1
|
Yao H, Chen J, Wang Y, Li Y, Tang P, Liang M, Jiang Q. Uncovering therapeutic targets for Pre-eclampsia and pregnancy hypertension via multi-tissue data integration. BMC Pregnancy Childbirth 2025; 25:479. [PMID: 40269770 PMCID: PMC12020376 DOI: 10.1186/s12884-025-07608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Pre-eclampsia (PE) and pregnancy hypertension (PH) are common and serious complications during pregnancy, which can lead to maternal and fetal death in severe cases. Therefore, further research on the potential therapeutic targets of PE and PH is of great significance for developing new treatment strategies. METHODS This study used the summary data-based Mendelian randomization (SMR) method to analyze expression quantitative trait loci (eQTL) data from blood, aorta, and uterus with Genome-wide association studies (GWAS) data on PE and PH, exploring potential genetic loci involved in PE and PH. Since proteinuria is a clinical manifestation of PE, we also analyzed genes related to the kidney and PE. The HEIDI test was used for heterogeneity testing, and results were adjusted using FDR. The cis-eQTL data were obtained from the blood summary-level data of the eQTLGen Consortium and the aorta and uterus data from the V8 release of the GTEx eQTL summary data. The GWAS data for PE and PH were obtained from the FinnGen Documentation of R10 release. This study utilized the STROBE-MR checklist for reporting Mendelian Randomization (MR) studies. RESULTS This study identified several potential therapeutic targets by integrating eQTL data from blood, uterus, and aorta with GWAS data for PE and PH, as well as kidney eQTL data with GWAS data for PE. Additionally, the study discovered some genes with common roles in PE and PH, offering new insights into the shared pathological mechanisms of these two conditions. These findings not only provide new clues to the pathogenesis of PE and PH but also offer crucial foundational data for the development of future therapeutic strategies. CONCLUSION This study revealed multiple potential therapeutic targets for PE and PH, providing new insights for basic experimental research and clinical treatment to mitigate the severe consequences of PE and PH. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Hang Yao
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Jiahao Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Wang
- Graduate School of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuxin Li
- Graduate School of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Peiyu Tang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mingpeng Liang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Qingling Jiang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
2
|
Baragetti A, Alieva AS, Grigore L, Pellegatta F, Lupi A, Scrimali C, Cefalù AB, Hutten BA, Wiegman A, Knaapen P, Bom MJ, Nurmohamed NS, Reutova O, Konradi A, Shlyakhto E, Stroes ESG, Averna M, Catapano AL. Fibroblast growth factor 5: a novel biomarker for familial hypercholesterolaemia. Eur Heart J 2025:ehaf045. [PMID: 39928422 DOI: 10.1093/eurheartj/ehaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/25/2024] [Accepted: 01/21/2025] [Indexed: 02/12/2025] Open
Abstract
BACKGROUND AND AIMS Identification of individuals affected by familial hypercholesterolaemia (FH) is suboptimal when genetic tests are unavailable. Relying only on low-density lipoprotein cholesterol (LDL-C) is challenging as it may not allow distinguishing individuals with FH from hypercholesterolaemic (HC) individuals from the general population. The aim of this study was to determine whether biomarkers associated with cardiovascular disease and/or inflammation identify FH individuals and distinguish them from HC individuals. METHODS A panel of 264 proteins in plasma was measured and machine learning was used to search for those that can distinguish FH individuals, either genetically proven (genFH) or clinically diagnosed (clinFH) from HC and control individuals. RESULTS Both genFH and clinFH had elevated plasma levels of fibroblast growth factor 5 (FGF-5) compared with controls (mean area under the curve [AUC] > .990 for both, P < .001) or HC individuals (mean AUC >.990, P < .001), even after matching for LDL-C levels. An immunoenzymatic assay confirmed that FGF-5 was elevated in genFH and clinFH in all cohorts analysed. CONCLUSIONS This analysis suggests that FGF-5 could be a biomarker to discriminate individuals living with FH from HC individuals.
Collapse
Affiliation(s)
- Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzarett 9, 20133 Milan, Italy
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Asiiat S Alieva
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Liliana Grigore
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Fabio Pellegatta
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Andrea Lupi
- S.I.S.A. Centre for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | - Chiara Scrimali
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo-School of Medicine, Palermo, Italy
| | - Angelo B Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo-School of Medicine, Palermo, Italy
| | - Barbara A Hutten
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Research Institute, Diabetes and Metabolism, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Albert Wiegman
- Department of Pediatrics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Knaapen
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michiel J Bom
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nick S Nurmohamed
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Olga Reutova
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Alexandra Konradi
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Evgeny Shlyakhto
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Maurizio Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo-School of Medicine, Palermo, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzarett 9, 20133 Milan, Italy
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| |
Collapse
|
3
|
Ma Z, Chen Q, Liu Z, Li X, Zhang H, Feng X. Genetically predicted inflammatory proteins and the risk of atrial fibrillation: a bidirectional Mendelian randomization study. Front Cardiovasc Med 2024; 11:1375750. [PMID: 38988665 PMCID: PMC11234858 DOI: 10.3389/fcvm.2024.1375750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
Purpose The causal associations between inflammatory factors and atrial fibrillation (AF) remained unclear. We aimed to investigate whether genetically predicted inflammatory proteins are related to the risk of AF, and vice versa. Methods A bidirectional two-sample Mendelian randomization study was performed. The genetic variation of 91 inflammatory proteins were derived from genome-wide association study (GWAS) data of European ancestry (n = 14,824). Summary statistics for AF were obtained from a published meta-analysis study (n = 1,030,836) and the FinnGen study (n = 261,395). Results Genetically predicted fibroblast growth factor 5 (FGF5) was significantly positively associated with risk of AF [[odds ratio (OR): 1.07; 95% CI: 1.04-1.10; P < 0.01], and CD40l receptor was significantly negatively associated with risk of AF (OR: 0.95; 95% CI: 0.92-0.98; P = 0.02) in the meta-analysis study. In the FinnGen study, similar results were observed in FGF5 (OR: 1.11; 95% CI: 1.06-1.16; P < 0.01) and CD40l receptor (OR: 0.93; 95% CI: 0.89-0.97; P = 0.03) for AF. In the FinnGen study, TNF-beta was significantly positively associated with risk of AF (OR: 1.05; 95% CI: 1.02-1.09; P = 0.03) and leukemia inhibitory factor receptor was significantly negatively associated with risk of AF (OR: 0.86; 95% CI: 0.80-0.91; P = 0.001). The causal effect of AF on inflammatory proteins was not observed. Conclusion Our study suggested that FGF5 and CD40l receptor have a potential causal association with AF, and targeting these factors may help in the treatment of AF.
