixeira, 4099-002, Porto, Portugal
| | - H Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - M Wrzosek
- University of Warsaw, Botanic Garden, Aleje Ujazdowskie 4, 00-478 Warsaw, Poland
| | - J Zappelini
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - J Z Groenewald
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| |
Collapse
|
21
|
Hong SM, Das K, Lim SK, Suh SJ, Lee SY, Jung HY. Neocucurbitaria chlamydospora sp. nov.: A Novel Species of the Family Cucurbitariaceae Isolated from a Stink Bug in Korea. MYCOBIOLOGY 2023; 51:115-121. [PMID: 37359958 PMCID: PMC10288907 DOI: 10.1080/12298093.2023.2203973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 06/28/2023]
Abstract
The fungal strain KNUF-22-18B, belonging to Cucurbitariaceae, was discovered from a stink bug (Hygia lativentris) during the investigation of insect microbiota in Chungnam Province, South Korea. The colonies of the strain KNUF-22-18B were wooly floccose, white to brown in the center on oatmeal agar (OA), and the colonies were buff, margin even, and colorless, reverse white to yellowish toward the center on malt extract agar (MEA). The strain KNUF-22-18B produced pycnidia after 60 days of culturing on potato dextrose agar, but pycnidia were not observed on OA. On the contrary, N. keratinophila CBS 121759T abundantly formed superficial pycnidia on OA and MEA after a few days. The strain KNUF-22-18B produced chlamydospores subglobose to globose, mainly in the chain, with a small diameter of 4.4-8.8 μm. At the same time, N. keratinophila CBS 121759T displayed a globose terminal with a diameter of 8-10 μm. A multilocus phylogeny using the internal transcribed spacer regions, 28S rDNA large subunit, β-tubulin, and RNA polymerase II large subunit genes further validated the uniqueness of the strain. The detailed description and illustration of the proposed species as Neocucurbitaria chlamydospora sp. nov. from Korea was strongly supported by molecular phylogeny.
Collapse
Affiliation(s)
- Soo-Min Hong
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Seong-Keun Lim
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Sang Jae Suh
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Seung-Yeol Lee
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Korea
| | - Hee-Young Jung
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
22
|
Zhang J, Sha H, Chen W, Mao B. Characterization and Control of Dendrobium officinale Bud Blight Disease. Pathogens 2023; 12:pathogens12040621. [PMID: 37111507 PMCID: PMC10142839 DOI: 10.3390/pathogens12040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Dendrobium officinale is an important traditional Chinese medicine (TCM). A disease causing bud blight in D. officinale appeared in 2021 in Yueqing city, Zhejiang Province, China. In this paper, 127 isolates were obtained from 61 plants. The isolates were grouped into 13 groups based on collected areas and morphological observations. Four loci (ITS, LSU, tub2 and rpb2) of 13 representative isolates were sequenced and the isolates were identified by constructing phylogenetic trees with the multi-locus sequence analysis (MLSA) method. We found the disease to be associated with three strains: Ectophoma multirostrata, Alternaria arborescens and Stagonosporopsis pogostemonis, with isolates frequencies of 71.6%, 21.3% and 7.1%, respectively. All three strains are pathogenic to D. officinale. A. arborescens and S. pogostemonis isolated from D. officinale were reported for the first time. Iprodione (50%), 33.5% oxine-copper and Meitian (containing 75 g/L pydiflumetofen and 125 g/L difenoconazole) were chosen to control the dominant pathogen E. multirostrata, with an EC50 value of 2.10, 1.78 and 0.09 mg/L, respectively. All three fungicides exhibited an effective inhibition of activities to the growth of the dominant pathogen E. multirostrata on potato dextrose agar (PDA) plates, with Meitian showing the strongest inhibitory effect. We further found that Meitian can effectively control D. officinale bud blight disease in pot trial.
Collapse
Affiliation(s)
- Jinzhao Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Hangzhou 310058, China
| | - Haodong Sha
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Hangzhou 310058, China
| | - Weiliang Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Hangzhou 310058, China
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
23
|
Yang AL, Chen L, Cheng L, Li JP, Zeng ZY, Zhang HB. Two Novel Species of Mesophoma gen. nov. from China. Curr Microbiol 2023; 80:129. [PMID: 36884095 DOI: 10.1007/s00284-023-03238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
During an investigation of the fungal pathogens associated with the invasive weed Ageratina adenophora from China, some interesting isolates were obtained from healthy leaf, leaf spot, and roots of this weed. Among them, a novel genus Mesophoma, containing two novel species M. speciosa and M. ageratinae, was found. Phylogenetic analysis of the combined, the internal transcribed spacer (ITS), large nuclear subunit ribosomal DNA (LSU), the RNA polymerase II second largest subunit (rpb2), and the partial β-tubulin (tub2) sequences, showed that M. speciosa and M. ageratinae formed a distinct clade far from all genera previously described in the family Didymellaceae. Combined distinctive morphological characters, including smaller and aseptate conidia when comparing with nearby genera Stagonosporopsis, Boeremia, and Heterphoma, allowed us to describe them as novel species belonging to a novel genus Mesophoma. The full descriptions, illustrations, and a phylogenetic tree showing the position of both M. speciosa and M. ageratinae are provided in this paper. Moreover, the potential for two strains belonging to these two species to be developed into a biocontrol for the spread of the invasive weed Ag. adenophora is also discussed.
Collapse
Affiliation(s)
- Ai-Ling Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China.,School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Lin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Lu Cheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Jin-Peng Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Zhao-Ying Zeng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China.,School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Han-Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China. .,School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China.
| |
Collapse
|
24
|
Hill R, Levicky Q, Pitsillides F, Junnonen A, Arrigoni E, Bonnin JM, Kermode A, Mian S, Leitch IJ, Buddie AG, Buggs RJA, Gaya E. Tapping Culture Collections for Fungal Endophytes: First Genome Assemblies for Three Genera and Five Species in the Ascomycota. Genome Biol Evol 2023; 15:evad038. [PMID: 36881851 PMCID: PMC10027605 DOI: 10.1093/gbe/evad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
The Ascomycota form the largest phylum in the fungal kingdom and show a wide diversity of lifestyles, some involving associations with plants. Genomic data are available for many ascomycetes that are pathogenic to plants, but endophytes, which are asymptomatic inhabitants of plants, are relatively understudied. Here, using short- and long-read technologies, we have sequenced and assembled genomes for 15 endophytic ascomycete strains from CABI's culture collections. We used phylogenetic analysis to refine the classification of taxa, which revealed that 7 of our 15 genome assemblies are the first for the genus and/or species. We also demonstrated that cytometric genome size estimates can act as a valuable metric for assessing assembly "completeness", which can easily be overestimated when using BUSCOs alone and has broader implications for genome assembly initiatives. In producing these new genome resources, we emphasise the value of mining existing culture collections to produce data that can help to address major research questions relating to plant-fungal interactions.
Collapse
Affiliation(s)
- Rowena Hill
- Royal Botanic Gardens Kew, Richmond, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Quentin Levicky
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | | | | | | | | | - Sahr Mian
- Royal Botanic Gardens Kew, Richmond, UK
| | | | | | - Richard J A Buggs
- Royal Botanic Gardens Kew, Richmond, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | |
Collapse
|
25
|
Plant-Associated Novel Didymellaceous Taxa in the South China Botanical Garden (Guangzhou, China). J Fungi (Basel) 2023; 9:jof9020182. [PMID: 36836297 PMCID: PMC9965033 DOI: 10.3390/jof9020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The South China Botanical Garden (SCBG), one of the largest and oldest botanical gardens in China, conserves important plant germplasms of endangered species. Therefore, ensuring tree health and studying the associated mycobiome of the phyllosphere is essential to maintaining its visual aesthetics. During a survey of plant-associated microfungal species in SCBG, we collected several coelomycetous taxa. Phylogenetic relationships were evaluated based on the analyses of ITS, LSU, RPB2, and β-tubulin loci. The morphological features of the new collections were compared with those of existing species, emphasizing close phylogenetic affinities. Based on the morphological comparisons and multi-locus phylogeny, we introduce three new species. These are Ectophoma phoenicis sp. nov., Remotididymella fici-microcarpae sp. nov., and Stagonosporopsis pedicularis-striatae sp. nov. In addition, we describe a new host record for Allophoma tropica in the Didymellaceae. Detailed descriptions and illustrations are provided along with notes comparing allied species.
Collapse
|
26
|
Ma M, Taylor PWJ, Chen D, Vaghefi N, He JZ. Major Soilborne Pathogens of Field Processing Tomatoes and Management Strategies. Microorganisms 2023; 11:263. [PMID: 36838227 PMCID: PMC9958975 DOI: 10.3390/microorganisms11020263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Globally, tomato is the second most cultivated vegetable crop next to potato, preferentially grown in temperate climates. Processing tomatoes are generally produced in field conditions, in which soilborne pathogens have serious impacts on tomato yield and quality by causing diseases of the tomato root system. Major processing tomato-producing countries have documented soilborne diseases caused by a variety of pathogens including bacteria, fungi, nematodes, and oomycetes, which are of economic importance and may threaten food security. Recent field surveys in the Australian processing tomato industry showed that plant growth and yield were significantly affected by soilborne pathogens, especially Fusarium oxysporum and Pythium species. Globally, different management methods have been used to control diseases such as the use of resistant tomato cultivars, the application of fungicides, and biological control. Among these methods, biocontrol has received increasing attention due to its high efficiency, target-specificity, sustainability and public acceptance. The application of biocontrol is a mix of different strategies, such as applying antagonistic microorganisms to the field, and using the beneficial metabolites synthesized by these microorganisms. This review provides a broad review of the major soilborne fungal/oomycete pathogens of the field processing tomato industry affecting major global producers, the traditional and biological management practices for the control of the pathogens, and the various strategies of the biological control for tomato soilborne diseases. The advantages and disadvantages of the management strategies are discussed, and highlighted is the importance of biological control in managing the diseases in field processing tomatoes under the pressure of global climate change.
