1
|
Mosallam FM, Helmy EA, El-Bastawisy HS, El-Batal AI. Silver secnidazole nano-hybrid emulsion-based probiotics as a novel antifungal formula against multidrug-resistant vaginal pathogens. Biotechnol Appl Biochem 2025; 72:295-310. [PMID: 39279250 DOI: 10.1002/bab.2663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/24/2024] [Indexed: 09/18/2024]
Abstract
This study presents a novel approach to manage vaginal infections due to Candidiasis, utilizing a novel silver secnidazole nano-hybrid emulsion (Ag-Secn-NHE)-based probiotics and free Ag-Secn-NHE. Ag-Secn-NHE was prepared by simple homogenization‒ultrasonication technique and validated by using a ultraviolet‒visible scan, dynamic light scattering, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy, and zeta potential. Saccharomyces cerevisiae (RCMB 002Y001) is the most effective probiotic-producing organism that demonstrates significant effects when combined with Ag-Secn-NHE. Ag-Secn-NHE-based probiotics showed significant antifungal effect compared to free Ag-Secn-NHE, silver nitrate, silver nanoparticles, secnidazole, secnidazole nanoemulsion, and commercial vaginal wash against multidrug-resistant vaginal pathogens. The highest inhibitory effect was achieved with Ag-Secn-NHE-based probiotic against Candida auris, Candida albicans, and Cryptococcus neoformans with minimal inhibitory concentration (MIC) 0.625 ± 0.002, 0.00625:1.25 ± 0.012 and 0.00625:1.25 ± 0.032 mg/mL, respectively, in comparison with Ag-Secn-NHE that show MIC at 0.00625:1.25 ± 0.612, 0.0125:2.5 ± 0.812, and 0.0125:2.5 ± 0.112 mg/mL (Ag:Secn). Ag-Secn-NHE-based- probiotic show minimum fungicidal concentration (MFC) at range from 2.5 to 20 mg/mL, wherever free Ag-Secn-NHE show MFC range from 5 to >20 mg/mL. Additionally, Ag-Secn-NHE-based probiotics have 75% inhibition of biofilm formation against C. auris and 60% inhibition of biofilm formation against both Cryptococcus neoformans and C. albicans in comparison with free Ag-Secn-NHE. Time-kill curves showed that the antifungal effect of Ag-Secn-NHE-based probiotics was fungistatic at 2MIC value after 4 h and after 16 h for Ag-Secn-NHE. TEM photographs showed that C. auris cells treated with Ag-Secn-NHE-based probiotic formula revealed severe deformations and distored ultrastructural changes. furthermore, results indicated that the Gamma radiation up to 15 kGy increases production of Ag-Secn-NHE in comparison with non-irradiated one.
Collapse
Affiliation(s)
- Farag M Mosallam
- Division of Biotechnology, Microbiology Lab, Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Eman A Helmy
- Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Hanan S El-Bastawisy
- Division of Biotechnology, Microbiology Lab, Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed I El-Batal
- Division of Biotechnology, Microbiology Lab, Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
Aayush K, Singh GP, Chiu I, Joshi M, Sharma K, Gautam S, Chavan P, Jha N, Singh AK, Babaei A, Sharma S, Yang T. Development and characterization of sodium alginate and β-cyclodextrin nanoemulsions encapsulating betel leaf (Piper betle L.) extract for enhanced antimicrobial efficacy against foodborne pathogen. Food Chem 2025; 463:141227. [PMID: 39316900 DOI: 10.1016/j.foodchem.2024.141227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
This study aims to investigate the physical stability, droplet size, zeta potential, and antimicrobial properties of nanoemulsions formulated with betel leaf extract using β-cyclodextrin (CD) and sodium alginate (SA) biopolymers. Nanoemulsions with β-cyclodextrin exhibit superior stability at lower temperatures, with limited droplet size, and strong electrostatic repulsion. Morphological images demonstrate the successful encapsulation of betel leaf extract within both biopolymers, highlighting their potential for antimicrobial applications. Both CD and SA nanoemulsions display inhibitory effects on bacterial strains (E. coli, P. aeruginosa, L. monocytogenes, S. aureus, and B. cereus) and fungal growth (A. brasiliensis, R. stolonifer, F. oxysporum, and C. albicans). SA nanoemulsions show higher antimicrobial activity due to H+ ion release, particularly against A. brasiliensis and C. albicans. These findings underscore the potential of betel leaf extract nanoemulsions, especially those with SA, for various antimicrobial applications for sustainable food packaging, highlighting their significance in addressing microbial challenges.