Collapse
Affiliation(s)
| | | | | | | | - Huaming Zhang
- Division of Cardiology, Departments of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Feng
- Division of Cardiology, Departments of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Hu Y, Lin L, Zhang L, Li Y, Cui X, Lu M, Zhang Z, Guan X, Zhang M, Hao J, Wang X, Huan J, Yang W, Li C, Li Y. Identification of Circulating Plasma Proteins as a Mediator of Hypertension-Driven Cardiac Remodeling: A Mediation Mendelian Randomization Study. Hypertension 2024; 81:1132-1144. [PMID: 38487880 PMCID: PMC11025611 DOI: 10.1161/hypertensionaha.123.22504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND This study focused on circulating plasma protein profiles to identify mediators of hypertension-driven myocardial remodeling and heart failure. METHODS A Mendelian randomization design was used to investigate the causal impact of systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure on 82 cardiac magnetic resonance traits and heart failure risk. Mediation analyses were also conducted to identify potential plasma proteins mediating these effects. RESULTS Genetically proxied higher SBP, DBP, and pulse pressure were causally associated with increased left ventricular myocardial mass and alterations in global myocardial wall thickness at end diastole. Elevated SBP and DBP were linked to increased regional myocardial radial strain of the left ventricle (basal anterior, mid, and apical walls), while higher SBP was associated with reduced circumferential strain in specific left ventricular segments (apical, mid-anteroseptal, mid-inferoseptal, and mid-inferolateral walls). Specific plasma proteins mediated the impact of blood pressure on cardiac remodeling, with FGF5 (fibroblast growth factor 5) contributing 2.96% (P=0.024) and 4.15% (P=0.046) to the total effect of SBP and DBP on myocardial wall thickness at end diastole in the apical anterior segment and leptin explaining 15.21% (P=0.042) and 23.24% (P=0.022) of the total effect of SBP and DBP on radial strain in the mid-anteroseptal segment. Additionally, FGF5 was the only mediator, explaining 4.19% (P=0.013) and 4.54% (P=0.032) of the total effect of SBP and DBP on heart failure susceptibility. CONCLUSIONS This mediation Mendelian randomization study provides evidence supporting specific circulating plasma proteins as mediators of hypertension-driven cardiac remodeling and heart failure.
Collapse
Affiliation(s)
- Yuanlong Hu
- First Clinical Medical College (Y.H., M.Z., J. Huan, Yunlun Li), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Innovation Research Institute of Traditional Chinese Medicine (L.L., M.L., Z.Z., X.G., J. Hao, W.Y., C.L.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine (L.Z., X.C.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Li
- Experimental Center (Yuan Li), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhai Cui
- College of Traditional Chinese Medicine (L.Z., X.C.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine (L.L., M.L., Z.Z., X.G., J. Hao, W.Y., C.L.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine (L.L., M.L., Z.Z., X.G., J. Hao, W.Y., C.L.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiuya Guan
- Innovation Research Institute of Traditional Chinese Medicine (L.L., M.L., Z.Z., X.G., J. Hao, W.Y., C.L.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Muxin Zhang
- First Clinical Medical College (Y.H., M.Z., J. Huan, Yunlun Li), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaqi Hao
- Innovation Research Institute of Traditional Chinese Medicine (L.L., M.L., Z.Z., X.G., J. Hao, W.Y., C.L.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaojie Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China (X.W.)
| | - Jiaming Huan
- First Clinical Medical College (Y.H., M.Z., J. Huan, Yunlun Li), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqing Yang
- Innovation Research Institute of Traditional Chinese Medicine (L.L., M.L., Z.Z., X.G., J. Hao, W.Y., C.L.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine (L.L., M.L., Z.Z., X.G., J. Hao, W.Y., C.L.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- First Clinical Medical College (Y.H., M.Z., J. Huan, Yunlun Li), Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China (Yunlun Li)
| |
Collapse
|
5
|
Surakka I, Wu KH, Hornsby W, Wolford BN, Shen F, Zhou W, Huffman JE, Pandit A, Hu Y, Brumpton B, Skogholt AH, Gabrielsen ME, Walters RG, Hveem K, Kooperberg C, Zöllner S, Wilson PW, Sutton NR, Daly MJ, Neale BM, Willer CJ. Multi-ancestry meta-analysis identifies 5 novel loci for ischemic stroke and reveals heterogeneity of effects between sexes and ancestries. CELL GENOMICS 2023; 3:100345. [PMID: 37601974 PMCID: PMC10435368 DOI: 10.1016/j.xgen.2023.100345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/18/2022] [Accepted: 05/26/2023] [Indexed: 08/22/2023]
Abstract
Stroke is the second leading cause of death and disability worldwide. Stroke prevalence varies by sex and ancestry, possibly due to genetic heterogeneity between subgroups. We performed a genome-wide meta-analysis of 16 biobanks across multiple ancestries to study the genetics of ischemic stroke (60,176 cases, 1,310,725 controls) as part of the Global Biobank Meta-analysis Initiative (GBMI) and further combined the results with previously published MegaStroke. Five novel loci for ischemic stroke (LAMC1, CALCRL, PLSCR1, CDKN1A, and SWAP70) were identified after replication in four additional datasets. One previously reported locus showed significant ancestry heterogeneity (ABO), and one showed significant sex heterogeneity (ALDH2). The ALDH2 association was male specific (males p = 1.67e-24, females p = 0.126) and was additionally observed only in the East Asian ancestry (male) samples. These findings emphasize the need for more diverse datasets with large sample sizes to further understand the genetic predisposition of stroke in different ancestry and sex groups.