Collapse
Affiliation(s)
| | | | | | | | - Ji-Zheng He
- School of Agriculture and Food, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
27
|
Wijesinghe SN, Calabon MS, Xiao Y, Jones EG, Hyde KD. A novel coniothyrium-like genus in <i>Coniothyriaceae</i> (<i>Pleosporales</i>) from salt marsh ecosystems in Thailand. STUDIES IN FUNGI 2023. [DOI: 10.48130/sif-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
28
|
Artand S, Mehrabi-koushki M, Tabein S, Hyde KD, Jayawardena RS. Revision of the Microsphaeropsis Complex with Addition of Four New Paramicrosphaeropsis L.W.Hou, L.Cai & Crous Species from Zagrosian Forest Trees in Iran. CRYPTOGAMIE MYCOL 2022. [DOI: 10.5252/cryptogamie-mycologie2022v43a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Saeid Artand
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province (Iran)
| | - Mehdi Mehrabi-koushki
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province (Iran) and Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province (Iran)
| | - Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz,Ahvaz, Khuzestan Province (Iran)
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, 57100 (Thailand)
| | | |
Collapse
|
29
|
Xu X, Li J, Yang X, Zhang L, Wang S, Shen G, Hui B, Xiao J, Zhou C, Wang X, Zhao J, Xiang W. Epicoccum spp. Causing Maize Leaf Spot in Heilongjiang Province, China. PLANT DISEASE 2022; 106:3050-3060. [PMID: 35612576 DOI: 10.1094/pdis-09-21-1948-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maize leaf spot occurs worldwide and affects maize production. Maize can be infected by several pathogens causing leaf spot, such as Bipolaris zeicola, Bipolaris maydis, Curvularia species, Alternaria species, etc. In the current study, 30 Epicoccum isolates recovered from symptomatic maize leaves were identified based on morphological characteristics, pathogenicity, and multilocus sequence analyses of nuLSU, ITS, tub2, and rpb2. These maize isolates were grouped into five Epicoccum species, including E. nigrum, E. layuense, E. sorghinum, E. latusicollum, and E. pneumoniae. Pathogenicity tests showed that all five Epicoccum species could produce small ellipse- and spindle-shaped spots on maize leaves. The lesion center was grayish yellow to dark gray and surrounded by a chlorotic area. Furthermore, the Epicoccum isolates exhibited high pathogenicity to 20 main maize varieties of Heilongjiang Province but showed different sensitivities to the commonly used fungicides carbendazim and tebuconazole. In addition, these Epicoccum isolates showed different production capacity of pectinase, cellulase, protease, amylase, laccase, and gelatinase, but all showed high lipase activity. This is the first report globally of E. layuense, E. latusicollum, and E. pneumoniae as causal agents of maize leaf spot. E. pneumoniae was first reported as a plant pathogen.
Collapse
Affiliation(s)
- Xi Xu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jingjing Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xilang Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Li Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuo Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Guijin Shen
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Bing Hui
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jialei Xiao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Changjian Zhou
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
30
|
Pyrenochaeta fraxinina as colonizer of ash and sycamore petioles, its morphology, ecology, and phylogenetic connections. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractPyrenochaeta fraxinina was first described in 1913 from the state of New York (USA) on petioles of Fraxinus sp. Since then, the species has not been reported from North America and reports from the other regions of the world are very sparse. The results of this study on P. fraxinina are based on the material collected in various regions of Poland from 2012 to 2019. The material comprised 2700 previous year’s leaf petioles of Fraxinus excelsior and 1970 petioles or leaf residues of eight other deciduous tree species. As a result, the occurrence of pycnidial conidiomata of P. fraxinina was confirmed on F. excelsior (3.4% of petioles), F. mandshurica (1.5%), F. pennsylvanica (3.2%), and Acer pseudoplatanus (2.0%). The morphology of the microstructures was described based on the fresh material and compared with the holotype of P. fraxinina. The optimal temperature for the growth of the fungus in vitro was estimated as 20 °C. The analyses based on ITS-LSU rDNA sequences and a protein coding sequence of TUB2 and RPB2 genes showed that P. fraxinina isolates form a well-supported clade in the phylogenetic trees. The species proved to be closely related to Nematostoma parasiticum (asexual morph Pyrenochaeta parasitica), a species occurring on Abies alba in connection with needle browning disease. Interactions between P. fraxinina and the ash dieback pathogen, Hymenoscyphus fraxineus, were analyzed in vivo on ash petioles and in vitro in dual cultures. Among 93 petioles of F. excelsior, for which P. fraxinina conidiomata were detected, 26 were also colonized by H. fraxineus. Mostly, these two fungi occurred separately, colonizing different sections of a petiole. For all dual cultures, both fungi, P. fraxinina and H. fraxineus, showed growth inhibition toward the counterpartner. The role of P. fraxinina as a saprotrophic competitor toward H. fraxineus in ash petioles is discussed.
Collapse
|
31
|
Su W, Xu R, Bhunjun CS, Tian S, Dai Y, Li Y, Phukhamsakda C. Diversity of Ascomycota in Jilin: Introducing Novel Woody Litter Taxa in Cucurbitariaceae. J Fungi (Basel) 2022; 8:jof8090905. [PMID: 36135630 PMCID: PMC9501381 DOI: 10.3390/jof8090905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Cucurbitariaceae has a high biodiversity worldwide on various hosts and is distributed in tropical and temperate regions. Woody litters collected in Changchun, Jilin Province, China, revealed a distinct collection of fungi in the family Cucurbitariaceae based on morphological and molecular data. Phylogenetic analyses of the concatenated matrix of the internal transcribed spacer (ITS) region, the large subunit (LSU) of ribosomal DNA, the RNA polymerase II subunit (rpb2), the translation elongation factor 1-alpha (tef1-α) and β-tubulin (β-tub) genes indicated that the isolates represent Allocucurbitaria and Parafenestella species based on maximum likelihood (ML), maximum parsimony (MP) and Bayesian analysis (BPP). We report four novel species: Allocucurbitaria mori, Parafenestella changchunensis, P. ulmi and P. ulmicola. The importance of five DNA markers for species-level identification in Cucurbitariaceae was determined by Assemble Species by Automatic Partitioning (ASAP) analyses. The protein-coding gene β-tub is determined to be the best marker for species level identification in Cucurbitariaceae.
Collapse
Affiliation(s)
- Wenxin Su
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Rong Xu
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Shangqing Tian
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yueting Dai
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yu Li
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (C.P.)
| | - Chayanard Phukhamsakda
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (C.P.)
| |
Collapse
|
32
|
Novel Freshwater Ascomycetes from Spain. J Fungi (Basel) 2022; 8:jof8080849. [PMID: 36012837 PMCID: PMC9410038 DOI: 10.3390/jof8080849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Freshwater ascomycetes are a group of fungi of great ecological importance because they are involved in decomposition processes and the recycling of organic matter in aquatic ecosystems. The taxonomy of these fungi is complex, with representatives in several orders of the phylum Ascomycota. In the present study, we collected ninety-two samples of plant debris submerged in freshwater in different locations in Spain. The plant specimens were placed in wet chambers and developed several fungi that were later isolated in pure culture. A main phylogenetic tree using the nucleotide sequences of D1-D2 domains of the 28S nrRNA gene (LSU) was built to show the taxonomic placement of all our fungal strains, and, later, individual phylogenies for the different families were built using single or concatenated nucleotide sequences of the most suitable molecular markers. As a result, we found a new species of Amniculicola that produces a coelomycetous asexual state, a new species of Elongatopedicellata that produces an asexual state, a new species of Neovaginatispora that forms both sexual and asexual states in vitro, and the sexual states of two species of Pyrenochaetopsis, none of which have been reported before for these genera. In addition, we describe a new species of Pilidium characterized by the production of copper-colored globose conidiomata, and of Pseudosigmoidea, which produces well-developed conidiophores.
Collapse
|
33
|
New-Generation Sequencing Technology in Diagnosis of Fungal Plant Pathogens: A Dream Comes True? J Fungi (Basel) 2022; 8:jof8070737. [PMID: 35887492 PMCID: PMC9320658 DOI: 10.3390/jof8070737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
The fast and continued progress of high-throughput sequencing (HTS) and the drastic reduction of its costs have boosted new and unpredictable developments in the field of plant pathology. The cost of whole-genome sequencing, which, until few years ago, was prohibitive for many projects, is now so affordable that a new branch, phylogenomics, is being developed. Fungal taxonomy is being deeply influenced by genome comparison, too. It is now easier to discover new genes as potential targets for an accurate diagnosis of new or emerging pathogens, notably those of quarantine concern. Similarly, with the development of metabarcoding and metagenomics techniques, it is now possible to unravel complex diseases or answer crucial questions, such as "What's in my soil?", to a good approximation, including fungi, bacteria, nematodes, etc. The new technologies allow to redraw the approach for disease control strategies considering the pathogens within their environment and deciphering the complex interactions between microorganisms and the cultivated crops. This kind of analysis usually generates big data that need sophisticated bioinformatic tools (machine learning, artificial intelligence) for their management. Herein, examples of the use of new technologies for research in fungal diversity and diagnosis of some fungal pathogens are reported.