Collapse
Affiliation(s)
- Krishna Aayush
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Gurvendra Pal Singh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Ivy Chiu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Manisha Joshi
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Kanika Sharma
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Sunakshi Gautam
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Prafull Chavan
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Nidhi Jha
- Department of Chemistry, Chandradhari Mithila Science College, Darbhanga, Bihar 846001, India
| | - Abhishek Kumar Singh
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Azadeh Babaei
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Somesh Sharma
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India.
| | - Tianxi Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
3
|
Badr-Eldin SM, Aldawsari HM, Kotta S, Elfaky MA. Augmentation of antifungal activity of fluconazole using a clove oil nanoemulgel formulation optimized by factorial randomized D-optimal design. 3 Biotech 2024; 14:270. [PMID: 39430772 PMCID: PMC11489362 DOI: 10.1007/s13205-024-04116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 10/06/2024] [Indexed: 10/22/2024] Open
Abstract
In the present study, fluconazole (FLU) showed the highest solubility in clove oil and was selected as the oil phase for the FLU-loaded nanoemulsion (FLU-NE). Among the studied cosurfactants, Labrafac was better than ethanol at providing globules with acceptable sizes and a lower polydispersity index (PDI) when Tween 80 was the surfactant. This optimized FLU-NE was thermodynamically stable. Furthermore, FLU-NE stored at 40 ± 2 °C and 75 ± 5% relative humidity for 6 months demonstrated good stability. The FLU-NE was converted to a FLU-loaded nanoemulsion gel (FLU-NEG) using 2% w/v sodium carboxymethyl cellulose. The FLU-NEG was acceptable in terms of visual appearance and spreadability. Rheological studies revealed pseudoplastic behavior for FLU-NEG. The viscosity of FLU-NEG decreased when the applied rpm was increased. FLU-NEG showed greater drug release than that from a FLU-GEL formulation. Furthermore, the FLU release from FLU-NEG followed the Higuchi model. The results from the in vitro antifungal evaluation of FLU-NEG on Candida albicans ATCC 76615 strain confirmed the increase in the antifungal activity of FLU by clove oil. Significant differences were observed in the zones of inhibition produced by FLU-NEG compared to those produced by the blank nanoemulsion gel (B-NEG), fluconazole suspension (FLU-SUS), and nystatin samples. Thus, the increase in the antifungal activity of FLU using clove oil as the oil phase in its nanoemulsion formulation was quite evident from our results. Therefore, the developed FLU-NEG could be considered a potential candidate for further preclinical and clinical studies.
Collapse
Affiliation(s)
- Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza, 11562 Egypt
| | - Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mahmoud Abdelkhalek Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
4
|
Gupta P, Meher MK, Tripathi S, Poluri KM. Nanoformulations for dismantling fungal biofilms: The latest arsenals of antifungal therapy. Mol Aspects Med 2024; 98:101290. [PMID: 38945048 DOI: 10.1016/j.mam.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Globally, fungal infections have evolved as a strenuous challenge for clinicians, particularly in patients with compromised immunity in intensive care units. Fungal co-infection in Covid-19 patients has made the situation more formidable for healthcare practitioners. Surface adhered fungal population known as biofilm often develop at the diseased site to elicit antifungal tolerance and recalcitrant traits. Thus, an innovative strategy is required to impede/eradicate developed biofilm and avoid the formation of new colonies. The development of nanocomposite-based antibiofilm solutions is the most appropriate way to withstand and dismantle biofilm structures. Nanocomposites can be utilized as a drug delivery medium and for fabrication of anti-biofilm surfaces capable to resist fungal colonization. In this context, the present review comprehensively described different forms of nanocomposites and mode of their action against fungal biofilms. Amongst various nanocomposites, efficacy of metal/organic nanoparticles and nanofibers are particularly emphasized to highlight their role in the pursuit of antibiofilm strategies. Further, the inevitable concern of nanotoxicology has also been introduced and discussed with the exigent need of addressing it while developing nano-based therapies. Further, a list of FDA-approved nano-based antifungal formulations for therapeutic usage available to date has been described. Collectively, the review highlights the potential, scope, and future of nanocomposite-based antibiofilm therapeutics to address the fungal biofilm management issue.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biotechnology, Graphic Era (Demmed to be Unievrsity), Dehradun, 248001, Uttarakhand, India
| | - Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