Collapse
Affiliation(s)
- Ida Surakka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kuan-Han Wu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Whitney Hornsby
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Brooke N. Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Fred Shen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer E. Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Anita Pandit
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Yao Hu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ben Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Medicine, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
| | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maiken E. Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robin G. Walters
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - The TOPMed Stroke Working Group
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Medicine, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Atlanta VA Health Care System, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Million Veteran Program (MVP)
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Medicine, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Atlanta VA Health Care System, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sebastian Zöllner
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Peter W.F. Wilson
- Atlanta VA Health Care System, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Nadia R. Sutton
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mark J. Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Benjamin M. Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Cristen J. Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Clinic of Medicine, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - on behalf of the Global Biobank Meta-analysis Initiative (GBMI)
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Medicine, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Atlanta VA Health Care System, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Xi X, Wu Q, Wang X, Sun X, Yu G, Jiang L, Wu H, Zhang L. The association between iron metabolism with the change of blood pressure and risk of hypertension: A large cross-sectional study. J Trace Elem Med Biol 2023; 79:127193. [PMID: 37269648 DOI: 10.1016/j.jtemb.2023.127193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND The relationship between iron metabolism and variations in blood pressure and hypertension risk is still not clear. This study aimed to determine whether iron metabolism is associated with changes in blood pressure and hypertension prevalence in the general United States population. METHODS The National Health and Nutrition Examination Survey (NAHNES) database contains data on 116876 Americans from 1999 to 2020 years. Data from the NHANES database were used to examine the relationships between iron metabolism (serum iron [SI], serum ferritin [SF], and soluble transferrin receptor [sTfR]) and changes in blood pressure and hypertension prevalence. Generalized linear models and restricted cubic spline (RCS) plot curves were used to estimate the relationship between iron metabolism and hypertension. Further, generalized additive models with smooth functions were used to identify the relationship between iron metabolism and blood pressure. Finally, a stratified subgroup analysis was performed. RESULTS A total of 6710 participants were included in our analysis. The RCS plot showed a linear relationship between SI, as well as sTfR, and hypertension prevalence. SF and hypertension prevalence were associated in a J-shape. In addition, the relationship between SI and systolic blood pressure (SBP) and diastolic blood pressure (DBP) decreased initially and then increased. A correlation between SF, SBP, and DBP first decreased, then increased, and finally decreased. A positive linear correlation existed between sTfR and SBP, but it increased and then decreased with DBP. CONCLUSION The correlation between SF and hypertension prevalence displayed a J-curve. In contrast, the correlation between SI, as well as sTfR, and hypertension risk was negative and positive, respectively.
Collapse
Affiliation(s)
- Xiaolong Xi
- Department of Critical Care Medicine, Shaoxing People's Hospital, No.568 Zhong Xing Road, Shaoxing, Zhejiang, 312000, China
| | - Qiong Wu
- Department of Cardiology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu, 215300, China
| | - Xiaotong Wang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xuedong Sun
- Department of Critical Care Medicine, Shaoxing People's Hospital, No.568 Zhong Xing Road, Shaoxing, Zhejiang, 312000, China
| | - Guofeng Yu
- Department of Critical Care Medicine, Shaoxing People's Hospital, No.568 Zhong Xing Road, Shaoxing, Zhejiang, 312000, China
| | - Lixian Jiang
- Department of Cardiology, Wuxi No.2 People's Hospital, Wuxi Clinical College of Nanjing Medical University, Wuxi, Jiangsu, 214000, China
| | - Hanzhi Wu
- Department of Cardiology, Wuxi No.2 People's Hospital, Wuxi Clinical College of Nanjing Medical University, Wuxi, Jiangsu, 214000, China
| | - Lizhu Zhang
- Department of Cardiology, Jiangnan University Medical Center, No.68 Zhongshan Road, Wuxi, Jiangsu, 214001, China.