Collapse
|
34
|
Chen Q, Bakhshi M, Balci Y, Broders K, Cheewangkoon R, Chen S, Fan X, Gramaje D, Halleen F, Jung MH, Jiang N, Jung T, Májek T, Marincowitz S, Milenković I, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies C, Suhaizan L, Suzuki H, Tian C, Tomšovský M, Úrbez-Torres J, Wang W, Wingfield B, Wingfield M, Yang Q, Yang X, Zare R, Zhao P, Groenewald J, Cai L, Crous P. Genera of phytopathogenic fungi: GOPHY 4. Stud Mycol 2022; 101:417-564. [PMID: 36059898 PMCID: PMC9365048 DOI: 10.3114/sim.2022.101.06] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
This paper is the fourth contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information about the pathology, distribution, hosts and disease symptoms, as well as DNA barcodes for the taxa covered. Moreover, 12 whole-genome sequences for the type or new species in the treated genera are provided. The fourth paper in the GOPHY series covers 19 genera of phytopathogenic fungi and their relatives, including Ascochyta, Cadophora, Celoporthe, Cercospora, Coleophoma, Cytospora, Dendrostoma, Didymella, Endothia, Heterophaeomoniella, Leptosphaerulina, Melampsora, Nigrospora, Pezicula, Phaeomoniella, Pseudocercospora, Pteridopassalora, Zymoseptoria, and one genus of oomycetes, Phytophthora. This study includes two new genera, 30 new species, five new combinations, and 43 typifications of older names. Taxonomic novelties: New genera: Heterophaeomoniella L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pteridopassalora C. Nakash. & Crous; New species: Ascochyta flava Qian Chen & L. Cai, Cadophora domestica L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora rotunda L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora vinacea J.R. Úrbez-Torres, D.T. O'Gorman & Gramaje, Cadophora vivarii L. Mostert, Havenga, Halleen & Gramaje, Celoporthe foliorum H. Suzuki, Marinc. & M.J. Wingf., Cercospora alyssopsidis M. Bakhshi, Zare & Crous, Dendrostoma elaeocarpi C.M. Tian & Q. Yang, Didymella chlamydospora Qian Chen & L. Cai, Didymella gei Qian Chen & L. Cai, Didymella ligulariae Qian Chen & L. Cai, Didymella qilianensis Qian Chen & L. Cai, Didymella uniseptata Qian Chen & L. Cai, Endothia cerciana W. Wang. & S.F. Chen, Leptosphaerulina miscanthi Qian Chen & L. Cai, Nigrospora covidalis M. Raza, Qian Chen & L. Cai, Nigrospora globospora M. Raza, Qian Chen & L. Cai, Nigrospora philosophiae-doctoris M. Raza, Qian Chen & L. Cai, Phytophthora transitoria I. Milenković, T. Májek & T. Jung, Phytophthora panamensis T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora variabilis T. Jung, M. Horta Jung & I. Milenković, Pseudocercospora delonicicola C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora farfugii C. Nakash., I. Araki, & Ai Ito, Pseudocercospora hardenbergiae Crous & C. Nakash., Pseudocercospora kenyirana C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora perrottetiae Crous, C. Nakash. & C.Y. Chen, Pseudocercospora platyceriicola C. Nakash., Y. Hatt, L. Suhaizan & I. Nurul Faziha, Pseudocercospora stemonicola C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora terengganuensis C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora xenopunicae Crous & C. Nakash.; New combinations: Heterophaeomoniella pinifoliorum (Hyang B. Lee et al.) L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pseudocercospora pruni-grayanae (Sawada) C. Nakash. & Motohashi., Pseudocercospora togashiana (K. Ito & Tak. Kobay.) C. Nakash. & Tak. Kobay., Pteridopassalora nephrolepidicola (Crous & R.G. Shivas) C. Nakash. & Crous, Pteridopassalora lygodii (Goh & W.H. Hsieh) C. Nakash. & Crous; Typification: Epitypification: Botrytis infestans Mont., Cercospora abeliae Katsuki, Cercospora ceratoniae Pat. & Trab., Cercospora cladrastidis Jacz., Cercospora cryptomeriicola Sawada, Cercospora dalbergiae S.H. Sun, Cercospora ebulicola W. Yamam., Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora ixorana J.M. Yen & Lim, Cercospora liquidambaricola J.M. Yen, Cercospora pancratii Ellis & Everh., Cercospora pini-densiflorae Hori & Nambu, Cercospora profusa Syd. & P. Syd., Cercospora pyracanthae Katsuki, Cercospora horiana Togashi & Katsuki, Cercospora tabernaemontanae Syd. & P. Syd., Cercospora trinidadensis F. Stevens & Solheim, Melampsora laricis-urbanianae Tak. Matsumoto, Melampsora salicis-cupularis Wang, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora angiopteridis Goh & W.H. Hsieh, Pseudocercospora basitruncata Crous, Pseudocercospora boehmeriigena U. Braun, Pseudocercospora coprosmae U. Braun & C.F. Hill, Pseudocercospora cratevicola C. Nakash. & U. Braun, Pseudocercospora cymbidiicola U. Braun & C.F. Hill, Pseudocercospora dodonaeae Boesew., Pseudocercospora euphorbiacearum U. Braun, Pseudocercospora lygodii Goh & W.H. Hsieh, Pseudocercospora metrosideri U. Braun, Pseudocercospora paraexosporioides C. Nakash. & U. Braun, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous, Septogloeum punctatum Wakef.; Neotypification: Cercospora aleuritis I. Miyake; Lectotypification: Cercospora dalbergiae S.H. Sun, Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora profusa Syd. & P. Syd., Melampsora laricis-urbanianae Tak. Matsumoto, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous. Citation: Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, Chen SF, Fan XL, Gramaje D, Halleen F, Horta Jung M, Jiang N, Jung T, Májek T, Marincowitz S, Milenković T, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies CFJ, Suhaizan L, Suzuki H, Tian CM, Tomšovský M, Úrbez-Torres JR, Wang W, Wingfield BD, Wingfield MJ, Yang Q, Yang X, Zare R, Zhao P, Groenewald JZ, Cai L, Crous PW (2022). Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101: 417-564. doi: 10.3114/sim.2022.101.06.
Collapse
Affiliation(s)
- Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - M. Bakhshi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Y. Balci
- USDA-APHIS Plant Protection and Quarantine, 4700 River Road, Riverdale, Maryland, 20737 USA
| | - K.D. Broders
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
| | - R. Cheewangkoon
- Entomology and Plant Pathology Department, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand, 50200
| | - S.F. Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV). Consejo Superior de Investigaciones Científicas - Universidad de La Rioja - Gobierno de La Rioja. Ctra. LO-20 Salida 13, 26007 Logroño. Spain
| | - F. Halleen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenboscvh, 7599, South Africa
| | - M. Horta Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - N. Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - T. Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - T. Májek
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - I. Milenković
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - I. Nurul Faziha
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - M. Pan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - C.F.J. Spies
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - L. Suhaizan
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - H. Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - C.M. Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Tomšovský
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - J.R. Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - W. Wang
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Q. Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - X. Yang
- USDA-ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, Maryland, 21702 USA
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, P.O. Box 117, Oak Ridge, Tennessee, 37831 USA
| | - R. Zare
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
35
|
Pethybridge SJ, Murphy S, Hay F, Branch E, Sharma P, Kikkert JR. Control of Phoma Leaf Spot and Root Decay of Table Beet in New York. PLANT DISEASE 2022; 106:1857-1866. [PMID: 35072508 DOI: 10.1094/pdis-11-21-2506-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Disease caused by Neocamarosporium betae (syn. Phoma betae, Pleospora betae) results in reductions in plant populations, foliar disease (Phoma leaf spot [PLS]), and root disease and decay in table beet. Disease caused by N. betae has reemerged as prevalent in organic table beet production in New York. The disease can also cause substantial issues in conventional table beet production. To evaluate in-field control options for conventional and organic table beet production, small-plot, replicated trials were conducted in each of two years (2019 and 2021). The fungicides, propiconazole and difenoconazole, and premixtures, pydiflumetofen + fludioxonil or pydiflumetofen + difenoconazole, provided excellent PLS and root decay control. Azoxystrobin provided excellent (69.9%) control of PLS in 2019 and lesser (40%) control in 2021. Field trial results complemented in vitro sensitivity testing of 30 New York N. betae isolates that were all highly sensitive to azoxystrobin (mean effective concentration to reduce mycelial growth by 50%, EC50 = 0.0205 µg/ml) and propiconazole (mean EC50 = 0.0638 µg/ml). Copper octanoate and microbial biopesticides containing either Bacillus amyloliquefaciens D747 or B. mycoides strain J provided moderate (68.5 to 74.6%) PLS control as reflected in epidemic progress. The Gompertz model provided the best fit to PLS epidemics reflecting a polycyclic epidemic. Reductions in PLS severity were associated with significant decreases in Phoma root decay and increases in canopy health and the time-to-death of leaves compared with nontreated control plots. Prolonging leaf survival is critical for mechanical harvest of roots. These findings underpin the design of programs for foliar disease control in conventional and organic table beet production. Assessment of PLS severity in the field will better inform postharvest management decisions.
Collapse
Affiliation(s)
- Sarah J Pethybridge
- Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Sean Murphy
- Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Frank Hay
- Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Eric Branch
- Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Pratibha Sharma
- Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Julie R Kikkert
- Cornell Vegetable Program, Cornell Cooperative Extension, Canandaigua, NY 14424
| |
Collapse
|
36
|
Phookamsak R, Jiang H, Suwannarach N, Lumyong S, Xu J, Xu S, Liao CF, Chomnunti P. Bambusicolous Fungi in Pleosporales: Introducing Four Novel Taxa and a New Habitat Record for Anastomitrabeculia didymospora. J Fungi (Basel) 2022; 8:630. [PMID: 35736113 PMCID: PMC9225195 DOI: 10.3390/jof8060630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
While conducting a survey of bambusicolous fungi in northern Thailand and southwestern China, several saprobic fungi were collected from dead branches, culms and twigs of bamboos, which were preliminarily identified as species belonging to Pleosporales (Dothideomycetes) based on a morphological approach. Multigene phylogenetic analyses based on ITS, LSU, SSU, rpb2, tef1-α and tub2 demonstrated four novel taxa belonging to the families Parabambusicolaceae, Pyrenochaetopsidaceae and Tetraploasphaeriaceae. Hence, Paramultiseptospora bambusae sp. et gen. nov., Pyrenochaetopsis yunnanensis sp. nov. and Tetraploa bambusae sp. nov. are introduced. In addition, Anastomitrabeculia didymospora found on bamboo twigs in terrestrial habitats is reported for the first time. Detailed morphological descriptions and updated phylogenetic trees of each family are provided herein.
Collapse
Affiliation(s)
- Rungtiwa Phookamsak
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.P.); (H.J.); (C.-F.L.)
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China;
- East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, China
| | - Hongbo Jiang
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.P.); (H.J.); (C.-F.L.)
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China;
- East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.L.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.L.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China;
- East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, China
| | - Sheng Xu
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China;
- East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chun-Fang Liao
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.P.); (H.J.); (C.-F.L.)
