1
|
Eyong ED, Iwara IA, Agwupuye EI, Agboola AR, Uti DE, Obio WA, Alum EU, Atangwho IJ. In vitro and in silico pharmaco-nutritional assessments of some lesser-known Nigerian nuts: Persea americana, Tetracarpidium conophorum, and Terminalia catappa. PLoS One 2025; 20:e0319756. [PMID: 40202972 PMCID: PMC11981145 DOI: 10.1371/journal.pone.0319756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/07/2025] [Indexed: 04/11/2025] Open
Abstract
Together with their nutritional qualities, the biosafety, antidiabetic, antioxidant, and anti-inflammatory effects of Tetracarpidium conophorum nuts, Persea americana seeds, and Terminalia cattapa kernels were evaluated in vitro and in silico. RBC membrane stabilisation for anti-inflammatory characteristics, antioxidant activities by ABTS, DPPH, H2O2, and nitric oxide scavenging assays, and α-glucosidase and α-amylase inhibitory assays conducted in vitro were used to evaluate the anti-diabetic activity. With an IC50 value of 208 μg/mL, P. americana showed the maximum amount of inhibition, according to the results, while T. catappa showed a somewhat lower degree of inhibition at 236 μg/mL. P. americana exhibited the highest degree of α-amylase inhibition, with an IC50 value of 312 µg/mL. T. catappa showed the strongest DPPH radical scavenging activity, while T. conophorum showed the highest ABTS radical scavenging activity. T. catappa showed the strongest effectiveness in neutralising hydrogen peroxide. In tests using human red blood cells, T. catappa showed the strongest inhibition of RBC hemolysis. While P. americana showed higher concentrations of copper, manganese, potassium, and calcium, T. catappa showed higher magnesium concentrations. T. catappa had considerably higher levels of ash, proteins, lipids, and carbohydrates than T. conophorum, which had the highest quantity of crude fibre, according to proximate analysis. Molecular docking experiments have revealed that plant extracts from P. americana, T. conophorum, and T. catappa have substantial binding affinities towards α-glucosidase and amylase. Pseudococaine, M-(1-methylbutyl) phenylmethylcarbamate, o-xylene, and 1-deoxynojirimycin were the four compounds that showed binding affinities that were higher than those of acarbose. Acarbose and nitrate were not as compatible with docking scores as compared to the compounds dimethyl phthalate, pseudococaine, M-(1-Methylbutyl)phenyl methylcarbamate, 2-chloro-3-oxohexanedioic acid, and methyl 2-chloro-5-nitrobenzoate. These results suggest that these plant extracts hold great potential for the creation of therapeutic medications that specifically target oxidative stress-related diseases like diabetes.
Collapse
Affiliation(s)
- Efah Denis Eyong
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| | - Iwara Aripko Iwara
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| | - Eyuwa Ignatius Agwupuye
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| | - Abdulhakeem Rotimi Agboola
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| | - Daniel Ejim Uti
- Department of Research and Publications, Kampala International University, Kampala, Uganda
- Department of Biochemistry, Faculty of Basic Medical Sciences, Federal University of Health Sciences, Otukpo, Benue, Nigeria.
| | - Wilson Arong Obio
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| | - Esther Ugo Alum
- Department of Research and Publications, Kampala International University, Kampala, Uganda
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| |
Collapse
|
2
|
Ramanan S S, Arunachalam A, Singh R, Verdiya A. Tropical almond ( Terminalia catappa): A holistic review. Heliyon 2025; 11:e41115. [PMID: 39844979 PMCID: PMC11750476 DOI: 10.1016/j.heliyon.2024.e41115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
Terminalia catappa L. known as tropical almond, has a global distribution. Further, it is a popular choice for avenue planting in the tropics including India. In India, more than 20 species of the genus Terminalia are reported and grown for its multipurpose uses. However, T. catappa is an untapped as well as underutilized nut-yielding tree, despite having comparable nutritive value to Almonds but with lower yield. The propagation of the tree is typically done with seeds and there is lack of documented tree breeding and improvement initiative with regard to this species. In this review, we summarize the available information on the ecological and economic utility of this tree reported across the world. There are numerous studies on this species detailing its uses as an avenue tree, medicinally important plant, small timber tree, biosorbent and other uses. The tree is also reported as a good choice for agroforestry owing to its unique features including its salinity tolerance and canopy architecture. Overall, this review concludes with details on various prospects of this tree as well as alternative for agroforestry and trees outside forests.