| |
Collapse
|
7
|
Hoang SH. Fibroblast growth factor 5 (FGF5) and its missense mutant FGF5-H174 underlying trichomegaly: a molecular dynamics simulation investigation. J Biomol Struct Dyn 2023; 41:14786-14796. [PMID: 36905676 DOI: 10.1080/07391102.2023.2188953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023]
Abstract
The missense mutation Y174H of FGF5 (FGF5-H174) had been associated with trichomegaly, characterized by abnormally long and pigmented eyelashes. The amino acid tyrosine (Tyr/Y) at position 174 is conserved across many species, proposedly holding important characteristics for the functions of FGF5. Microsecond molecular dynamics simulations along with protein-protein docking and residue interacting network analysis were employed to investigate the structural dynamics and binding mode of both wild-type (FGF5-WT) and its mutated counterpart (FGF5-H174). It was found that the mutation decreased number of hydrogen bonds within the protein, sheet secondary structure, interaction of residue 174 with other residues, and number of salt-bridges. On the other hand, the mutation increased solvent accessible surface area, number of hydrogen bonds between the protein and solvent, coil secondary structure, protein C-alpha backbone root mean square deviation, protein residue root mean square fluctuations, as well as occupied conformational space. In addition, protein-protein docking integrated with molecular dynamics simulations and molecular mechanics - Poisson-Boltzmann surface area (MM/PBSA) binding energy calculation demonstrated that the mutated variant possessed stronger binding affinity towards fibroblast growth factor receptor 1 (FGFR1). However, residue interaction network analysis demonstrated that the binding mode of the FGFR1-FGF5-H174 complex was drastically different from that of the FGFR1-FGF5-WT complex. In conclusion, the missense mutation conferred more instability within itself and stronger binding affinity towards FGFR1 with distinctively altered binding mode or residue connectivity. These findings might help explain the decreased pharmacological activity of FGF5-H174 towards FGFR1, underlying trichomegaly.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Skyler H Hoang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
8
|
Wang H, Lan X, Noman M, Wang Z, Zhang J. Recombinant Oil-Body-Expressed Oleosin-hFGF5 in Arabidopsis thaliana Regulates Hair Growth. Genes (Basel) 2022; 14:genes14010021. [PMID: 36672762 PMCID: PMC9858518 DOI: 10.3390/genes14010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
FGF5 (Fibroblast Growth Factor) is a member of the fibroblast growth factor family, which not only regulates growth and development but also inhibits hair regeneration. The oil-body expression vector pOTB-hFGF5 was constructed by the genetic engineering method and it was transformed into Arabidopsis by flora dip. T3 homozygous transgenic Arabidopsis was obtained after screening and propagation by the PCR and Western blot methods. The recombinant oil-body-expressed oleosin-hFGF5 can inhibit the proliferation of hair follicle epithelial cells and it exhibits the pharmacological activity of inhibiting hair regeneration in vivo by protein hybridization and imunohistochemistry. At the same time, the potential mechanism of recombinant oil-body-expressed oleosin-hFGF5 inhibiting hair growth was also revealed by RNA-Seq. This implies that the recombinant oil-body-expressed oleosin-hFGF5 has a good effect on inhibiting hair growth.
Collapse
Affiliation(s)
- Hongyu Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Changchun 130118, China
| | - Xinxin Lan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Muhammad Noman
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Correspondence:
| | - Ze Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
9
|
Fibroblast growth factor 5 overexpression ameliorated lipopolysaccharide-induced apoptosis of hepatocytes through regulation of the phosphoinositide-3-kinase/protein kinase B pathway. Chin Med J (Engl) 2022; 135:2859-2868. [PMID: 36728504 PMCID: PMC9943982 DOI: 10.1097/cm9.0000000000002540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Sepsis is a systemic inflammatory syndrome induced by several infectious agents. Multiple organs are affected by sepsis, including the liver, which plays an important role in metabolism and immune homeostasis. Fibroblast growth factors (FGFs) participate in several biological processes, although the role of FGF5 in sepsis is unclear. METHODS In this study, lipopolysaccharide (LPS) was administrated to mice to establish a sepsis-induced liver injury. A similar in vitro study was conducted using L-02 hepatocytes. Western blot and immunohistochemistry staining were performed to evaluate the FGF5 expression level in liver tissues and cells. Inflammatory cell infiltrations, cleaved-caspase-3 expressions, reactive oxygen species and levels of inflammatory cytokines were detected by immunofluorescence, dihydroethidium staining, and reverse transcription quantitative polymerase chain reaction analysis, respectively. Flow cytometry was used to detect the apoptosis level of cells. In addition, ribonucleic acid (RNA)-sequencing was applied to explore the possible mechanism by which FGF5 exerted effects. RESULTS LPS administration caused FGF5 down-regulation in the mouse liver as well as in L-02 hepatocytes. Additionally, with FGF5 overexpression, liver injury and the level of hepatocyte apoptosis were ameliorated. Further, RNA sequencing performed in hepatocytes revealed the phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) pathway as a possible pathway regulated by FGF5 . This was supported using an inhibitor of the PI3K/AKT pathway, which abrogated the protective effect of FGF5 in LPS-induced hepatocyte injury. CONCLUSION The anti-apoptotic effect of FGF5 on hepatocytes suffering from LPS has been demonstrated and was dependent on the activation of the PI3K/AKT signaling pathway.
Collapse
|
10
|
FGF5 protects heart from sepsis injury by attenuating cardiomyocyte pyroptosis through inhibiting CaMKII/NFκB signaling. Biochem Biophys Res Commun 2022; 636:104-112. [DOI: 10.1016/j.bbrc.2022.10.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022]
|
11
|
Armstrong ND, Srinivasasainagendra V, Chekka LMS, Nguyen NHK, Nahid NA, Jones AC, Tanner RM, Hidalgo BA, Limdi NA, Claas SA, Gong Y, McDonough CW, Cooper-DeHoff RM, Johnson JA, Tiwari HK, Arnett DK, Irvin MR. Genetic Contributors of Efficacy and Adverse Metabolic Effects of Chlorthalidone in African Americans from the Genetics of Hypertension Associated Treatments (GenHAT) Study. Genes (Basel) 2022; 13:1260. [PMID: 35886043 PMCID: PMC9319619 DOI: 10.3390/genes13071260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Hypertension is a leading risk factor for cardiovascular disease mortality. African Americans (AAs) have the highest prevalence of hypertension in the United States, and to alleviate the burden of hypertension in this population, better control of blood pressure (BP) is needed. Previous studies have shown considerable interpersonal differences in BP response to antihypertensive treatment, suggesting a genetic component. Utilizing data from 4297 AA participants randomized to chlorthalidone from the Genetics of Hypertension Associated Treatments (GenHAT) study, we aimed to identify variants associated with the efficacy of chlorthalidone. An additional aim was to find variants that contributed to changes in fasting glucose (FG) in these individuals. We performed genome-wide association analyses on the change of systolic and diastolic BP (SBP and DBP) over six months and FG levels over 24 months of treatment. We sought replication in the International Consortia of Pharmacogenomics Studies. We identified eight variants statistically associated with BP response and nine variants associated with FG response. One suggestive LINC02211-CDH9 intergenic variant was marginally replicated with the same direction of effect. Given the impact of hypertension in AAs, this study implies that understanding the genetic background for BP control and glucose changes during chlorthalidone treatment may help prevent adverse cardiovascular events in this population.