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu, Guangzhou 510225, China
| | - Putarak Chomnunti
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.P.); (H.J.); (C.-F.L.)
| |
Collapse
|
37
|
Zhang Y, Shen F, Yang Y, Niu M, Chen D, Chen L, Wang S, Zheng Y, Sun Y, Zhou F, Qian H, Wu Y, Zhu T. Insights into the Profile of the Human Expiratory Microbiota and Its Associations with Indoor Microbiotas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6282-6293. [PMID: 35512288 PMCID: PMC9113006 DOI: 10.1021/acs.est.2c00688] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 05/04/2023]
Abstract
Microorganisms residing in the human respiratory tract can be exhaled, and they constitute a part of environmental microbiotas. However, the expiratory microbiota community and its associations with environmental microbiotas remain poorly understood. Here, expiratory bacteria and fungi and the corresponding microbiotas from the living environments were characterized by DNA amplicon sequencing of residents' exhaled breath condensate (EBC) and environmental samples collected from 14 residences in Nanjing, China. The microbiotas of EBC samples, with a substantial heterogeneity, were found to be as diverse as those of skin, floor dust, and airborne microbiotas. Model fitting results demonstrated the role of stochastic processes in the assembly of the expiratory microbiota. Using a fast expectation-maximization algorithm, microbial community analysis revealed that expiratory microbiotas were differentially associated with other types of microbiotas in a type-dependent and residence-specific manner. Importantly, the expiratory bacteria showed a composition similarity with airborne bacteria in the bathroom and kitchen environments with an average of 12.60%, while the expiratory fungi showed a 53.99% composition similarity with the floor dust fungi. These differential patterns indicate different relationships between expiratory microbiotas and the airborne microbiotas and floor dust microbiotas. The results here illustrated for the first time the associations between expiratory microbiotas and indoor microbiotas, showing a potential microbial exchange between the respiratory tract and indoor environment. Thus, improved hygiene and ventilation practices can be implemented to optimize the indoor microbial exposome, especially in indoor bathrooms and kitchens.
Collapse
Affiliation(s)
- Yin Zhang
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Yi Yang
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Mutong Niu
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Da Chen
- School
of Environment and Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
| | - Longfei Chen
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Shengqi Wang
- School
of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yunhao Zheng
- Institute
of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ye Sun
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Feng Zhou
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Hua Qian
- School
of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yan Wu
- School of
Environmental Science and Engineering, Shandong
University, Jinan 250100, China
| | - Tianle Zhu
- School
of Space and Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
38
|
Chen L, Yang AL, Li YX, Zhang HB. Virulence and Host Range of Fungi Associated With the Invasive Plant Ageratina adenophora. Front Microbiol 2022; 13:857796. [PMID: 35558123 PMCID: PMC9087049 DOI: 10.3389/fmicb.2022.857796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
To determine whether disease-mediated invasion of exotic plants can occur and whether this increases the risk of disease transmission in local ecosystems, it is necessary to characterize the species composition and host range of pathogens accumulated in invasive plants. In this study, we found that Didymellaceae, a family containing economically important plant fungal pathogens, is commonly associated with the invasive plant Ageratina adenophora. Accordingly, we characterized its phylogenetic position through multi-locus phylogenetic analysis, as well as its environmental distribution, virulence, and host range. The results indicated that 213 fungal collections were from 11 genera in Didymellaceae, ten of which are known, and one is potentially new. Didymella, Epicoccum, Remotididymella, and Mesophoma were the dominant genera, accounting for 93% of total isolates. The virulence and host ranges of these fungi were related to their phylogenetic relationship. Boeremia exigua, Epicoccum latusicollum, and E. sorghinum were found to be strongly virulent toward all tested native plants as well as toward A. adenophora; M. speciosa and M. ageratinae were weakly virulent toward native plants but strongly virulent toward A. adenophora, thus displaying a narrow host range. Co-evolution analysis showed no strong phylogenetical signal between Didymellaceae and host plants. Isolates S188 and Y122 (belonging to M. speciosa and M. ageratinae, respectively) showed strong virulence toward A. adenophora relative to native plants, highlighting their potential as biocontrol agents for A. adenophora invasion. This study provides new insights into the understanding of the long-term ecological consequences of disease transmission driven by plant invasion.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ai-Ling Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yu-Xuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Han-Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
39
|
Bernardi C, Rey MS, Junior AW, Pietrobom JH, Barros DRD. First Report of Epicoccum nigrum Causing Leaf Spot of Eugenia involucrata in Brazil. PLANT DISEASE 2022; 107:230. [PMID: 35522962 DOI: 10.1094/pdis-09-21-1925-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Eugenia involucrata (DC) is a native fruit species of forest formations in the Atlantic Complex and in the forests and savannas of the Paraná State, Brazil (Donadio, 2002). In February 2021, in the experimental area at the Universidade Tecnológica Federal do Paraná, in the Dois Vizinhos city, Paraná State, Brazil, a foliar disease was observed on twenty-two12 years old E. involucrata trees, with 20 to 80% of the leaves per tree affected. Symptoms were small, irregularly to circular shaped, reddish-brown lesions with yellow halos. As the disease progressed, the lesions increased in size and showed no distinction between mature and young tissues. Twenty symptomatic leaves (from each tree) from 11 trees grown at different locations in the orchard (50% of the total number of trees) were collected. For fungal isolation, the leaf surfaces were disinfected with 0.5% NaOCl solution for 1 min, rinsed in sterile distilled water (SDW) and dried on sterile filter paper. Five fragments (0.3 cm) of diseased leaf tissue were placed on potato dextrose agar medium. After 7 days of incubation at 25°C, orange colonies appeared, with a reddish pigment on the reverse side. Conidial were brown globular to pear solitary, verrucous and multicellular (average of 21.74 µm x 24.45 µm, n = 30). The morphological characteristics of the colony and conidia of the eight isolates matched the description of the fungal genus Epicoccum (Valenzuela-Lopez et al. 2018). Further identification of eight isolates was confirmed by amplifying and sequencing three phylogenic loci (ITS, β- tubulin and RPB2) using the ITS1/ITS4, Bt2a/Bt2b and 5F2/7cR primer pairs, respectively (White et al., 1991, Glass and Donaldson, 1995, O Donnell et al., 1998). The sequences of one representative isolate (ENcm) were submitted to GenBank (ITS, MZ442338, β-tubulin, MZ447127 and RPP2, MZ447128) respectively. A phylogenetic tree was constructed by the maximum likelihood method with 1,000 replicas of bootstrapping based on concatenated ITS, β-tubulin, and RPB2 sequences of the ENcm and strains of 14 species of the genus Epicoccum. Isolate ENcm grouped with Epicoccum nigrum stains CBS 173.73 (Chen et al., 2017). For the pathogenicity tests four young healthy branches containing 20 leaves were spray inoculated, with 1.5 mL of conidia suspension of ENcm (106 conidia/mL) covered with a punched transparent plastic bag and moistened with distilled water in orchard. The air temperature ranged from 14ºC to 25ºC. SDW was used as control. Three replicates (pathogen and control) on different trees were performed. After 7 days the fungus was re-isolated from the symptomatic lesion, showing morphological characteristics similar to those of ENcm. Control branches did not show fungal growth. The inoculation test was repeated once, confirming the symptoms described above. This is the first report of the leaf spot caused by E. nigrum on E. involucrata in Brazil as well as in the world. E. nigrum on E. involucrata leaves could pose potential threat on productivity, whose impact may affect the fruit tree's ability to perpetuate, its survival in natural conditions or in commercial orchards.
Collapse
Affiliation(s)
- Caliandra Bernardi
- Universidade Tecnológica Federal do Paraná, Engenharia Florestal, Estrada para Boa Esperança, S/N, Dois Vizinhos, Paraná, Brazil, 85660-000;
| | - Maristela Santos Rey
- Agronomy, Estrada para Boa Esperança, KM 04, Dois Vizinhos, Paraná, Brazil, 85660000;
| | - Américo Wagner Junior
- Universidade Tecnológica Federal do Paraná, 74354, Coagr, Dois Vizinhos, Paraná, Brazil;
| | | | - Danielle Ribeiro de Barros
- Universidade Federal de Pelotas, 37902, Fitossanidade, Av Eliseu Maciel s/n, Campus Capão do Leão, Capão do Leão, Pelotas, Rio Grande do Sul, Brazil, 96010-610;
| |
Collapse
|
40
|
Ahmadpour SA, Mehrabi-Koushki M, Farokhinejad R, Asgari B. New species of the family Didymellaceae in Iran. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01800-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Fan B, Grauso L, Li F, Scarpato S, Mangoni A, Tasdemir D. Application of Feature-Based Molecular Networking for Comparative Metabolomics and Targeted Isolation of Stereoisomers from Algicolous Fungi. Mar Drugs 2022; 20:210. [PMID: 35323509 PMCID: PMC8948805 DOI: 10.3390/md20030210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Seaweed endophytic (algicolous) fungi are talented producers of bioactive natural products. We have previously isolated two strains of the endophytic fungus, Pyrenochaetopsis sp. FVE-001 and FVE-087, from the thalli of the brown alga Fucus vesiculosus. Initial chemical studies yielded four new decalinoylspirotetramic acid derivatives with antimelanoma activity, namely pyrenosetins A-C (1-3) from Pyrenochaetopsis sp. strain FVE-001, and pyrenosetin D (4) from strain FVE-087. In this study, we applied a comparative metabolomics study employing HRMS/MS based feature-based molecular networking (FB MN) on both Pyrenochaetopsis strains. A higher chemical capacity in production of decalin derivatives was observed in Pyrenochaetopsis sp. FVE-087. Notably, several decalins showed different retention times despite the same MS data and MS/MS fragmentation pattern with the previously isolated pyrenosetins, indicating they may be their stereoisomers. FB MN-based targeted isolation studies coupled with antimelanoma activity testing on the strain FVE-087 afforded two new stereoisomers, pyrenosetins E (5) and F (6). Extensive NMR spectroscopy including DFT computational studies, HR-ESIMS, and Mosher's ester method were used in the structure elucidation of compounds 5 and 6. The 3'R,5'R stereochemistry determined for compound 6 was identical to that previously reported for pyrenosetin C (3), whose stereochemistry was revised as 3'S,5'R in this study. Pyrenosetin E (5) inhibited the growth of human malignant melanoma cells (A-375) with an IC50 value of 40.9 μM, while 6 was inactive. This study points out significant variations in the chemical repertoire of two closely related fungal strains and the versatility of FB MN in identification and targeted isolation of stereoisomers. It also confirms that the little-known fungal genus Pyrenochaetopsis is a prolific source of complex decalinoylspirotetramic acid derivatives.
Collapse
Affiliation(s)
- Bicheng Fan
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (B.F.); (F.L.)
| | - Laura Grauso
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, Italy;
| | - Fengjie Li
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (B.F.); (F.L.)
| | - Silvia Scarpato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy; (S.S.); (A.M.)
| | - Alfonso Mangoni
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy; (S.S.); (A.M.)
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (B.F.); (F.L.)