Collapse
Affiliation(s)
- Suresh Ramanan S
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - A. Arunachalam
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - Rinku Singh
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - Ankit Verdiya
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| |
Collapse
|
3
|
Paik SJ, Kim DS, Son JE, Bach TT, Hai DV, Paik JH, Jo S, Kim DJ, Jung SK. Validation of Active Compound of Terminalia catappa L. Extract and Its Anti-Inflammatory and Antioxidant Properties by Regulating Mitochondrial Dysfunction and Cellular Signaling Pathways. J Microbiol Biotechnol 2024; 34:2118-2131. [PMID: 39252640 PMCID: PMC11540620 DOI: 10.4014/jmb.2407.07044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
As chronic inflammation and oxidative stress cause various diseases in the human body, this study aimed to develop functional materials to prevent inflammation and oxidative stress. This study investigated the biological function and components of Terminalia catappa L. extract prepared using its leaves and branches (TCE). TCE was determined using ultraperformance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Using RAW 264.7 mouse macrophages, inhibitory effects of the identified compounds on nitric oxide (NO) and reactive oxygen species (ROS) generation were analyzed. Therefore, α-punicalagin was selected as an active compound with the highest content (986.6 ± 68.4 μg/g) and physiological activity. TCE exhibited an inhibitory effect on lipopolysaccharide (LPS)-induced inflammatory markers, including NO, inducible nitric oxide synthase, and inflammatory cytokines without exerting cytotoxicity. Moreover, TCE prevented excessive ROS production mediated by LPS and upregulated hemeoxygenase-1 expression via the nuclear translocation of nuclear factor erythroid 2-related factor 2. Interestingly, TCE prevented LPS-induced mitochondrial membrane potential loss, mitochondrial ROS production, and dynamin-related protein 1 phosphorylation (serine 616), a marker of abnormal mitochondrial fission. Furthermore, TCE considerably repressed the activation of LPS-induced mitogen-activated protein kinase pathway. Thus, TCE is a promising anti-inflammatory and antioxidant pharmaceutical or nutraceutical, as demonstrated via mitochondrial dysfunction and cellular signaling pathway regulation.
Collapse
Affiliation(s)
- So Jeong Paik
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Shin Kim
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 553635, Republic of Korea
| | - Joe Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Do Van Hai
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Sangjin Jo
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea
| | - Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Multidrug-resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan 31116, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
de Araújo SA, Silva CMP, Costa CS, Ferreira CSC, Ribeiro HS, da Silva Lima A, Quintino da Rocha C, Calabrese KDS, Abreu-Silva AL, Almeida-Souza F. Leishmanicidal and immunomodulatory activity of Terminalia catappa in Leishmania amazonensisin vitro infection. Heliyon 2024; 10:e24622. [PMID: 38312642 PMCID: PMC10835263 DOI: 10.1016/j.heliyon.2024.e24622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Leishmaniases are infectious-parasitic diseases that impact public health around the world. Antileishmanial drugs presented toxicity and increase in parasitic resistance. Studies with natural products show an alternative to this effect, and several metabolites have demonstrated potential in the treatment of various diseases. Terminalia catappa is a plant species with promising pharmaceutical properties. The objective of this work was to evaluate the therapeutic potential of extracts and fractions of T. catappa on Leishmania amazonensis and investigate the immunomodulatory mechanisms associated with its action. In anti-Leishmania assays, the ethyl acetate fraction exhibited activity against promastigotes (IC50 86.07 ± 1.09 μg/mL) and low cytotoxicity (CC50 517.70 ± 1.68 μg/mL). The ethyl acetate fraction also inhibited the intracellular parasite (IC50 25.74 ± 1.08 μg/mL) with a selectivity index of 20.11. Treatment with T. catappa ethyl acetate fraction did not alter nitrite production by peritoneal macrophages stimulated with L. amazonensis, although there was a decrease in unstimulated macrophages treated at 50 μg/mL (p = 0.0048). The T. catappa ethyl acetate fraction at 100 μg/mL increased TNF-α levels (p = 0.0238) and downregulated HO-1 (p = 0.0030) and ferritin (p = 0.0002) gene expression in L. amazonensis-stimulated macrophages. Additionally, the total flavonoid and ellagic acid content for ethyl acetate fraction was 13.41 ± 1.86 mg QE/g and 79.25 mg/g, respectively. In conclusion, the T. catappa ethyl acetate fraction showed leishmanicidal activity against different forms of L. amazonensis and displayed immunomodulatory mechanisms, including TNF-α production and expression of pro and antioxidant genes.