5
|
Maslanka R, Przywara M, Janeczko A, Zadrag-Tecza R. Microbial cell autofluorescence as a method for measuring the intracellular content of B2 and B6 vitamins. INT J VITAM NUTR RES 2024; 94:334-341. [PMID: 37859397 DOI: 10.1024/0300-9831/a000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Vitamins are important organic compound required for the proper functioning of cells and organisms. Vitamins of special industrial and pharmaceutical interests include riboflavin (vitamin B2) and pyridoxine (vitamin B6). Commercial production of those biological compounds has increasingly relied on microorganisms and requires simple methods for detecting and estimating their level of synthesis during the biotechnological process. In the case of yeast, methods based on autofluorescence, i.e. natural fluorescence emitted by several cellular compounds, including vitamins, may be useful. Considering that the intensity of emitted light is proportional to the intracellular concentration of riboflavin and pyridoxine, autofluorescence may be a convenient method for their quantification. In this report, we demonstrate a simple, rapid, and sufficiently trustworthy spectrofluorimetric method for determining the content of vitamins B2 and B6 in yeast cells which consists of cells growing, harvesting, washing, and resuspending in a buffer, and then measuring the emitted visible light using specific wavelength of excitation (λex=340 nm and λem=385 nm for pyridoxine; λex=460 nm and λem=535 nm for riboflavin). The limits of detection (LOD) and quantification (LOQ) estimated through measurements of vitamin fluorescence were below 0.005 μg/ml for riboflavin and below 0.05 μg/ml for pyridoxine, respectively. In turn, the smallest credible cell density for measuring autofluorescence was set at 1×108 yeast cells/ml. The relative level of the cell's autofluorescence can be expressed in mass units by applying proper calculation formulas. A comparison of the autofluorescence-based method with the reference HPLC-UV method shows that autofluorescence measurement can be used in the screening analysis of vitamin content (especially riboflavin) in microbial cells.
Collapse
Affiliation(s)
- Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Poland
| | - Michał Przywara
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Poland
| | - Agnieszka Janeczko
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Poland
| |
Collapse
|
6
|
Alissa M, Hjazi A, Abusalim GS, Aloraini GS, Alghamdi SA, Alharthi NS, Rizg WY, Hosny KM, Binmadi N. Utilization of nanotechnology and experimental design in the development and optimization of a posaconazole‒calendula oil nanoemulgel for the treatment of mouth disorders. Front Pharmacol 2024; 15:1347551. [PMID: 38434704 PMCID: PMC10905964 DOI: 10.3389/fphar.2024.1347551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction: Essential oil‒based nanoemulsions (NEs) are the subjects of extensive investigation due to their potential to address a variety of oral health issues. NEs are delivery systems that improve lipid medicine solubility and distribution to intended sites. The goal of the current study was to create and enhance a self-nanoemulsifying drug delivery paradigm based on calendula oil (CO) and decorated with chitosan (CS) that could deliver posaconazole (PSZ) for the treatment of gingivitis. Method: Employing a response-surface Box‒Behnken design, PSZ-CO-CS NEs were created with varying amounts of PSZ (10, 15, and 20 mg), percentages of CO (6%, 12%, and 18%), and percentages of CS (0.5%, 1.5%, and 2.5%). Results and conclusion: The optimized formulation resulted in a 22-mm bacterial growth suppression zone, 25-mm fungal growth inhibition zone, droplet sizes of 110 nm, and a viscosity of 750 centipoise (cP). Using the appropriate design, the ideal formulation was produced; it contained 20 mg of PSZ, 18% of CO, and 1.35% of CS. Furthermore, the optimal formulation had a more controlled drug release, larger inhibition zones of bacterial and fungal growth, and desirable rheologic properties. Additionally, the optimized formulation substantially lowered the ulcer index in rats when tested against other formulations. Thus, this investigation showed that PSZ-CO-CS NEs could provide efficient protection against microbially induced gingivitis.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghadah S. Abusalim
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghfren S. Aloraini