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
42
|
Forecasting the number of species of asexually reproducing fungi (Ascomycota and Basidiomycota). FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00500-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. J Fungi (Basel) 2022; 8:jof8030226. [PMID: 35330228 PMCID: PMC8955040 DOI: 10.3390/jof8030226] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022] Open
Abstract
Fungi are an important and diverse component in various ecosystems. The methods to identify different fungi are an important step in any mycological study. Classical methods of fungal identification, which rely mainly on morphological characteristics and modern use of DNA based molecular techniques, have proven to be very helpful to explore their taxonomic identity. In the present compilation, we provide detailed information on estimates of fungi provided by different mycologistsover time. Along with this, a comprehensive analysis of the importance of classical and molecular methods is also presented. In orderto understand the utility of genus and species specific markers in fungal identification, a polyphasic approach to investigate various fungi is also presented in this paper. An account of the study of various fungi based on culture-based and cultureindependent methods is also provided here to understand the development and significance of both approaches. The available information on classical and modern methods compiled in this study revealed that the DNA based molecular studies are still scant, and more studies are required to achieve the accurate estimation of fungi present on earth.
Collapse
|
44
|
Xu X, Zhang L, Yang X, Li J, Wang X, Zhao J, Xiang W. First Report of Maize Stalk Rot Caused by Epicoccum latusicollum on Maize (Zea mays L.) in China. PLANT DISEASE 2022; 106:2255. [PMID: 35124994 DOI: 10.1094/pdis-11-21-2392-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays L.) is the most important crop in Heilongjiang province. In July 2021, maize stalk rot was observed on approximately 10% of maize in a 2.4 ha field of Xiangfang District, Harbin City (N45°44'23″, E126°43'19″). Infected plants showed softening of the stalks at the lower internodes, and the pith tissue was disintegrated and brown to reddish. Fifteen symptomatic plants were collected from the field. The discolored stalk pith tissues were cut into small pieces (4 × 2 mm), superficially disinfected with 1% NaClO for 3 min, 70% ethanol for 10 s, and then washed three times with sterile distilled water. The disinfected tissues were placed on potato dextrose agar (PDA) amended with streptomycin sulfate (50 mg/L) and incubated at 25°C for 1 week. Twenty-one cultures were obtained using hyphal tip technology and cultured on PDA for 7 days at 25°C for morphological and molecular analyses. The mycelia of the cultures were initially white but became grayish with time, and reddish-brown diffusible pigments were produced. A dark green discoloration was produced on malt extract agar (MEA) using the NaOH spot test (REF). Pycnidia were brown, predominantly spheroidal, and measured 80.1 to 130.2 × 110.5 to 220.6 μm. Conidia were ellipse, aseptate, and in a size range of 4.3 to 6.8 × 2.1 to 3.2 μm. The isolates were initially identified as Epicoccum latusicollum based on morphological features (Chen et al. 2017). To confirm the identity of E. latusicollum, primers TUB2Fd/TUB4Rd, LR0R/LR5, ITS1/ITS4 and RPB2-5F2/fRPB2-7cR (Valenzuela-Lopez et al. 2018) were used to amplify beta tubulin (tub2), nuclear large subunit rDNA (LSU), internal transcribed spacer (ITS), and RPB2 genes, respectively for the representative isolate JF3. These sequences were deposited in GenBank (GenBank accession no. OK490498, OK445527, OK483136, and OK490497) and had 100% (276/276 bp), 100% (842/842 bp), 100% (501/501 bp), and 100% (589/589 bp) nucleotide identity with E. latusicollum isolate GZDS2018BXT010 (GenBank accession no. MK516208, MK516207, MK516206, and MK852278). To fulfill Koch's postulates, pathogenicity tests for all isolates were performed by individually inoculating surface-disinfected stalks of five healthy maize plants (10-leaf stage) between the 2nd and 3rd stem nodes with 20 μL conidial suspension at a concentration of 106 conidia/mL as described by Zhang et al. (2016). Five other healthy surface-disinfected maize plants inoculated with sterile distilled water served as control. All plants were kept at 25 ± 0.5°C in a greenhouse with a photoperiod of 12 h and approximately 90% relative humidity. After 10 days, all inoculated plants showed symptoms that were similar to those of the infected maize plants observed in the field, whereas the control plants were asymptomatic. The Epicoccum isoaltes were re-isolated from symptomatic plants, and species identification was performed using the morphological and molecular methods described above. To our knowledge, this is the first report of E. latusicollum causing maize stalk rot in China, and this report will assist with monitoring distribution of the disease and developing management recommendations.
Collapse
Affiliation(s)
- Xi Xu
- Changjiang Road No.600 , Xiangfang DistrictHeilongjiang ProvinceHarbin, Heilongjiang Province, China, 150036
- Changjiang Road No.600 , Xiangfang DistrictChangjiang Road No.600 , Xiangfang District;
| | - Li Zhang
- Northeast Agricultural University, 12430, Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Harbin, Harbin, China;
| | - Xilang Yang
- Northeast Agricultural University, 12430, Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Harbin, Harbin, China;
| | - Jingjing Li
- Northeast Agricultural University, 12430, School of Life Science, Harbin, China;
| | - Xiangjing Wang
- Northeast Agricultural University, 12430, School of Life Science, Changjiang No.600, Harbin, China, 150030
- China;
| | - Junwei Zhao
- Northeast Agricultural University, 12430, School of Life Science, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, P.R. China, Harbin, China, 150030;
| | - Wensheng Xiang
- Northeast Agricultural University, 12430, School of Life Science, Changjiang No.600, Harbin, China, 150030;
| |
Collapse
|
45
|
Das P, Effmert U, Baermann G, Quella M, Piechulla B. Impact of bacterial volatiles on phytopathogenic fungi: an in vitro study on microbial competition and interaction. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:596-614. [PMID: 34718549 DOI: 10.1093/jxb/erab476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms in the rhizosphere are abundant and exist in very high taxonomic diversity. The major players are bacteria and fungi, and bacteria have evolved many strategies to prevail over fungi, among them harmful enzyme activities and noxious secondary metabolites. Interactions between plant growth promoting rhizobacteria and phytopathogenic fungi are potentially valuable since the plant would benefit from fungal growth repression. In this respect, the role of volatile bacterial metabolites in fungistasis has been demonstrated, but the mechanisms of action are less understood. We used three phytopathogenic fungal species (Sclerotinia sclerotiorum, Rhizoctonia solani, and Juxtiphoma eupyrena) as well as one non-phytopathogenic species (Neurospora crassa) and the plant growth promoting rhizobacterium Serratia plymuthica 4Rx13 in co-cultivation assays to investigate the influence of bacterial volatile metabolites on fungi on a cellular level. As a response to the treatment, we found elevated lipid peroxidation, which indirectly reflected the loss of fungal cell membrane integrity. An increase in superoxide dismutase, catalase, and laccase activities indicated oxidative stress. Acclimation to these adverse growth conditions completely restored fungal growth. One of the bioactive bacterial volatile compounds seemed to be ammonia, which was a component of the bacterial volatile mixture. Applied as a single compound in biogenic concentrations ammonia also caused an increase in lipid peroxidation and enzyme activities, but the extent and pattern did not fully match the effect of the entire bacterial volatile mixture.
Collapse
Affiliation(s)
- Piyali Das
- Institute of Biological Sciences, Biochemistry, Albert-Einstein-Strasse 3, University of Rostock, 18059 Rostock, Germany
| | - Uta Effmert
- Institute of Biological Sciences, Biochemistry, Albert-Einstein-Strasse 3, University of Rostock, 18059 Rostock, Germany
| | - Gunnar Baermann
- Institute of Biological Sciences, Biochemistry, Albert-Einstein-Strasse 3, University of Rostock, 18059 Rostock, Germany
| | - Manuel Quella
- Institute of Biological Sciences, Biochemistry, Albert-Einstein-Strasse 3, University of Rostock, 18059 Rostock, Germany
| | - Birgit Piechulla
- Institute of Biological Sciences, Biochemistry, Albert-Einstein-Strasse 3, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
46
|
Magaña-Dueñas V, Cano-Lira JF, Stchigel AM. New Dothideomycetes from Freshwater Habitats in Spain. J Fungi (Basel) 2021; 7:1102. [PMID: 34947084 PMCID: PMC8705806 DOI: 10.3390/jof7121102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 01/23/2023] Open
Abstract
The Dothideomycetes are a class of cosmopolitan fungi that are present principally in terrestrial environments, but which have also been found in freshwater and marine habitats. In the present study, more than a hundred samples of plant debris were collected from various freshwater locations in Spain. Its incubation in wet chambers allowed us to detect and to isolate in pure culture numerous fungi producing asexual reproductive fruiting bodies (conidiomata). Thanks to a morphological comparison and to a phylogenetic analysis that combined the internal transcribed spacer (ITS) region of the nrDNA with fragments of the RNA polymerase II subunit 2 (rpb2), beta tubulin (tub2), and the translation elongation factor 1-alpha (tef-1) genes, six of those strains were identified as new species to science. Three belong to the family Didymellaceae: Didymella brevipilosa, Heterophoma polypusiformis and Paraboeremia clausa; and three belong to the family Phaeosphaeriaceae:Paraphoma aquatica, Phaeosphaeria fructigena and Xenophoma microspora. The finding of these new taxa significantly increases the number of the coelomycetous fungi that have been described from freshwater habitats.