Collapse
Affiliation(s)
- Nicole D. Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (N.D.A.); (A.C.J.); (R.M.T.); (B.A.H.)
| | - Vinodh Srinivasasainagendra
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (V.S.); (H.K.T.)
| | - Lakshmi Manasa S. Chekka
- Division of Applied Regulatory Sciences, Center for Drug Evaluation and Research, Silver Spring, MD 20903, USA;
| | - Nam H. K. Nguyen
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA; (N.H.K.N.); (N.A.N.); (Y.G.); (C.W.M.); (R.M.C.-D.); (J.A.J.)
| | - Noor A. Nahid
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA; (N.H.K.N.); (N.A.N.); (Y.G.); (C.W.M.); (R.M.C.-D.); (J.A.J.)
| | - Alana C. Jones
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (N.D.A.); (A.C.J.); (R.M.T.); (B.A.H.)
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rikki M. Tanner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (N.D.A.); (A.C.J.); (R.M.T.); (B.A.H.)
| | - Bertha A. Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (N.D.A.); (A.C.J.); (R.M.T.); (B.A.H.)
| | - Nita A. Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Steven A. Claas
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY 40506, USA; (S.A.C.); (D.K.A.)
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA; (N.H.K.N.); (N.A.N.); (Y.G.); (C.W.M.); (R.M.C.-D.); (J.A.J.)
| | - Caitrin W. McDonough
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA; (N.H.K.N.); (N.A.N.); (Y.G.); (C.W.M.); (R.M.C.-D.); (J.A.J.)
| | - Rhonda M. Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA; (N.H.K.N.); (N.A.N.); (Y.G.); (C.W.M.); (R.M.C.-D.); (J.A.J.)
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA; (N.H.K.N.); (N.A.N.); (Y.G.); (C.W.M.); (R.M.C.-D.); (J.A.J.)
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (V.S.); (H.K.T.)
| | - Donna K. Arnett
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY 40506, USA; (S.A.C.); (D.K.A.)
- Deans Office, College of Public Health, University of Kentucky, Lexington, KY 40506, USA
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (N.D.A.); (A.C.J.); (R.M.T.); (B.A.H.)
| |
Collapse
|
12
|
Xin Q, Han Y, Jiang W, Wang J, Luan Y, Ji Q, Sun W. Genetic susceptibility analysis of FGF5 polymorphism to preeclampsia in Chinese Han population. Mol Genet Genomics 2022; 297:791-800. [PMID: 35380267 DOI: 10.1007/s00438-022-01889-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
Abstract
Fibroblast growth factor 5 (FGF5), which is a well-established causative factor for blood pressure, has been identified as a susceptibility gene for preeclampsia (PE) in European and Central Asian women. Here, we examined whether polymorphism rs16998073 in FGF5 confer a significant risk to PE in Chinese Han population by case-control association analysis. FGF5 rs16998073 was genotyped by Sanger sequencing in women with preeclampsia (n = 187) and healthy controls (n = 229) of Han Chinese. We found the frequency of rs16998073T allele was significantly higher in PE patients than that in controls. Next, we utilized dual-luciferase reporter assays and electrophoretic mobility shift assay (EMSA) reactions to investigate whether rs16998073 different alleles could affect the transcriptional activity of FGF5. The dual luciferase reporter assay showed that T allele increased the transcriptional efficiency by 1.5-fold compared with the G allele. Similarly, EMSA revealed that the T allele had a strong transcription factor binding strength compared with the G allele. We then examined the mRNA and protein expression levels of FGF5 in placental tissues by real-time PCR and Western blot assays. We found FGF5 were significantly upregulated in placental tissues from PE patients or PE mouse model than their corresponding controls. In addition, in vitro cell experiments confirmed that FGF5 could promote cell apoptosis of HTR8/SVneo and inhibit cell invasion. Taken together, our data provide evidence implicating rs16998073 of FGF5 as a functional genetic risk variant for PE disease and FGF5 might participate in development of PE disease.