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Suad A. Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nahed S. Alharthi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nada Binmadi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Abu Safe FA, Badr AN, Shehata MG, El-Sayyad GS. Antimicrobial and anti-aflatoxigenic activities of nanoemulsions based on Achillea millefolium and Crocus sativus flower extracts as green promising agents for food preservatives. BMC Microbiol 2023; 23:289. [PMID: 37805450 PMCID: PMC10559460 DOI: 10.1186/s12866-023-03033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Although the mechanism of action of nanoemulsion is still unclear, the modern use of nanoemulsions made from natural extracts as antimicrobial and anti-aflatoxigenic agents represents a potential food preservation and a safety target. METHODS Two natural nanoemulsion extracts of Crocus sativus (the saffron flower) and Achillea millefolium (the yarrow flower) were produced in the current study using a low-energy method that included carboxymethylcellulose and Arabic gum. The synthesized nanoemulsion was fully identified by different analytical methods. Detection of the volatile content was completed using GC-MS analysis. The antioxidant potential, and phenolic compounds content were analyzed in the extractions. The synthesized nanoemulsions were screened for their antimicrobial potential in addition to their anti-aflatoxigenic activity. RESULTS The droplet size of Saffron flowers was finer (121.64 ± 2.18 nm) than yarrow flowers (151.21 ± 1.12 nm). The Zeta potential measurements of the yarrow flower (-16.31 ± 2.54 mV) and the saffron flower (-18.55 ± 2.31 mV) both showed high stability, along with low PDI values (0.34-0.41). The nanoemulsion of yarrow flower revealed 51 compounds using gas chromatography-mass spectrometry (GCMS), with hexanal (16.25%), β-Pinene (7.41%), β-Myrcene (5.24%), D-Limonene (5.58%) and Caryophyllene (4.38%) being the most prevalent. Additionally, 31 compounds were detected in the saffron nanoemulsion, with D-limonene (4.89%), isophorone (12.29%), 4-oxy isophorone (8.19%), and safranal (44.84%) being the most abundant. Compared to the nanoemulsion of the yarrow flower, the saffron nanoemulsion had good antibacterial and antifungal activity. Saffron nanoemulsion inhibited total fungal growth by 69.64-71.90% in a simulated liquid medium and demonstrated the most significant decrease in aflatoxin production. Infected strawberry fruits coated with nanoemulsion extracts exhibited high antimicrobial activity in the form of saffron flower and yarrow flower extract nanoemulsions, which inhibited and/or controlled the growth of Aspergillus fungi. Due to this inhibition, the lag phase was noticeably prolonged, the cell load decreased, and the stability time increased. CONCLUSION This study will contribute to expanding the theoretical research and utilization of nanoemulsions as green protective agents in agricultural and food industries for a promising protection from the invasion of some pathogenic bacteria and fungi.
Collapse
Affiliation(s)
- Feriala A Abu Safe
- Botany Department, Faculty of Women for Art, Science, and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed N Badr
- Food Toxicology and Contaminants Department, National Research Centre, Cairo, 12622, Egypt
| | - Mohamed G Shehata
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, 21934, Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 6th October city, Giza, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
8
|
Janik W, Nowotarski M, Ledniowska K, Biernat N, Abdullah, Shyntum DY, Krukiewicz K, Turczyn R, Gołombek K, Dudek G. Effect of Time on the Properties of Bio-Nanocomposite Films Based on Chitosan with Bio-Based Plasticizer Reinforced with Nanofiber Cellulose. Int J Mol Sci 2023; 24:13205. [PMID: 37686012 PMCID: PMC10487500 DOI: 10.3390/ijms241713205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The deterioration of the performance of polysaccharide-based films over time, particularly their hydrophilicity and mechanical properties, is one of the main problems limiting their applications in the packaging industry. In the present study, we proposed to improve the performance of chitosan-based films through the use of: (1) nanocellulose as an additive to reduce their hydrophilic nature; (2) bio-based plasticizer to improve their mechanical properties; and (3) chestnut extract as an antimicrobial agent. To evaluate their stability over time, the properties of as-formed films (mechanical, hydrophilic, barrier and antibacterial) were studied immediately after preparation and after 7, 14 and 30 days. In addition, the morphological properties of the films were characterized by scanning electron microscopy, their structure by FTIR, their transparency by UV-Vis and their thermal properties by TGA. The films showed a hydrophobic character (contact angle above 100°), barrier properties to oxygen and carbon dioxide and strong antibacterial activity against Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Moreover, the use of nanofillers did not deteriorate the elongation at breaks or the thermal properties of the films, but their addition reduced the transparency. In addition, the results showed that the greatest change in film properties occurred within the first 7 days after sample preparation, after which the properties were found to stabilize.
Collapse
Affiliation(s)
- Weronika Janik
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, 47-225 Kędzierzyn-Koźle, Poland; (W.J.); (K.L.); (N.B.)
- PhD School, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Michał Nowotarski
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (M.N.); (K.K.); (R.T.)
| | - Kerstin Ledniowska
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, 47-225 Kędzierzyn-Koźle, Poland; (W.J.); (K.L.); (N.B.)