Collapse
Affiliation(s)
| | - José Francisco Cano-Lira
- Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Tarragona, Spain; (V.M.-D.); (A.M.S.)
| | | |
Collapse
|
47
|
Crous PW, Osieck ER, Jurjević Ž, Boers J, van Iperen AL, Starink-Willemse M, Dima B, Balashov S, Bulgakov TS, Johnston PR, Morozova OV, Pinruan U, Sommai S, Alvarado P, Decock CA, Lebel T, McMullan-Fisher S, Moreno G, Shivas RG, Zhao L, Abdollahzadeh J, Abrinbana M, Ageev DV, Akhmetova G, Alexandrova AV, Altés A, Amaral AGG, Angelini C, Antonín V, Arenas F, Asselman P, Badali F, Baghela A, Bañares A, Barreto RW, Baseia IG, Bellanger JM, Berraf-Tebbal A, Biketova AY, Bukharova NV, Burgess TI, Cabero J, Câmara MPS, Cano-Lira JF, Ceryngier P, Chávez R, Cowan DA, de Lima AF, Oliveira RL, Denman S, Dang QN, Dovana F, Duarte IG, Eichmeier A, Erhard A, Esteve-Raventós F, Fellin A, Ferisin G, Ferreira RJ, Ferrer A, Finy P, Gaya E, Geering ADW, Gil-Durán C, Glässnerová K, Glushakova AM, Gramaje D, Guard FE, Guarnizo AL, Haelewaters D, Halling RE, Hill R, Hirooka Y, Hubka V, Iliushin VA, Ivanova DD, Ivanushkina NE, Jangsantear P, Justo A, Kachalkin AV, Kato S, Khamsuntorn P, Kirtsideli IY, Knapp DG, Kochkina GA, Koukol O, Kovács GM, Kruse J, Kumar TKA, Kušan I, Læssøe T, Larsson E, Lebeuf R, Levicán G, Loizides M, Marinho P, Luangsa-Ard JJ, Lukina EG, Magaña-Dueñas V, Maggs-Kölling G, et alCrous PW, Osieck ER, Jurjević Ž, Boers J, van Iperen AL, Starink-Willemse M, Dima B, Balashov S, Bulgakov TS, Johnston PR, Morozova OV, Pinruan U, Sommai S, Alvarado P, Decock CA, Lebel T, McMullan-Fisher S, Moreno G, Shivas RG, Zhao L, Abdollahzadeh J, Abrinbana M, Ageev DV, Akhmetova G, Alexandrova AV, Altés A, Amaral AGG, Angelini C, Antonín V, Arenas F, Asselman P, Badali F, Baghela A, Bañares A, Barreto RW, Baseia IG, Bellanger JM, Berraf-Tebbal A, Biketova AY, Bukharova NV, Burgess TI, Cabero J, Câmara MPS, Cano-Lira JF, Ceryngier P, Chávez R, Cowan DA, de Lima AF, Oliveira RL, Denman S, Dang QN, Dovana F, Duarte IG, Eichmeier A, Erhard A, Esteve-Raventós F, Fellin A, Ferisin G, Ferreira RJ, Ferrer A, Finy P, Gaya E, Geering ADW, Gil-Durán C, Glässnerová K, Glushakova AM, Gramaje D, Guard FE, Guarnizo AL, Haelewaters D, Halling RE, Hill R, Hirooka Y, Hubka V, Iliushin VA, Ivanova DD, Ivanushkina NE, Jangsantear P, Justo A, Kachalkin AV, Kato S, Khamsuntorn P, Kirtsideli IY, Knapp DG, Kochkina GA, Koukol O, Kovács GM, Kruse J, Kumar TKA, Kušan I, Læssøe T, Larsson E, Lebeuf R, Levicán G, Loizides M, Marinho P, Luangsa-Ard JJ, Lukina EG, Magaña-Dueñas V, Maggs-Kölling G, Malysheva EF, Malysheva VF, Martín B, Martín MP, Matočec N, McTaggart AR, Mehrabi-Koushki M, Mešić A, Miller AN, Mironova P, Moreau PA, Morte A, Müller K, Nagy LG, Nanu S, Navarro-Ródenas A, Nel WJ, Nguyen TH, Nóbrega TF, Noordeloos ME, Olariaga I, Overton BE, Ozerskaya SM, Palani P, Pancorbo F, Papp V, Pawłowska J, Pham TQ, Phosri C, Popov ES, Portugal A, Pošta A, Reschke K, Reul M, Ricci GM, Rodríguez A, Romanowski J, Ruchikachorn N, Saar I, Safi A, Sakolrak B, Salzmann F, Sandoval-Denis M, Sangwichein E, Sanhueza L, Sato T, Sastoque A, Senn-Irlet B, Shibata A, Siepe K, Somrithipol S, Spetik M, Sridhar P, Stchigel AM, Stuskova K, Suwannasai N, Tan YP, Thangavel R, Tiago I, Tiwari S, Tkalčec Z, Tomashevskaya MA, Tonegawa C, Tran HX, Tran NT, Trovão J, Trubitsyn VE, Van Wyk J, Vieira WAS, Vila J, Visagie CM, Vizzini A, Volobuev SV, Vu DT, Wangsawat N, Yaguchi T, Ercole E, Ferreira BW, de Souza AP, Vieira BS, Groenewald JZ. Fungal Planet description sheets: 1284-1382. PERSOONIA 2021; 47:178-374. [PMID: 37693795 PMCID: PMC10486635 DOI: 10.3767/persoonia.2021.47.06] [Show More Authors] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Antartica, Cladosporium austrolitorale from coastal sea sand. Australia, Austroboletus yourkae on soil, Crepidotus innuopurpureus on dead wood, Curvularia stenotaphri from roots and leaves of Stenotaphrum secundatum and Thecaphora stajsicii from capsules of Oxalis radicosa. Belgium, Paraxerochrysium coryli (incl. Paraxerochrysium gen. nov.) from Corylus avellana. Brazil, Calvatia nordestina on soil, Didymella tabebuiicola from leaf spots on Tabebuia aurea, Fusarium subflagellisporum from hypertrophied floral and vegetative branches of Mangifera indica and Microdochium maculosum from living leaves of Digitaria insularis. Canada, Cuphophyllus bondii from a grassland. Croatia, Mollisia inferiseptata from a rotten Laurus nobilis trunk. Cyprus, Amanita exilis on calcareous soil. Czech Republic, Cytospora hippophaicola from wood of symptomatic Vaccinium corymbosum. Denmark, Lasiosphaeria deviata on pieces of wood and herbaceous debris. Dominican Republic, Calocybella goethei among grass on a lawn. France (Corsica), Inocybe corsica on wet ground. France (French Guiana), Trechispora patawaensis on decayed branch of unknown angiosperm tree and Trechispora subregularis on decayed log of unknown angiosperm tree. Germany, Paramicrothecium sambuci (incl. Paramicrothecium gen. nov.) on dead stems of Sambucus nigra. India, Aureobasidium microtermitis from the gut of a Microtermes sp. termite, Laccaria diospyricola on soil and Phylloporia tamilnadensis on branches of Catunaregam spinosa. Iran, Pythium serotinoosporum from soil under Prunus dulcis. Italy, Pluteus brunneovenosus on twigs of broadleaved trees on the ground. Japan, Heterophoma rehmanniae on leaves of Rehmannia glutinosa f. hueichingensis. Kazakhstan, Murispora kazachstanica from healthy roots of Triticum aestivum. Namibia, Caespitomonium euphorbiae (incl. Caespitomonium gen. nov.) from stems of an Euphorbia sp. Netherlands, Alfaria junci, Myrmecridium junci, Myrmecridium juncicola, Myrmecridium juncigenum, Ophioceras junci, Paradinemasporium junci (incl. Paradinemasporium gen. nov.), Phialoseptomonium junci, Sporidesmiella juncicola, Xenopyricularia junci and Zaanenomyces quadripartis (incl. Zaanenomyces gen. nov.), from dead culms of Juncus effusus, Cylindromonium everniae and Rhodoveronaea everniae from Evernia prunastri, Cyphellophora sambuci and Myrmecridium sambuci from Sambucus nigra, Kiflimonium junci, Sarocladium junci, Zaanenomyces moderatricis-academiae and Zaanenomyces versatilis from dead culms of Juncus inflexus, Microcera physciae from Physcia tenella, Myrmecridium dactylidis from dead culms of Dactylis glomerata, Neochalara spiraeae and Sporidesmium spiraeae from leaves of Spiraea japonica, Neofabraea salicina from Salix sp., Paradissoconium narthecii (incl. Paradissoconium gen. nov.) from dead leaves of Narthecium ossifragum, Polyscytalum vaccinii from Vaccinium myrtillus, Pseudosoloacrosporiella cryptomeriae (incl. Pseudosoloacrosporiella gen. nov.) from leaves of Cryptomeria japonica, Ramularia pararhabdospora from Plantago lanceolata, Sporidesmiella pini from needles of Pinus sylvestris and Xenoacrodontium juglandis (incl. Xenoacrodontium gen. nov. and Xenoacrodontiaceae fam. nov.) from Juglans regia. New Zealand, Cryptometrion metrosideri from twigs of Metrosideros sp., Coccomyces pycnophyllocladi from dead leaves of Phyllocladus alpinus, Hypoderma aliforme from fallen leaves Fuscopora solandri and Hypoderma subiculatum from dead leaves Phormium tenax. Norway, Neodevriesia kalakoutskii from permafrost and Variabilispora viridis from driftwood of Picea abies. Portugal, Entomortierella hereditatis from a biofilm covering a deteriorated limestone wall. Russia, Colpoma junipericola from needles of Juniperus sabina, Entoloma cinnamomeum on soil in grasslands, Entoloma verae on soil in grasslands, Hyphodermella pallidostraminea on a dry dead branch of Actinidia sp., Lepiota sayanensis on litter in a mixed forest, Papiliotrema horticola from Malus communis, Paramacroventuria ribis (incl. Paramacroventuria gen. nov.) from leaves of Ribes aureum and Paramyrothecium lathyri from leaves of Lathyrus tuberosus. South Africa, Harzia combreti from leaf litter of Combretum collinum ssp. sulvense, Penicillium xyleborini from Xyleborinus saxesenii, Phaeoisaria dalbergiae from bark of Dalbergia armata, Protocreopsis euphorbiae from leaf litter of Euphorbia ingens and Roigiella syzygii from twigs of Syzygium chordatum. Spain, Genea zamorana on sandy soil, Gymnopus nigrescens on Scleropodium touretii, Hesperomyces parexochomi on Parexochomus quadriplagiatus, Paraphoma variabilis from dung, Phaeococcomyces kinklidomatophilus from a blackened metal railing of an industrial warehouse and Tuber suaveolens in soil under Quercus faginea. Svalbard and Jan Mayen, Inocybe nivea associated with Salix polaris. Thailand, Biscogniauxia whalleyi on corticated wood. UK, Parasitella quercicola from Quercus robur. USA, Aspergillus arizonicus from indoor air in a hospital, Caeliomyces tampanus (incl. Caeliomyces gen. nov.) from office dust, Cippumomyces mortalis (incl. Cippumomyces gen. nov.) from a tombstone, Cylindrium desperesense from air in a store, Tetracoccosporium pseudoaerium from air sample in house, Toxicocladosporium glendoranum from air in a brick room, Toxicocladosporium losalamitosense from air in a classroom, Valsonectria portsmouthensis from air in men's locker room and Varicosporellopsis americana from sludge in a water reservoir. Vietnam, Entoloma kovalenkoi on rotten wood, Fusarium chuoi inside seed of Musa itinerans, Micropsalliota albofelina on soil in tropical evergreen mixed forests and Phytophthora docyniae from soil and roots of Docynia indica. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Osieck ER, Jurjević Ž, et al. 2021. Fungal Planet description sheets: 1284-1382. Persoonia 47: 178-374. https://doi.org/10.3767/persoonia.2021.47.06.