Collapse
Affiliation(s)
- Qian Xin
- Central Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, People's Republic of China
| | - Ying Han
- Experimental Animal Center, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, People's Republic of China
| | - Wen Jiang
- Central Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, People's Republic of China
| | - Jue Wang
- Central Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, People's Republic of China
| | - Yun Luan
- Central Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, People's Republic of China
| | - Qinghong Ji
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Road, Jinan, 250033, Shandong, People's Republic of China
| | - Wenjuan Sun
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Road, Jinan, 250033, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Liu Y, Luo P, Fu Y, Hao T, Liu X, Ding Q, Peng Y. Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives. Beilstein J Org Chem 2021; 17:2462-2476. [PMID: 34630726 PMCID: PMC8474070 DOI: 10.3762/bjoc.17.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022] Open
Abstract
Great progress has been made in the tandem annulation of enynes in the past few years. This review only presents the corresponding reactions of 1,3-enyne structural motifs to provide the functionalized pyridine and pyrrole derivatives. The functionalization reactions cover iodination, bromination, trifluoromethylation, azidation, carbonylation, arylation, alkylation, selenylation, sulfenylation, amidation, esterification, and hydroxylation. We also briefly introduce the applications of the products and the reaction mechanisms for the synthesis of corresponding N-heterocycles.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Puying Luo
- Department of Gynaecology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, 92 Aiguo Road, Nanchang, Jiangxi, 330006, China
| | - Yang Fu
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Tianxin Hao
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Xuan Liu
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Qiuping Ding
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| |
Collapse
|
14
|
Ashraf MA, Liu Z, Li C, Zhang D. Magnetic nanocatalysts in synthesis of xanthenes. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1814818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Muhammad Aqeel Ashraf
- School of Forestry, Henan Agricultural University, Zhengzhou, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhenling Liu
- School of Management, Henan University of Technology, Zhengzhou, China
| | - Cheng Li
- School of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Dangquan Zhang
- School of Forestry, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
15
|
Aqeel Ashraf M, Liu Z, Yang Y, Zhang D. Magnetic recoverable nanomaterials: An efficient strategy for synthesis of pyrroles. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1792933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Muhammad Aqeel Ashraf
- School of Forestry, Henan Agricultural University, Zhengzhou, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhenling Liu
- School of Management, Henan University of Technology, Zhengzhou, China
| | - Yafeng Yang
- School of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Dangquan Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
16
|
Aqeel Ashraf M, Liu Z, Li C, Zhang D. Synthesis of heterocycles using nanomagnetic nickel catalysts. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1789168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Muhammad Aqeel Ashraf
- School of Forestry, Henan Agricultural University, Zhengzhou, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhenling Liu
- School of Management, Henan University of Technology, Zhengzhou, China
| | - Cheng Li
- School of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Dangquan Zhang
- School of Forestry, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
17
|
Aqeel Ashraf M, Liu Z, Yang Y, Li C, Zhang D. Magnetic nanomaterials catalyzed synthesis of tetrazoles. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1783685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Muhammad Aqeel Ashraf
- School of Forestry, Henan Agricultural University, Zhengzhou, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhenling Liu
- School of Management, Henan University of Technology, Zhengzhou, China
| | - Yafeng Yang
- School of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Cheng Li
- School of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Dangquan Zhang
- School of Forestry, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
18
|
Yang M, Shi D, Wang Y, Ebadi AG, Toughani M. Study on Interaction of Coomassie Brilliant Blue G-250 with Bovine Serum Albumin by Multispectroscopic. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10096-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Jeong H, Jin HS, Kim SS, Shin D. Identifying Interactions between Dietary Sodium, Potassium, Sodium-Potassium Ratios, and FGF5 rs16998073 Variants and Their Associated Risk for Hypertension in Korean Adults. Nutrients 2020; 12:nu12072121. [PMID: 32709000 PMCID: PMC7400941 DOI: 10.3390/nu12072121] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hypertension is affected by both genetic and dietary factors. This study aimed to examine the interaction between dietary sodium/potassium intake, sodium–potassium ratios, and FGF5 rs16998073 and link these with increased risk for developing hypertension. Using data from the Health Examinee (HEXA) Study of the Korean Genome and Epidemiologic Study (KoGES), we were able to identify a total of 17,736 middle-aged Korean adults who could be included in our genome-wide association study (GWAS) to confirm any associations between hypertension and the FGF5 rs16998073 variant. GWAS analysis revealed that the FGF5 rs16698073 variant demonstrated the strongest association with hypertension in this population. Multivariable logistic regression was used to examine the relationship between dietary intake of sodium, potassium, and sodium–potassium ratios and the FGF5 rs16998073 genotypes (AA, AT, TT) and any increased risk of hypertension. Carriers with at least one minor T allele for FGF5 rs16998073 were shown to be at significantly higher risk for developing hypertension. Male TT carriers with a daily sodium intake ≥2000 mg also demonstrated an increased risk for developing hypertension compared to the male AA carriers with daily sodium intake <2000 mg (adjusted odds ratio (AOR) = 2.41, 95% confidence intervals (CIs) = 1.84–3.15, p-interaction < 0.0001). Female AA carriers with a daily potassium intake ≥3500 mg showed a reduced risk for hypertension when compared to female AA carriers with a daily potassium intake <3500 mg (AOR = 0.75. 95% CIs = 0.58–0.95, p-interaction < 0.0001). Male TT carriers in the mid-tertile for sodium–potassium ratio values showed the highest odds ratio for hypertension when compared to male AA carriers in the lowest-tertile for sodium–potassium ratio values (AOR = 3.03, 95% CIs = 2.14–4.29, p-interaction < 0.0001). This study confirmed that FGF5 rs16998073 variants do place their carriers (men and women) at increased risk for developing hypertension. In addition, we showed that high daily intake of sodium exerted a synergistic effect for hypertension when combined with FGF5 rs16998073 variants in both genders and that dietary sodium, potassium, and sodium–potassium ratios all interact with FGF5 rs16998073 and alter the risk of developing hypertension in carriers of either gender among Koreans.