Collapse
Affiliation(s)
- Sandra Alves de Araújo
- Rede Nordeste de Biotecnologia, Universidade Federal do Maranhão, São Luís, 65080-805, Brazil
| | | | | | | | | | - Aldilene da Silva Lima
- Laboratório de Química dos Produtos Naturais, Universidade Federal do Maranhão, 65080-805, São Luís, MA, Brazil
| | - Cláudia Quintino da Rocha
- Laboratório de Química dos Produtos Naturais, Universidade Federal do Maranhão, 65080-805, São Luís, MA, Brazil
| | - Kátia da Silva Calabrese
- Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, 21041-250, Brazil
| | - Ana Lucia Abreu-Silva
- Rede Nordeste de Biotecnologia, Universidade Federal do Maranhão, São Luís, 65080-805, Brazil
- Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
- Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
| | - Fernando Almeida-Souza
- Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
- Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, 21041-250, Brazil
- Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão, São Luís, 65055-310, Brazil
| |
Collapse
|
5
|
Ben EE, Beshel JA, Owu DU, Palacios J, Nwokocha M, Bórquez J, Simirgiotis MJ, Nwokocha CR. Identification of Phytochemicals and Assessment of Hypoglycemic and Haematological Potentials of Terminalia catappa Linn leaf Extract in Alloxan-induced Diabetic Wistar Rats. Cardiovasc Hematol Agents Med Chem 2024; 22:139-150. [PMID: 37246326 DOI: 10.2174/1871525721666230526152917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/08/2023] [Accepted: 04/19/2023] [Indexed: 05/30/2023]
Abstract
INTRODUCTION Hypoglycemia and anemia are associated with diabetes mellitus. Medicinal plants and orthodox drugs have been used for the management of this disease. This study aimed to validate the ethnomedical claims of Terminalia catappa Linn. leaf extract in reducing hyperglycemia and hematological potentials in alloxan-induced diabetic rats and to identify likely antidiabetic compounds. MATERIALS AND METHODS Ultra-high-performance liquid chromatography was used to identify the various phytochemical constituents. Male Wistar rats were randomly divided into five groups containing 6 rats per group. Group 1 (control) received 0.2 ml/kg of distilled water, group 2 received 130 mg/kg of T. catappa aqueous extract, groups 3-5 were diabetic and received 0.2 ml/g distilled water, 130 mg/kg T. catappa extract and 0.75 IU/kg insulin respectively for 14 days. Hematological parameters were measured and an oral glucose tolerance test was carried out using 2 g/kg body weight glucose. A histological analysis of the pancreas was done. RESULTS Twenty-five compounds identified as flavonoids, phenolic acids, tannins, and triterpenoids were detected. The blood glucose levels were significantly (p <0.05) elevated in DM groups but were significantly (p <0.05) reduced following Terminalia catappa leaves extract to DM groups. There was s significant (p <0.05) increase in insulin levels improved hematological parameters (RBC, WBC, and platelets), and increased islet population. CONCLUSION These results suggest that T. catappa extract has hypoglycemic, insulinogenic, and hematopoietic potentials in diabetic condition and offer protection to the pancreas which could be attributed to the phytochemical constituents thereby justifying its use in traditional therapy.