Collapse
Affiliation(s)
- P W Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - E R Osieck
- Jkvr. C.M. van Asch van Wijcklaan 19, 3972 ST Driebergen-Rijsenburg, Netherlands
| | - Ž Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - J Boers
- Conventstraat 13A, 6701 GA Wageningen, Netherlands
| | - A L van Iperen
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M Starink-Willemse
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - B Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - S Balashov
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - T S Bulgakov
- Department of Plant Protection, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Yana Fabritsiusa street 2/28, 354002 Sochi, Krasnodar region, Russia
| | - P R Johnston
- Manaaki Whenua - Landcare Research, P. Bag 92170, Auckland 1142, New Zealand
| | - O V Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - U Pinruan
- Plant Microbe Interaction Research Team (APMT), BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani Thailand
| | - S Sommai
- Plant Microbe Interaction Research Team (APMT), BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani Thailand
| | - P Alvarado
- ALVALAB, C/ Dr. Fernando Bongera, Severo Ochoa bldg. S1.04, 33006 Oviedo, Spain
| | - C A Decock
- Mycothèque de l'Université catholique de Louvain (MUCL, BCCMTM), Earth and Life Institute - ELIM - Mycology, Université catholique de Louvain, Croix du Sud 2 bte L7.05.06, B-1348 Louvain-la-Neuve, Belgium
| | - T Lebel
- State Herbarium of South Australia, Adelaide, South Australia 5000 Australia
| | | | - G Moreno
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica), 28805 Alcalá de Henares, Madrid, Spain
| | - R G Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - L Zhao
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - J Abdollahzadeh
- Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - M Abrinbana
- Department of Plant Protection, Faculty of Agriculture, Urmia University, P.O. Box 165, Urmia, Iran
| | - D V Ageev
- LLC 'Signatec', 630090, Inzhenernaya Str. 22, Novosibirsk, Russia
| | - G Akhmetova
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - A V Alexandrova
- Lomonosov Moscow State University (MSU), 119234, 1, 12 Leninskie Gory Str., Moscow, Russia
| | - A Altés
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica), 28805 Alcalá de Henares, Madrid, Spain
| | - A G G Amaral
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - C Angelini
- Herbario Jardín Botánico Nacional Dr. Rafael Ma. Moscoso, Santo Domingo, Dominican Republic and Via Cappuccini, 78/8 - 33170 Pordenone, Italy
- Department of Botany, Moravian Museum, Zelný trh 6, 659 37 Brno, Czech Republic
| | - V Antonín
- Department of Botany, Moravian Museum, Zelný trh 6, 659 37 Brno, Czech Republic
| | - F Arenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - P Asselman
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - F Badali
- Department of Plant Protection, Faculty of Agriculture, Urmia University, P.O. Box 165, Urmia, Iran
| | - A Baghela
- National Fungal Culture Collection of India (NFCCI)
- Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
| | - A Bañares
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna. Apdo. 456, E-38200 La Laguna, Tenerife, Islas Canarias, Spain
| | - R W Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - I G Baseia
- Departamento Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970 Natal, RN, Brazil
| | - J-M Bellanger
- CEFE, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier 3, EPHE, IRD, INSERM, 1919 route de Mende, F-34293 Montpellier Cedex 5, France
| | - A Berraf-Tebbal
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 69144, Czech Republic
| | - A Yu Biketova
- Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network, Temesvári blvd. 62, H-6726 Szeged, Hungary
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - N V Bukharova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Pr-t 100-let Vladivostoka 159, 690022 Vladivostok, Russia
| | - T I Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - J Cabero
- C/ El Sol 6, 49800 Toro, Zamora, Spain
| | - M P S Câmara
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - J F Cano-Lira
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - P Ceryngier
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - R Chávez
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - A F de Lima
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - R L Oliveira
- Programa de Pós-Graduação em Sistemática e Evolução, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, 3000, 59072-970 Natal, RN, Brazil
| | - S Denman
- Forest Research, Alice Holt Lodge, Farnham, Surrey, UK
| | - Q N Dang
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 46 Duc Thang Ward, Bac Tu Liem District, Hanoi City, Vietnam
| | - F Dovana
- Via Quargnento, 17, 15029, Solero (AL), Italy
| | - I G Duarte
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - A Eichmeier
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 69144, Czech Republic
| | - A Erhard
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - F Esteve-Raventós
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica), 28805 Alcalá de Henares, Madrid, Spain
| | - A Fellin
- Via G. Canestrini 10/B, I-38028, Novella (TN), Italy
| | - G Ferisin
- Associazione Micologica Bassa Friulana, 33052 Cervignano del Friuli, Italy
| | - R J Ferreira
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, 50670-420 Recife, PE, Brazil
| | - A Ferrer
- Facultad de Estudios Interdisciplinarios, Núcleo de Química y Bioquímica, Universidad Mayor, Santiago, Chile
| | - P Finy
- Zsombolyai u. 56, 8000 Székesfehérvár, Hungary
| | - E Gaya
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - A D W Geering
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park 4102, Queensland, Australia
| | - C Gil-Durán
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - K Glässnerová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
| | - A M Glushakova
- Lomonosov Moscow State University (MSU), 119234, 1, 12 Leninskie Gory Str., Moscow, Russia
- Mechnikov Research Institute for Vaccines and Sera, 105064, Moscow, Maly Kazenny by-street, 5A, Russia
| | - D Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de La Rioja - Gobierno de La Rioja, Ctra. LO-20, Salida 13, 26007, Logroño, Spain
| | | | - A L Guarnizo
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - D Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - R E Halling
- Inst. Systematic Botany, New York Botanical Garden, 2900 Southern Blvd, Bronx, NY, USA 10458-5126
| | - R Hill
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Y Hirooka
- Department of Clinical Plant Science, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - V Hubka
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - V A Iliushin
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - D D Ivanova
- The Herzen State Pedagogical University of Russia, 191186, 48 Moyka Embankment, Saint Petersburg, Russia
| | - N E Ivanushkina
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - P Jangsantear
- Forest and Plant Conservation Research Office, Department of National Parks, Wildlife and Plant Conservation, Chatuchak District, Bangkok, Thailand
| | - A Justo
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - A V Kachalkin
- Lomonosov Moscow State University (MSU), 119234, 1, 12 Leninskie Gory Str., Moscow, Russia
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - S Kato
- Department of Clinical Plant Science, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - P Khamsuntorn
- Microbe Interaction and Ecology Laboratory (BMIE), National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani Thailand
| | - I Y Kirtsideli
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - D G Knapp
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - G A Kochkina
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - O Koukol
- Department of Botany, Charles University, Faculty of Science, Benátská 2, 128 01 Prague 2, Czech Republic
| | - G M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - J Kruse
- Pfalzmuseum für Naturkunde - POLLICHIA-Museum, Hermann-Schäfer-Str. 17, 67098 Bad Dürkheim, Germany
| | - T K A Kumar
- Department of Botany, The Zamorin's Guruvayurappan College, Kozhikode, Kerala, India
| | - I Kušan
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - T Læssøe
- Globe Inst./Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark, Denmark
| | - E Larsson
- Biological and Environmental Sciences, University of Gothenburg, and Gothenburg Global Biodiversity Centre, Box 461, SE40530 Göteborg, Sweden
| | - R Lebeuf
- 775, rang du Rapide Nord, Saint-Casimir, Quebec, G0A 3L0, Canada
| | - G Levicán
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | | | - P Marinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - J J Luangsa-Ard
- Plant Microbe Interaction Research Team (APMT), BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani Thailand
| | - E G Lukina
- Saint Petersburg State University, 199034, 7-9 Universitetskaya emb., St. Petersburg, Russia
| | - V Magaña-Dueñas
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | | | - E F Malysheva
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - V F Malysheva
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - B Martín
- Servicio Territorial de Agricultura, Ganadería y Desarrollo Rural de Zamora, C/ Prado Tuerto 17, 49019 Zamora, Spain
| | - M P Martín
- Real Jardín Botánico RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - N Matočec
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - A R McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4001, Australia
| | - M Mehrabi-Koushki
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
- Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - A Mešić
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - A N Miller
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
| | - P Mironova
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - P-A Moreau
- Université de Lille, Faculté de pharmacie de Lille, EA 4483, F-59000 Lille, France
| | - A Morte
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - K Müller
- Falkstraße 103, D-47058 Duisburg, Germany
| | - L G Nagy
- Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network, Temesvári blvd. 62, H-6726 Szeged, Hungary
| | - S Nanu
- Department of Botany, The Zamorin's Guruvayurappan College, Kozhikode, Kerala, India
| | - A Navarro-Ródenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - W J Nel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - T H Nguyen
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 46 Duc Thang Ward, Bac Tu Liem District, Hanoi City, Vietnam
| | - T F Nóbrega
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - M E Noordeloos
- Naturalis Biodiversity Center, section Botany, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - I Olariaga
- Rey Juan Carlos University, Dep. Biology and Geology, Physics and Inorganic Chemistry, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - B E Overton
- 205 East Campus Science Center, Lock Haven University, Department of Biology, Lock Haven, PA 17745, USA
| | - S M Ozerskaya
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - P Palani
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, India
| | - F Pancorbo
- Sociedad Micológica de Madrid, Real Jardín Botánico, C/ Claudio Moyano 1, 28014 Madrid, Spain
| | - V Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, Ménesi út 44. H-1118 Budapest, Hungary
| | - J Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - T Q Pham
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 46 Duc Thang Ward, Bac Tu Liem District, Hanoi City, Vietnam
| | - C Phosri
- Biology programme, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - E S Popov
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - A Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
- Fitolab - Laboratory for Phytopathology, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - A Pošta
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - K Reschke