- PhD School, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Natalia Biernat
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, 47-225 Kędzierzyn-Koźle, Poland; (W.J.); (K.L.); (N.B.)
| | - Abdullah
- PhD School, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (M.N.); (K.K.); (R.T.)
| | | | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (M.N.); (K.K.); (R.T.)
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Roman Turczyn
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (M.N.); (K.K.); (R.T.)
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Klaudiusz Gołombek
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (M.N.); (K.K.); (R.T.)
| |
Collapse
|
9
|
Shehabeldine AM, Doghish AS, El-Dakroury WA, Hassanin MMH, Al-Askar AA, AbdElgawad H, Hashem AH. Antimicrobial, Antibiofilm, and Anticancer Activities of Syzygium aromaticum Essential Oil Nanoemulsion. Molecules 2023; 28:5812. [PMID: 37570781 PMCID: PMC10421252 DOI: 10.3390/molecules28155812] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
In the current study, clove oil nanoemulsion (CL-nanoemulsion) and emulsion (CL-emulsion) were prepared through an ecofriendly method. The prepared CL-nanoemulsion and CL-emulsion were characterized using dynamic light scattering (DLS) and a transmission electron microscope (TEM), where results illustrated that CL-nanoemulsion droplets were approximately 32.67 nm in size and spherical in shape, while CL-nanoemulsion droplets were approximately 225.8 nm with a spherical shape. The antibacterial activity of CL-nanoemulsion and CL-emulsion was carried out using a microbroth dilution method. Results revealed that the preferred CL-nanoemulsion had minimal MIC values between 0.31 and 5 mg/mL. The antibiofilm efficacy of CL-nanoemulsion against S. aureus significantly decreased the development of biofilm compared with CL-emulsion. Furthermore, results illustrated that CL-nanoemulsion showed antifungal activity significantly higher than CL-emulsion. Moreover, the prepared CL-nanoemulsion exhibited outstanding antifungal efficiency toward Candida albicans, Cryptococcus neoformans, Aspergillus brasiliensis, A. flavus, and A. fumigatus where MICs were 12.5, 3.12, 0.78, 1.56, and 1.56 mg/mL, respectively. Additionally, the prepared CL-nanoemulsion was analyzed for its antineoplastic effects through a modified MTT assay for evaluating apoptotic and cytotoxic effects using HepG2 and MCF-7 cell lines. MCF-7 breast cancer cells showed the lowest IC50 values (3.4-fold) in CL-nanoemulsion relative to that of CL-emulsion. Thus, CL-nanoemulsion induces apoptosis in breast cancer cells by inducing caspase-8 and -9 activity and suppressing VEGFR-2. In conclusion, the prepared CL-nanoemulsion had antibacterial, antifungal, and antibiofilm as well as anticancer properties, which can be used in different biomedical applications after extensive studies in vivo.
Collapse
Affiliation(s)
- Amr M. Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| | - Mahmoud M. H. Hassanin
- Ornamental, Medicinal and Aromatic Plant Disease Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2022 Antwerp, Belgium;
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| |
Collapse
|
10
|
Noor A, Jamil S, Sadeq TW, Mohammed Ameen MS, Kohli K. Development and Evaluation of Nanoformulations Containing Timur Oil and Rosemary Oil for Treatment of Topical Fungal Infections. Gels 2023; 9:516. [PMID: 37504395 PMCID: PMC10378787 DOI: 10.3390/gels9070516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
The pervasiveness of fungal infections is an issue for skin health globally, and there are a reported 40 million cases in developed and developing countries. Novel drug delivery systems provide better therapeutic efficacy over conventional drug therapy due to their lower side effects and toxicity. Furthermore, combinations of essential oils can represent alternative therapies for fungal infections that are resistant to synthetic drugs. This study is aimed at developing Timur oil into a nanoemulgel and evaluating its antifungal effects. The development of the formulation involved the preparation of a nanoemulsion by the titration method, followed by its evaluation for various physicochemical properties. The antifungal activity of the nanoemulgel against Candida albicans was evaluated. The zone of inhibition was determined using the disk diffusion method. The results show that the developed nanoemulgel has a particle size of 139 ± 6.11 nm, a PDI of 0.309, and a zeta potential of -19.12 ± 2.73 mV. An in vitro drug release study showed a sustained release of 70 ± 0.289% of the drug over a period of 24 h. The % drug permeation across the skin was found to be 79.11 ± 0.319% over 24 h. However, the amount of drug retained in the skin was 56.45 µg/g. The flux for the nanoemulgel was found to be 94.947 µg/cm2/h, indicating a better permeability profile. The nanoemulgel formulation showed a zone of inhibition of 15 ± 2.45 mm, whereas the 1% ketoconazole cream (marketed preparation) exhibited a zone of inhibition of 13 ± 2.13 mm. The results of this study suggest that developed nanoemulgel containing Timur oil and rosemary oil has the potential to be used for treating topical fungal infections caused by Candida albicans.