Collapse
Affiliation(s)
- Ezekiel E Ben
- Department of Physiology, University of Uyo, Akwa Ibom State, Nigeria
| | - Justin A Beshel
- Department of Physiology, University of Calabar, Cross River State, Nigeria
| | - Daniel U Owu
- Department of Physiology, University of Calabar, Cross River State, Nigeria
| | - Javier Palacios
- Laboratorio de Bioquímica Aplicada, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, 1110939, Chile
| | - Magdalene Nwokocha
- Department of Pathology, Faculty of Medical Sciences, University of the West Indies, Mona Campus, Kingston, Jamaica
| | - Jorge Bórquez
- Laboratorio de Productos Naturales, Departamento de Química, Facultad Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
| | - Mario J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, 5090000, Chile
| | - Chukwuemeka R Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Mona Campus, Kingston, Jamaica
| |
Collapse
|
6
|
Vijayakumar K, Rengarajan RL, Suganthi N, Prasanna B, Velayuthaprabhu S, Shenbagam M, Vijaya Anand A. Acute toxicity studies and protective effects of Cinnamon cassia bark extract in streptozotocin-induced diabetic rats. Drug Chem Toxicol 2022; 45:2086-2096. [PMID: 33849352 DOI: 10.1080/01480545.2021.1907908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
The medicinal properties of Cinnamon cassia (C. cassia) bark have been reported for their clinical importance for many diseases including diabetes. However, there is no clear evidence so far regarding dose selection for its hepato- and nephroprotective effect in diabetic condition. Hence, the present study aims at evaluating in vitro antioxidant activity, the acute toxicity, and dose fixation of C. cassia bark for their effective medicinal values in streptozotocin (STZ)-induced rats. All the extracts exhibited potential in vitro antioxidant activity and showed a dose-dependent (1000, 2000, 3000, 4000, and 5000 mg/kg BW) acute toxicity by in vivo model. The levels of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), urea, and creatinine showed a significant elevation in animals treated with the highest dose. In further studies along with histopathological studies, animals treated with STZ (60 mg/kg BW) followed by a different dose (300, 400, and 500 mg/kg BW) of ethanolic extract of the C. cassia bark and glibenclamide (3 mg/kg BW) revealed that the altered level of mitochondrial enzymes, hepatic, and renal marker in STZ-induced animals were restored in C. cassia bark extract-treated group as of control. These results could be of scientific support for the use of the ethanolic extract of the C. cassia bark in folk medicine for the management of diabetes and its associated complications.
Collapse
Affiliation(s)
- K Vijayakumar
- Department of Chemistry, Sri Meenakshi Vidiyal Arts and Science College, Tiruchirappalli, India
| | - R L Rengarajan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | - N Suganthi
- Department of Nanoscience and Technology, Alagappa University, Karaikudi, India
| | - B Prasanna
- Department of Biochemistry, Manonmaniam Sundaranar University, Thirunelveli, India
| | - S Velayuthaprabhu
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - M Shenbagam
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, India
| | - A Vijaya Anand
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| |
Collapse
|
7
|
Ramasamy M, Balasubramanian B, Punniyakotti P, Vijaya Anand A, Meyyazhagan A, Velayuthaprabhu S, Rengarajan RL, Issara U, Liu W. Cardio-protective effects of Terminalia catappa leaves and Terminalia chebula fruit extract in doxorubicin-induced cardiomyopathy in rats. Biomarkers 2022; 27:488-495. [PMID: 35400254 DOI: 10.1080/1354750x.2022.2064550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
INTRODUCTION The cardio-protective effects of Terminalia catappa and Terminalia chebula are well-recognized in Ayurveda for its antimicrobial, antidiabetic and antioxidant potentials. The present study evaluates the effects of T. catappa leaves (Tct.LE) and T. chebula fruits (Tce.FE) against doxorubicin (DOX)-induced rats through analysis of the cardiac biomarkers, tricarboxylic acid (TCA) cycle enzymes and respiratory chain enzymes for their cardio-protective properties. Materials and methods: This study includes 42 adult male Albino Wistar rats randomized into seven groups for 21-days. Groups were categorized as control; DOX (1.5 mg/kg) induced negative control; basal diet with 300 mg/kg of Tct.LE, with 300 mg/kg Tce.FE; DOX with 300 mg/kg of Tct.LE, Tce.FE, and propranolol (25mg/kg). Results and Discussion: The doses of 300 mg/kg of both plants have a significant effect on the TCA cycle, respiratory and lysosomal enzymes activity. The troponin levels are significantly reduced in plant treated group than the DOX-treated rats when compared with the control and propranolol treated group. Likewise, the increased level of creatine kinase-muscle/MB, creatine kinase and lipid profile in the DOX-treated animals were significantly reduced upon being treated with extracts. Conclusion: The cardio-protective activity of Tct.LE leaves and Tce.FE indicate its potential use in the management of cardiovascular diseases. CLINICAL SIGNIFICANCE The prevalence of cardiovascular disease is increasing day-by-day in this industrial world with leading cause of mortality and morbidity. Many researches are presently concentrated on the plant-based medicine due to its safety and free from side effects. Hence, the present study aims to document the potential cardio-protective benefits of Terminalia catappa and Terminalia chebula.