Collapse
Affiliation(s)
- Hyeyun Jeong
- Department of Food and Nutrition, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea;
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Chungnam 31499, Korea; (H.-S.J.); (S.-S.K.)
| | - Sung-Soo Kim
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Chungnam 31499, Korea; (H.-S.J.); (S.-S.K.)
| | - Dayeon Shin
- Department of Food and Nutrition, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea;
- Correspondence: ; Tel.: +82-32-860-8123
| |
Collapse
|
20
|
Zhang X, Aqeel Ashraf M, Liu Z, Zhang D. Application of magnetically recoverable nanocatalysts in synthesis of imidazole, thiazole, and oxazoles. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1785504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xin Zhang
- Art School, Ningbo City College of Vocational Technology, Ningbo, China
| | - Muhammad Aqeel Ashraf
- School of Forestry, Henan Agricultural University, Zhengzhou, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhenling Liu
- School of Management, Henan University of Technology, Zhengzhou, China
| | - Dangquan Zhang
- School of Forestry, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
21
|
Zhang X, Aqeel Ashraf M, Liu Z, Thai Pham B, Zhang D. Ferrite nanoparticles (MFe2O4 NPs) as magnetically recoverable supports for catalysis in organic synthesis. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1785505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xin Zhang
- Art School, Ningbo City College of Vocational Technology, Ningbo, China
| | - Muhammad Aqeel Ashraf
- School of Forestry, Henan Agricultural University, Zhengzhou, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhenling Liu
- School of Management, Henan University of Technology, Zhengzhou, China
| | - Binh Thai Pham
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Dangquan Zhang
- School of Forestry, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
22
|
Aqeel Ashraf M, Liu Z, Yang Y, Zhang D. Magnetic nanoparticles supported copper catalysts: Synthesis of heterocyclic scaffolds. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1789167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Muhammad Aqeel Ashraf
- School of Forestry, Henan Agricultural University, Zhengzhou, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhenling Liu
- School of Management, Henan University of Technology, Zhengzhou, China
| | - Yafeng Yang
- School of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Dangquan Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
23
|
Hillary RF, Trejo-Banos D, Kousathanas A, McCartney DL, Harris SE, Stevenson AJ, Patxot M, Ojavee SE, Zhang Q, Liewald DC, Ritchie CW, Evans KL, Tucker-Drob EM, Wray NR, McRae AF, Visscher PM, Deary IJ, Robinson MR, Marioni RE. Multi-method genome- and epigenome-wide studies of inflammatory protein levels in healthy older adults. Genome Med 2020; 12:60. [PMID: 32641083 PMCID: PMC7346642 DOI: 10.1186/s13073-020-00754-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The molecular factors which control circulating levels of inflammatory proteins are not well understood. Furthermore, association studies between molecular probes and human traits are often performed by linear model-based methods which may fail to account for complex structure and interrelationships within molecular datasets. METHODS In this study, we perform genome- and epigenome-wide association studies (GWAS/EWAS) on the levels of 70 plasma-derived inflammatory protein biomarkers in healthy older adults (Lothian Birth Cohort 1936; n = 876; Olink® inflammation panel). We employ a Bayesian framework (BayesR+) which can account for issues pertaining to data structure and unknown confounding variables (with sensitivity analyses using ordinary least squares- (OLS) and mixed model-based approaches). RESULTS We identified 13 SNPs associated with 13 proteins (n = 1 SNP each) concordant across OLS and Bayesian methods. We identified 3 CpG sites spread across 3 proteins (n = 1 CpG each) that were concordant across OLS, mixed-model and Bayesian analyses. Tagged genetic variants accounted for up to 45% of variance in protein levels (for MCP2, 36% of variance alone attributable to 1 polymorphism). Methylation data accounted for up to 46% of variation in protein levels (for CXCL10). Up to 66% of variation in protein levels (for VEGFA) was explained using genetic and epigenetic data combined. We demonstrated putative causal relationships between CD6 and IL18R1 with inflammatory bowel disease and between IL12B and Crohn's disease. CONCLUSIONS Our data may aid understanding of the molecular regulation of the circulating inflammatory proteome as well as causal relationships between inflammatory mediators and disease.
Collapse
Affiliation(s)
- Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Daniel Trejo-Banos
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Athanasios Kousathanas
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Sarah E Harris
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Marion Patxot
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Sven Erik Ojavee
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Qian Zhang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - David C Liewald
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Craig W Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Elliot M Tucker-Drob
- Department of Psychology, The University of Texas at Austin, Austin, TX, 78712, USA
- Population Research Center, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Naomi R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ian J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Matthew R Robinson
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria.
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
24
|
Zhao T, Qian K, Zhang Y. High Expression of FGF5 Is an Independent Prognostic Factor for Poor Overall Survival and Relapse-Free Survival in Lung Adenocarcinoma. J Comput Biol 2019; 27:948-957. [PMID: 31553229 DOI: 10.1089/cmb.2019.0241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is not only a serious disease but also a public problem threatening human health all over the world. Nonsmall cell lung cancer-which accounts for the majority of lung cancer-is mainly composed of lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). FGF5 is a gene located in q21.21. In the past years, research on FGF5 is mainly focused on hair length and hereditary spherocytosis. In our study, bioinformatics analysis of FGF5 was performed through multiple databases. Expression of FGF5 was compared between tumor and normal tissues, association between gene expression and clinical outcomes was investigated in LUAD and LUSC separately, and potential signaling pathways were predicted. FGF5 expression was upregulated in lung cancer tissues compared with normal tissues. What is more, the high FGF5 expression group had significantly lower proportions of lymph node negative (N0) patients (77/144, 53.5%, vs. 253/358, 70.7%, p = 0.000), and is associated with worse overall survival (OS) (p < 0.0001) and relapse-free survival (RFS) (p = 0.024) in LUAD patients, which could not be seen in LUSC. The following analysis confirmed that high FGF5 expression could be an independent prognostic factor for poor OS (HR: 0.431, 95% CI: 0.312-0.597, p = 0.001) and RFS (HR: 0.678, 95% CI: 0.471-0.977, p = 0.037) in LUAD, but not in LUSC. Coexpression genes related to FGF5 were explored and potential pathways were investigated for further research. FGF5 is a tumor-associated gene that upregulated in lung cancer tissues, and could be an independent prognostic factor that have potential value for further research.