Collapse
Affiliation(s)
- Afeefa Noor
- Lloyd Institute of Management and Technology, Greater Noida 201306, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, India
| | - Shahid Jamil
- Department of Pharmacy, College of Pharmacy, Knowledge University, Kirkuk Road, Erbil 44001, Iraq
| | - Tariq Waece Sadeq
- Department of Pharmacy, College of Pharmacy, Knowledge University, Kirkuk Road, Erbil 44001, Iraq
- Pharmacy Department, Erbil Medical Technical Institute, Erbil Polytechnic University, Ebril 44001, Iraq
| | | | - Kanchan Kohli
- Lloyd Institute of Management and Technology, Greater Noida 201306, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, India
| |
Collapse
|
11
|
Zhao Y, Wang Y, Zhang Z, Li H. Advances in Controllable Release Essential Oil Microcapsules and Their Promising Applications. Molecules 2023; 28:4979. [PMID: 37446642 DOI: 10.3390/molecules28134979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Essential oils (EOs) have emerged as natural and popular ingredients used in the preparation of safe and sustainable products because of their unique characteristics, such as antibacterial and antioxidant activity. However, due to their high volatility, poorly solubility in water, and susceptibility to degradation and oxidation, the application of EOs is greatly limited. One of the promising strategies for overcoming these restrictions is encapsulation, which involves in the entrapment of EOs inside biocompatible materials to utilize their controllable release and good bioavailability. In this review, the microencapsulation of the controllable release EOs and their applications are investigated. The focus is on the antimicrobial mechanism of various EOs on different bacteria and fungi, release mechanism of microencapsulated EOs, and preparation research progress of the controllable EOs microcapsules. In addition, their applications are introduced in relation to the food, textiles, agriculture, and medical fields.
Collapse
Affiliation(s)
- Yana Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Yanbo Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Zhijun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Huizhen Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
12
|
Yadav A, Yadav K, Abd-Elsalam KA. Nanofertilizers: Types, Delivery and Advantages in Agricultural Sustainability. AGROCHEMICALS 2023; 2:296-336. [DOI: 10.3390/agrochemicals2020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In an alarming tale of agricultural excess, the relentless overuse of chemical fertilizers in modern farming methods have wreaked havoc on the once-fertile soil, mercilessly depleting its vital nutrients while inflicting irreparable harm on the delicate balance of the surrounding ecosystem. The excessive use of such fertilizers leaves residue on agricultural products, pollutes the environment, upsets agrarian ecosystems, and lowers soil quality. Furthermore, a significant proportion of the nutrient content, including nitrogen, phosphorus, and potassium, is lost from the soil (50–70%) before being utilized. Nanofertilizers, on the other hand, use nanoparticles to control the release of nutrients, making them more efficient and cost-effective than traditional fertilizers. Nanofertilizers comprise one or more plant nutrients within nanoparticles where at least 50% of the particles are smaller than 100 nanometers. Carbon nanotubes, graphene, and quantum dots are some examples of the types of nanomaterials used in the production of nanofertilizers. Nanofertilizers are a new generation of fertilizers that utilize advanced nanotechnology to provide an efficient and sustainable method of fertilizing crops. They are designed to deliver plant nutrients in a controlled manner, ensuring that the nutrients are gradually released over an extended period, thus providing a steady supply of essential elements to the plants. The controlled-release system is more efficient than traditional fertilizers, as it reduces the need for frequent application and the amount of fertilizer. These nanomaterials have a high surface area-to-volume ratio, making them ideal for holding and releasing nutrients. Naturally occurring nanoparticles are found in various sources, including volcanic ash, ocean, and biological matter such as viruses and dust. However, regarding large-scale production, relying solely on naturally occurring nanoparticles may not be sufficient or practical. In agriculture, nanotechnology has been primarily used to increase crop production while minimizing losses and activating plant defense mechanisms against pests, insects, and other environmental challenges. Furthermore, nanofertilizers can reduce runoff and nutrient leaching into the environment, improving environmental sustainability. They can also improve fertilizer use efficiency, leading to higher crop yields and reducing the overall cost of fertilizer application. Nanofertilizers are especially beneficial in areas where traditional fertilizers are inefficient or ineffective. Nanofertilizers can provide a more efficient and cost-effective way to fertilize crops while reducing the environmental impact of fertilizer application. They are the product of promising new technology that can help to meet the increasing demand for food and improve agricultural sustainability. Currently, nanofertilizers face limitations, including higher costs of production and potential environmental and safety concerns due to the use of nanomaterials, while further research is needed to fully understand their long-term effects on soil health, crop growth, and the environment.