Collapse
Affiliation(s)
- Manikandan Ramasamy
- Department of Biochemistry, Shrimati Indira Gandhi College, Trichirappalli-620 002, Tamil Nadu, India
| | | | - Panneerselvam Punniyakotti
- Department of Biochemistry, Kanchi Shri Krishna College of Arts and Science, Kancheepuram-631 551, Tamil Nadu, India
| | - Arumugam Vijaya Anand
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore- 641 046, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Obstetrics and Gynecology and Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | | | | | - Utthapon Issara
- Division of Food Science and Technology Management, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, 12110, Thailand
| | - Wenchao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, P. R. China
| |
Collapse
|
8
|
Mata-Torres G, Andrade-Cetto A, Espinoza-Hernández F. Approaches to Decrease Hyperglycemia by Targeting Impaired Hepatic Glucose Homeostasis Using Medicinal Plants. Front Pharmacol 2021; 12:809994. [PMID: 35002743 PMCID: PMC8733686 DOI: 10.3389/fphar.2021.809994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022] Open
Abstract
Liver plays a pivotal role in maintaining blood glucose levels through complex processes which involve the disposal, storage, and endogenous production of this carbohydrate. Insulin is the hormone responsible for regulating hepatic glucose production and glucose storage as glycogen, thus abnormalities in its function lead to hyperglycemia in obese or diabetic patients because of higher production rates and lower capacity to store glucose. In this context, two different but complementary therapeutic approaches can be highlighted to avoid the hyperglycemia generated by the hepatic insulin resistance: 1) enhancing insulin function by inhibiting the protein tyrosine phosphatase 1B, one of the main enzymes that disrupt the insulin signal, and 2) direct regulation of key enzymes involved in hepatic glucose production and glycogen synthesis/breakdown. It is recognized that medicinal plants are a valuable source of molecules with special properties and a wide range of scaffolds that can improve hepatic glucose metabolism. Some molecules, especially phenolic compounds and terpenoids, exhibit a powerful inhibitory capacity on protein tyrosine phosphatase 1B and decrease the expression or activity of the key enzymes involved in the gluconeogenic pathway, such as phosphoenolpyruvate carboxykinase or glucose 6-phosphatase. This review shed light on the progress made in the past 7 years in medicinal plants capable of improving hepatic glucose homeostasis through the two proposed approaches. We suggest that Coreopsis tinctoria, Lithocarpus polystachyus, and Panax ginseng can be good candidates for developing herbal medicines or phytomedicines that target inhibition of hepatic glucose output as they can modulate the activity of PTP-1B, the expression of gluconeogenic enzymes, and the glycogen content.