Collapse
Affiliation(s)
- Teng Zhao
- Department of Thoracic Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Kun Qian
- Department of Thoracic Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Singh S, Warren HR, Hiltunen TP, McDonough CW, El Rouby N, Salvi E, Wang Z, Garofalidou T, Fyhrquist F, Kontula KK, Glorioso V, Zaninello R, Glorioso N, Pepine CJ, Munroe PB, Turner ST, Chapman AB, Boerwinkle E, Johnson JA, Gong Y, Cooper‐DeHoff RM. Genome-Wide Meta-Analysis of Blood Pressure Response to β 1-Blockers: Results From ICAPS (International Consortium of Antihypertensive Pharmacogenomics Studies). J Am Heart Assoc 2019; 8:e013115. [PMID: 31423876 PMCID: PMC6759913 DOI: 10.1161/jaha.119.013115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022]
Abstract
BackgroundThere exists a wide interindividual variability in blood pressure (BP) response to β1-blockers. To identify the genetic determinants of this variability, we performed a pharmacogenomic genome-wide meta-analysis of genetic variants influencing β1-blocker BP response.Methods and ResultsGenome-wide association analysis for systolic BP and diastolic BP response to β1-blockers from 5 randomized clinical trials consisting of 1254 patients with hypertension of European ancestry were combined in meta-analysis and single nucleotide polymorphisms (SNPs) with P<10-4 were tested for replication in 2 independent randomized clinical trials of β1-blocker-treated patients of European ancestry (n=1552). Regions harboring the replicated SNPs were validated in a β1-blocker-treated black cohort from 2 randomized clinical trials (n=315). A missense SNP rs28404156 in BST1 was associated with systolic BP response to β1-blockers in the discovery meta-analysis (P=9.33×10-5, β=-3.21 mm Hg) and replicated at Bonferroni significance (P=1.85×10-4, β=-4.86 mm Hg) in the replication meta-analysis with combined meta-analysis approaching genome-wide significance (P=2.18×10-7). This SNP in BST1 is in linkage disequilibrium with several SNPs with putative regulatory functions in nearby genes, including CD38, FBXL5, and FGFBP1, all of which have been implicated in BP regulation. SNPs in this genetic region were also associated with BP response in the black cohort.ConclusionsData from randomized clinical trials of 8 European ancestry and 2 black cohorts support the assumption that BST1 containing locus on chromosome 4 is associated with β1-blocker BP response. Given the previous associations of this region with BP, this is a strong candidate region for future functional studies and potential use in precision medicine approaches for BP management and risk prediction.
Collapse
Affiliation(s)
- Sonal Singh
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineUniversity of FloridaGainesvilleFL
| | - Helen R. Warren
- William Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonUnited Kingdom
- National Institute for Health
ResearchBarts Cardiovascular Biomedical Research CenterQueen Mary University of LondonUnited Kingdom
| | - Timo P. Hiltunen
- Department of MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular MedicineUniversity of HelsinkiFinland
| | - Caitrin W. McDonough
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineUniversity of FloridaGainesvilleFL
| | - Nihal El Rouby
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineUniversity of FloridaGainesvilleFL
| | - Erika Salvi
- Neuroalgology UnitFondazione IRCCS Istituto Neurologico “Carlo Besta,”MilanItaly
| | - Zhiying Wang
- Human Genetics and Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTX
| | - Tatiana Garofalidou
- William Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonUnited Kingdom
| | - Frej Fyhrquist
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Kimmo K. Kontula
- Department of MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular MedicineUniversity of HelsinkiFinland
| | | | - Roberta Zaninello
- Hypertension and related diseases CentreDepartment of Clinical and Experimental MedicineUniversity of SassariItaly
| | - Nicola Glorioso
- Hypertension and related diseases CentreDepartment of Clinical and Experimental MedicineUniversity of SassariItaly
| | - Carl J. Pepine
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of FloridaGainesvilleFL
| | - Patricia B. Munroe
- William Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonUnited Kingdom
- National Institute for Health
ResearchBarts Cardiovascular Biomedical Research CenterQueen Mary University of LondonUnited Kingdom
| | | | | | - Eric Boerwinkle
- Human Genetics and Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTX
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineUniversity of FloridaGainesvilleFL
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of FloridaGainesvilleFL
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineUniversity of FloridaGainesvilleFL
| | - Rhonda M. Cooper‐DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineUniversity of FloridaGainesvilleFL
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of FloridaGainesvilleFL
| |
Collapse
|
26
|
Cuevas S, Villar VAM, Jose PA. Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation. THE PHARMACOGENOMICS JOURNAL 2019; 19:315-336. [PMID: 30723314 PMCID: PMC6650341 DOI: 10.1038/s41397-019-0082-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/19/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023]
Abstract
Hypertension is the most prevalent cause of cardiovascular disease and kidney failure, but only about 50% of patients achieve adequate blood pressure control, in part, due to inter-individual genetic variations in the response to antihypertensive medication. Significant strides have been made toward the understanding of the role of reactive oxygen species (ROS) in the regulation of the cardiovascular system. However, the role of ROS in human hypertension is still unclear. Polymorphisms of some genes involved in the regulation of ROS production are associated with hypertension, suggesting their potential influence on blood pressure control and response to antihypertensive medication. This review provides an update on the genes associated with the regulation of ROS production in hypertension and discusses the controversies on the use of antioxidants in the treatment of hypertension, including the antioxidant effects of antihypertensive drugs.
Collapse
Affiliation(s)
- Santiago Cuevas
- Center for Translational Science, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010, USA.
| | - Van Anthony M Villar
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| |
Collapse
|