- Mycology Research Group, Faculty of Biological Sciences, Goethe University Frankfurt am Main, Max-von-Laue Straße 13, 60439 Frankfurt am Main, Germany
| | - M Reul
- Ostenstraße 19, D-95615 Marktredwitz, Germany
| | - G M Ricci
- 205 East Campus Science Center, Lock Haven University, Department of Biology, Lock Haven, PA 17745, USA
| | - A Rodríguez
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - J Romanowski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - N Ruchikachorn
- The Institute for the Promotion of Teaching Science and Technology, Bangkok, 10110, Thailand
| | - I Saar
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila Street 14A, 50411 Tartu, Estonia
| | - A Safi
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
| | - B Sakolrak
- Forest and Plant Conservation Research Office, Department of National Parks, Wildlife and Plant Conservation, Chatuchak District, Bangkok, Thailand
| | - F Salzmann
- Kloosterweg 5, 6301WK, Valkenburg a/d Geul, The Netherlands
| | - M Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - E Sangwichein
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - L Sanhueza
- Facultad de Estudios Interdisciplinarios, Núcleo de Química y Bioquímica, Universidad Mayor, Santiago, Chile
| | - T Sato
- Department of Agro-Food Science, Niigata Agro-Food University, 2416 Hiranedai, Tainai, Niigata Prefecture, Japan
| | - A Sastoque
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - B Senn-Irlet
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - A Shibata
- Department of Clinical Plant Science, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - K Siepe
- Geeste 133, D-46342 Velen, Germany
| | - S Somrithipol
- Plant Microbe Interaction Research Team (APMT), BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani Thailand
| | - M Spetik
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 69144, Czech Republic
| | - P Sridhar
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, India
| | - A M Stchigel
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - K Stuskova
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 69144, Czech Republic
| | - N Suwannasai
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110 Thailand
| | - Y P Tan
- Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - R Thangavel
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - I Tiago
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
| | - S Tiwari
- National Fungal Culture Collection of India (NFCCI)
- Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
| | - Z Tkalčec
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - M A Tomashevskaya
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - C Tonegawa
- Department of Clinical Plant Science, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - H X Tran
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 46 Duc Thang Ward, Bac Tu Liem District, Hanoi City, Vietnam
| | - N T Tran
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park 4102, Queensland, Australia
| | - J Trovão
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
| | - V E Trubitsyn
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - J Van Wyk
- Department of Plant Soil and Microbial Sciences, 1066 Bogue Street, Michigan State University, East Lansing, MI, 48824 USA
| | - W A S Vieira
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - J Vila
- Passatge del Torn, 4, 17800 Olot, Spain
| | - C M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A Vizzini
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy
| | - S V Volobuev
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - D T Vu
- Research Planning and International Cooperation Department, Plant Resources Center, An Khanh, Hoai Duc, Hanoi 152900, Vietnam
| | - N Wangsawat
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110 Thailand
| | - T Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - E Ercole
- Via Murazzano 11, I-10141, Torino (TO), Italy
| | - B W Ferreira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - A P de Souza
- Laboratório de Microbiologia e Fitopatologia, Universidade Federal de Uberlândia, Monte Carmelo, 38500-000, MG, Brazil
| | - B S Vieira
- Laboratório de Microbiologia e Fitopatologia, Universidade Federal de Uberlândia, Monte Carmelo, 38500-000, MG, Brazil
| | - J Z Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| |
Collapse
|
48
|
Rodríguez-Andrade E, Cano-Lira JF, Wiederhold N, Pérez-Cantero A, Guarro J, Stchigel AM. A revision of malbranchea-like fungi from clinical specimens in the United States of America reveals unexpected novelty. IMA Fungus 2021; 12:25. [PMID: 34493345 PMCID: PMC8422767 DOI: 10.1186/s43008-021-00075-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/23/2021] [Indexed: 11/10/2022] Open
Abstract
The fungi of the order Onygenales can cause important human infections; however, their taxonomy and worldwide occurrence is still little known. We have studied and identified a representative number of clinical fungi belonging to that order from a reference laboratory in the USA. A total of 22 strains isolated from respiratory tract (40%) and human skin and nails (27.2%) showed a malbranchea-like morphology. Six genera were phenotypically and molecularly identified, i.e. Auxarthron/Malbranchea (68.2%), Arachnomyces (9.1%), Spiromastigoides (9.1%), and Currahmyces (4.5%), and two newly proposed genera (4.5% each). Based on the results of the phylogenetic study, we synonymized Auxarthron with Malbranchea, and erected two new genera: Pseudoarthropsis and Pseudomalbranchea. New species proposed are: Arachnomyces bostrychodes, A. graciliformis, Currahmyces sparsispora, Malbranchea gymnoascoides, M. multiseptata, M. stricta, Pseudoarthropsis crassispora, Pseudomalbranchea gemmata, and Spiromastigoides geomycoides, along with a new combination for Malbranchea gypsea. The echinocandins showed the highest in vitro antifungal activity against the studied isolates, followed by terbinafine and posaconazole; in contrast, amphotericin B, fluconazole, itraconazole and 5-fluorocytosine were less active or lacked in vitro activity against these fungi.
Collapse
Affiliation(s)
- Ernesto Rodríguez-Andrade
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201, Reus, Tarragona, Spain
| | - José F Cano-Lira
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201, Reus, Tarragona, Spain.
| | - Nathan Wiederhold
- Fungus Testing Laboratory, University of Texas Health Science Center, San Antonio, TX, USA
| | - Alba Pérez-Cantero
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201, Reus, Tarragona, Spain
| | - Josep Guarro
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201, Reus, Tarragona, Spain
| | - Alberto M Stchigel
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201, Reus, Tarragona, Spain
| |
Collapse
|
49
|
Valenzuela-Lopez N, Martin-Gomez MT, Los-Arcos I, Stchigel AM, Guarro J, Cano-Lira JF. A new pleosporalean fungus isolated from superficial to deep human clinical specimens. Med Mycol 2021; 59:278-288. [PMID: 32717745 DOI: 10.1093/mmy/myaa055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
Human infections by pleosporalean fungi (class Dothideomycetes, phylum Ascomycota) are rarely reported. Because their identification is challenging using morphological characterization, several phylogenetic markers must be sequenced for an accurate identification and taxonomical placement of the isolates. Three isolates of clinical origin were phenotypically characterized, but due to the absence of relevant morphological traits, D1-D2 domains of the 28S nrRNA gene (LSU), the internal transcribed spacer region (ITS) of the nrRNA, and fragments of the RNA polymerase II subunit 2 (rpb2) and translation elongation factor 1-alpha (tef1) genes were sequenced to allow a phylogenetic analysis that would solve their phylogenetic placement. That analysis revealed that these isolates did not match any previously known pleosporalean genera, and they are proposed here as the new fungal genus, Gambiomyces. Unfortunately, the isolates remained sterile, which, consequently, made the morphological description of the reproductive structures impossible. Future studies should try to understand the behaviour of this fungus in nature as well as its characteristics as an opportunistic fungal pathogen. Molecular identification is becoming an essential tool for proper identification of Dothideomycetes of clinical origin. LAY ABSTRACT We describe a new pleosporalen pathogenic fungus, Gambiomyces profunda, found in superficial to deep samples from a human patient. Because all strains remained sterile, the fungus was finally identified following a phylogenetic analysis by using four different molecular markers.
Collapse
Affiliation(s)
- Nicomedes Valenzuela-Lopez
- Universitat Rovira i Virgili, Medical School, Mycology Unit, and IISPV, C/ Sant Llorenç 21, 43201 Reus, Spain.,Unidad de Microbiología, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | | | - Ibai Los-Arcos
- Infectious Diseases Department, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Alberto M Stchigel
- Universitat Rovira i Virgili, Medical School, Mycology Unit, and IISPV, C/ Sant Llorenç 21, 43201 Reus, Spain
| | - Josep Guarro
- Universitat Rovira i Virgili, Medical School, Mycology Unit, and IISPV, C/ Sant Llorenç 21, 43201 Reus, Spain
| | - José F Cano-Lira
- Universitat Rovira i Virgili, Medical School, Mycology Unit, and IISPV, C/ Sant Llorenç 21, 43201 Reus, Spain
| |
Collapse
|
50
|
Xu XL, Zeng Q, Lv YC, Jeewon R, Maharachchikumbura SSN, Wanasinghe DN, Hyde KD, Xiao QG, Liu YG, Yang CL. Insight into the Systematics of Novel Entomopathogenic Fungi Associated with Armored Scale Insect, Kuwanaspis howardi (Hemiptera: Diaspididae) in China. J Fungi (Basel) 2021; 7:jof7080628. [PMID: 34436167 PMCID: PMC8401669 DOI: 10.3390/jof7080628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
This study led to the discovery of three entomopathogenic fungi associated with Kuwanaspis howardi, a scale insect on Phyllostachys heteroclada (fishscale bamboo) and Pleioblastus amarus (bitter bamboo) in China. Two of these species belong to Podonectria: P. kuwanaspidis X.L. Xu & C.L. Yang sp. nov. and P. novae-zelandiae Dingley. The new species P. kuwanaspidis has wider and thicker setae, longer and wider asci, longer ascospores, and more septa as compared with similar Podonectria species. The morphs of extant species P. novae-zelandiae is confirmed based on sexual and asexual morphologies. Maximum likelihood and Bayesian inference analyses of ITS, LSU, SSU, tef1-α, and rpb2 sequence data provide further evidence for the validity of the two species and their placement in Podonectriaceae (Pleosporales). The second new species, Microcera kuwanaspidis X.L. Xu & C.L. Yang sp. nov., is established based on DNA sequence data from ITS, LSU, SSU, tef1-α, rpb1, rpb2, acl1, act, cmdA, and his3 gene regions, and it is characterized by morphological differences in septum numbers and single conidial mass.
Collapse
Affiliation(s)
- Xiu-Lan Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China; (X.-L.X.); (Q.Z.); (Y.-C.L.); (Y.-G.L.)
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
- Research Institute of Forestry, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu 611130, China;
| | - Qian Zeng
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China; (X.-L.X.); (Q.Z.); (Y.-C.L.); (Y.-G.L.)
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi-Cong Lv
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China; (X.-L.X.); (Q.Z.); (Y.-C.L.); (Y.-G.L.)
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius;
| | | | - Dhanushka N. Wanasinghe
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 649201, China;
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Qian-Gang Xiao
- Research Institute of Forestry, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu 611130, China;
| | - Ying-Gao Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China; (X.-L.X.); (Q.Z.); (Y.-C.L.); (Y.-G.L.)
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Chun-Lin Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China; (X.-L.X.); (Q.Z.); (Y.-C.L.); (Y.-G.L.)
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|