Collapse
Affiliation(s)
| | - Adolfo Andrade-Cetto
- Laboratorio de Etnofarmacología, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
9
|
Ibrahim M, Parveen B, Zahiruddin S, Gautam G, Parveen R, Khan MA, Gupta A, Ahmad S. Analysis of polyphenols in Aegle marmelos leaf and ameliorative efficacy against diabetic mice through restoration of antioxidant and anti-inflammatory status. J Food Biochem 2021; 46:e13852. [PMID: 34250628 DOI: 10.1111/jfbc.13852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 11/28/2022]
Abstract
The biomedical survey reports edible plant Aegle marmelos has been utilized for centuries by tribal communities in India as a dietary supplement for the management of diabetes. Herein, we have investigated cytotoxicity, cytoprotective and antidiabetic activity of characterized alkaloid-free hydroalcoholic extract of A. marmelos (AFEAM; 200 and 400 mg/kg). Identification of polyphenols and quantification of major compounds were done using UPLC-MS and HPTLC, respectively. AFEAM showed good cytocompatibility and cytoprotective potential against oxidative stress induced by hyperglycemia in HepG2 cells. The AFEAM intake had significantly ameliorated the serum blood glucose level, state of dyslipidemia, level of pro-inflammatory markers (tumor necrosis factor-α, interleukin-6, and interleukin-1β), and antioxidant (superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde) status in diabetic mice. Histological examination of the treated groups showed amelioration of damaged pancreas, liver, and kidney tissues. Conclusively, AFEAM intake might be promising dietary supplements for prediabetics as well as an adjuvant to modern treatment in diabetics. PRACTICAL APPLICATIONS: Different reports have been published on Aegle marmelos but as per our understanding till date, no study has been reported on the amelioration of diabetes due to alkaloid free hydroalcoholic extract of A. marmelos /polyphenolic content in the animal model. The result of this study indicated that A. marmelos supplementation effectively ameliorates diabetes through the restoration of antioxidant and anti-inflammatory status. This study has collated sufficient scientific evidence for the dietary application of A. marmelos in society especially for prediabetics, however, it can also be used as an adjuvant to modern treatments in diabetics.
Collapse
Affiliation(s)
- Mohammad Ibrahim
- Bioactive Natural Product Laboratory, SPER, Jamia Hamdard, New Delhi, India.,Department of Pharmacology, SPER, Jamia Hamdard, New Delhi, India
| | - Bushra Parveen
- Bioactive Natural Product Laboratory, SPER, Jamia Hamdard, New Delhi, India.,Department of Pharmacology, SPER, Jamia Hamdard, New Delhi, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, SPER, Jamia Hamdard, New Delhi, India
| | - Gaurav Gautam
- Bioactive Natural Product Laboratory, SPER, Jamia Hamdard, New Delhi, India
| | - Rabea Parveen
- Bioactive Natural Product Laboratory, SPER, Jamia Hamdard, New Delhi, India.,Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Arun Gupta
- Department of Medical Affairs and Clinical Research, Dabur India Limited, Ghaziabad, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, SPER, Jamia Hamdard, New Delhi, India
| |
Collapse
|
10
|
Antibacterial Activity and Time-kill Assay of Terminalia catappa L. and Nigella sativa L. against Selected Human Pathogenic Bacteria. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The current investigation aims to test the susceptibility of human pathogenic clinical isolates and MTCC strains to leaf and seed extracts of Terminalia catappa and Nigella sativa. Disc diffusion assay, micro dilution assay and minimum Bactericidal Concentration investigated the susceptibility of bacteria to the test extracts. The active extract was subjected to phytochemical screening, separation of the phytochemicals by Thin Layer Chromatography, bioactivity guided assay and Time- kill assay. Acetone and methanol extracts of T.catappa revealed, significant inhibition of clinical origin Staphylococcus aureus followed by Proteus vulgaris and the MTCC strains Staphylococcus aureus, Salmonella typhi, Pseudomonas aeroginosa and Bacillus subtilis. Nigella sativa inhibited the growth of clinical origin Staph.aureus and MTCC strain of Staph.aureus, Salmonella typhi and B.subtilis. Minimum inhibitory concentration for all the test bacteria was reported in the range of 5000μg/ml to 9 μg/ml in T. catappa extract. Most sensitive being the clinical isolate Staph. aureus and Proteus vulgaris. The bactericidal concentration for the test bacteria was found to be between 5000μg/ml and 625μg/ml. Phyto-chemical analysis of leaf extracts of T. catappa found to have dominated by polyphenols (Terpenoids, steroids, flavonoids, flavones, saponins and tannins) and N.sativa extracts recorded the presence of alkaloids, proteins and oils and fats. TLC profiling of the acetone extract revealed many antibacterial active bands. Bands having Retention factor 0.47 and 0.52 were active against the test bacteria. Time kill assay of the acetone extract of T. catappa were carried out for the first time. The extract exhibited dose dependent bactericidal and bacteriostatic activity against the clinical isolates.