Collapse
Affiliation(s)
- Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, District Banaskantha, Gujarat 385506, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
13
|
Cheng T, Xu C, Wu D, Yan G, Wang C, Wang T, Shao J. Sodium houttuyfonate derived from Houttuynia cordata Thunb improves intestinal malfunction via maintaining gut microflora stability in Candida albicans overgrowth aggravated ulcerative colitis. Food Funct 2023; 14:1072-1086. [PMID: 36594429 DOI: 10.1039/d2fo02369e] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Candida albicans is a common opportunistic pathogen and normally resides in the human gut. Increasing number of reports link the overgrowth of C. albicans to the severity of ulcerative colitis (UC). Sodium houttuyfonate (SH), a derivative of the medicinal herb Houttuynia cordata Thunb, has been demonstrated to exhibit decent antifungal and anti-inflammatory activities. We showed previously that SH could ameliorate colitis mice infected with C. albicans. However, it is unclear whether the therapeutic effect of SH is connected to its modulation of intestinal microflora in UC. In this study, the impact of SH on the gut microbiota was explored in both cohabitation and non-cohabitation patterns. The results showed that in UC mice inflicted by C. albicans, the administration of SH could greatly improve the pathological signs, weaken the oxidative stress and inflammatory response, and enhance the intestinal mucosal integrity. By 16S rRNA gene sequencing, we found that C. albicans interference caused intestinal microbiota dysbiosis accompanied by an increase of some harmful pathogens including Klebsiella and Bacteroides. In contrast, SH could modulate the abundance and diversity of microbiota with an increase of several beneficial bacteria comprising short-chain fatty acid-producing bacteria (Lachnospiraceae_NK4A136_group, Intestinimonas) and probiotics (Lactobacillus and Alloprevotella). Furthermore, the cohabitation strategy could also prove the efficacy of SH, indicating a role of transmissible gut flora in the colitis model. These findings suggest that SH might be an effective compound for the treatment of UC complicated by C. albicans overgrowth through maintaining gut microbiota homeostasis, thereby improving intestinal function.
Collapse
Affiliation(s)
- Ting Cheng
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Chen Xu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Daqiang Wu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China. .,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China
| | - Guiming Yan
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Changzhong Wang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China. .,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China
| | - Tianming Wang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China. .,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China
| |
Collapse
|
14
|
Babu V, Singh R, Kashyap PK, Washimkar KR, Mugale MN, Tandon S, Bawankule DU. Pharmacological and Toxicological Study of Coumarinolignoids from Cleome viscosa in Small Animals for the Management of Rheumatoid Arthritis. PLANTA MEDICA 2023; 89:62-71. [PMID: 36167313 DOI: 10.1055/a-1906-1837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study aims to explore the possible pharmacological potential of Cleome viscosa Linn (Cleomaceae), an annual weed, into therapeutic value-added products. In the present study, we have explored the pharmacological and toxicological profile of coumarinolignoids isolated from Cleome viscose for the management of rheumatoid arthritis and related complications in a small animal model. To avoid the biasness during experiments on animals, we have coded the isolated coumarinolignoids as CLIV-92 to perform the experimental pharmacological study. CLIV-92 was orally administrated (30,100, 300 mg/kg) to animal models of collagen-induced arthritis (CIA), carrageenan-induced acute inflammation, thermal and chemical-induced pain, and Brewer's yeast-induced pyrexia. Oral administration of CLIV-92 significantly decreases the arthritis index, arthritis score, and increases the limb withdrawal threshold in the CIA model in experimental rats. The anti-arthritis studies revealed that the anti-inflammatory effect of CLIV-92 was associated with inhibition of the production of inflammatory mediators like TNF-α, IL-6, IL-17A, MMP-1, MMP-9, Nitric oxide, and C-RP in CIA rat's serum, and also reduced the NFкB-p65 expression as evidence of immunohistochemistry in knee joint tissue of CIA rats, in a dose-dependent manner. Further individual experiments related to arthritis-related complications in experimental animals demonstrated the analgesic, anti-inflammatory, and antipyretic potential of CLIV-92 in a dose-dependent manner. Further, an in-vivo acute oral toxicity study concluded that CLIV-92 is safe in experimental animals up to 2,000 mg/kg dose. The results of this study suggested that the oral administration of CLIV-92 may be a therapeutic candidate for further investigation in the management of rheumatoid arthritis and related complications.