Collapse
|
11
|
Dewi AP, Mardhiyani D. Formulation and Antibacterial Activity of Liquid Soap Containing Ketapang (Terminalia catappa L.) Leaves Extract. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i1.1589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ketapang (Terminalia catappa L.) is traditionally used by the community to treat infections of the skin caused by bacteria or fungi. In this study, T. catappa leaves extract was added to the liquid soap formula as an antibacterial. The purpose of this study was to determine the secondary metabolite compounds contained in T. catappa leaves extract, physical evaluation of the preparation, and antibacterial activity of liquid soap. Liquid soap formula is made with various concentrations of T. catappa leaves extract F0 (0%), F1 (1%), F2 (2%), and F3 (3%). The resulting soap was evaluated for organoleptic, pH, high foam, homogeneity, irritation, and its activity against Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli using the disc diffusion method. The results showed that the T. catappa leaves extract contained flavonoids, tannins, saponins, and triterpenoids. The liquid soap formula F0 is clear, while F1, F2, and F3 have the characteristics of brown-dark brown, homogeneous, pH between 4.6-5.2, foam stability between 67-72%, which is not significantly different and stable after five minutes of testing, and it does not irritate the skin. Terminalia catappa leaves extracts liquid soap has antibacterial activity at a concentration of 1%, 2%, and 3%, with the largest inhibition zone diameter produced by S. aureus.
Collapse
|
12
|
Andrade C, Gomes NGM, Duangsrisai S, Andrade PB, Pereira DM, Valentão P. Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113177. [PMID: 32768637 DOI: 10.1016/j.jep.2020.113177] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes mellitus remains the most lethal metabolic disease of contemporaneous times and despite the therapeutic arsenal currently available, research on new antidiabetic agents remains a priority. In recent years, the revitalization of Thai Traditional Medicine (TTM) became a clear priority for the Thai government, and many efforts have been undertaken to accelerate research on herbal medicines and their use in medical services in various hospitals. Additionally, and particularly in rural areas, treatment of diabetes and associated symptomatology frequently relies on herbal preparations recommended by practitioners of TTM. In the current work, medicinal plants used in Thailand for treating diabetes, as well as their hypoglycaemic pharmacological evidences and potential therapeutic use for diabetes-related complications were reviewed. MATERIALS AND METHODS Ethnopharmacological information on the plant materials used in TTM for diabetes treatment was collected through literature search in a range of scientific databases using the search terms: diabetes, folk medicine, Thailand medicinal plants, traditional medicine. Information regarding scientific evidence on the antidiabetic effects of surveyed species was obtained considering not only the most common taxonomic designation, but also taxonomic synonyms, and including the keywords 'diabetes' and 'hypoglycaemic effect'. RESULTS A total of 183 species known to be used for diabetes management in TTM were reviewed, with 30% of them still lacking experimental evidences to support claims regarding the mechanisms and phytochemicals underlying their antidiabetic properties. Moreover, a total of 46 bioactives displaying effective antidiabetic effects have been isolated from 24 species, their underlying mechanism(s) of action being fully or partially disclosed. CONCLUSIONS We deliver the most extensive survey dealing with the ethnomedicinal knowledge of Thai medicinal plants utilized on diabetes management. We are certain that the current review will spark further research on Thai plants for the development of new standardized phytomedicines through drug discovery programmes.
Collapse
Affiliation(s)
- Catarina Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Sutsawat Duangsrisai
- Department of Botany, Faculty of Science, Kasetsart University, Ngam Wong Wang Road, Chatuchak, Bangkok, 10900, Thailand.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| |
Collapse
|
13
|
Xavier-ravi B, Antony-varuvel GV, Thangaraj P, Doulathabad MR, Rajan K. Antioxidant, anti-inflammatory activities and HPLC quantification of flavonoids in Pteris tripartita Sw. a critically endangered medicinal fern from India. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|