Collapse
Affiliation(s)
- Vineet Babu
- Bioprospection and Product Development Division, Council of Scientific and Industrial Research (CSIR) - Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Rupali Singh
- Bioprospection and Product Development Division, Council of Scientific and Industrial Research (CSIR) - Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | | | - Kaveri R Washimkar
- Department of Toxicology & Experimental Medicine, CSIR - Central Drug Research Institute (CDRI), Lucknow, Uttar Pradesh, India
| | - Madhav N Mugale
- Department of Toxicology & Experimental Medicine, CSIR - Central Drug Research Institute (CDRI), Lucknow, Uttar Pradesh, India
| | - Sudeep Tandon
- Phytochemistry Division, CSIR-CIMAP, Lucknow, Uttar Pradesh, India
| | - Dnyaneshwar Umrao Bawankule
- Bioprospection and Product Development Division, Council of Scientific and Industrial Research (CSIR) - Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
15
|
Yang H, Song L, Sun P, Su R, Wang S, Cheng S, Zhan X, Lü X, Xia X, Shi C. Synergistic bactericidal effect of ultrasound combined with citral nanoemulsion on Salmonella and its application in the preservation of purple kale. ULTRASONICS SONOCHEMISTRY 2023; 92:106269. [PMID: 36571884 PMCID: PMC9800203 DOI: 10.1016/j.ultsonch.2022.106269] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 05/28/2023]
Abstract
In this study, a novel citral nanoemulsion (CLNE) was prepared by ultrasonic emulsification. The synergistic antibacterial mechanism of ultrasound combined with CLNE against Salmonella Typhimurium and the effect on the physicochemical properties of purple kale were investigated. The results showed that the combined treatment showed obviously inactivate effect of S. Typhimurium. Treatment with 0.3 mg/mL CLNE combined with US (20 kHz, 253 W/cm2) for 8 min reduced S. Typhimurium populations in phosphate-buffered saline (PBS) by 9.05 log CFU/mL. Confocal laser scanning microscopy (CLSM), flow cytometry (FCM), protein and nucleic acid release assays showed that the US combination CLNE disrupt the integrity of S. Typhimurium membranes. Reactive oxygen species (ROS) and malondialdehyde (MDA) detection indicated that US+CLNE exacerbated oxidative stress and lipid peroxidation in cell membranes. The morphological changes of cells after different treatments by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) illustrated that the synergistic effect of US+CLNE treatment changed the morphology and internal microstructure of the bacteriophage cells. Application of US+CLNE on purple kale leaves for 6 min significantly (P < 0.05) reduced the number of S. Typhimurium, but no changes in the physicochemical properties of the leaves were detected. This study elucidates the synergistic antibacterial mechanism of ultrasound combined with CLNE and provides a theoretical basis for its application in food sterilization.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiwen Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116304, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Marena GD, Ramos MADS, Carvalho GC, de Lima LC, Nascimento ALCSD, Sábio RM, Rodero CF, Spósito L, Bauab TM, Chorilli M. Development and characterization of an amphotericin B - loaded nanoemulsion applied to Candida auris biofilms control. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Mishra B, Mishra AK, Kumar S, Mandal SK, NSV L, Kumar V, Baek KH, Mohanta YK. Antifungal Metabolites as Food Bio-Preservative: Innovation, Outlook, and Challenges. Metabolites 2021; 12:12. [PMID: 35050134 PMCID: PMC8778586 DOI: 10.3390/metabo12010012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Perishable food spoilage caused by fungi is a major cause of discomfort for food producers. Food sensory abnormalities range from aesthetic degeneration to significant aroma, color, or consistency alterations due to this spoilage. Bio-preservation is the use of natural or controlled bacteria or antimicrobials to enhance the quality and safety of food. It has the ability to harmonize and rationalize the required safety requirements with conventional preservation methods and food production safety and quality demands. Even though synthetic preservatives could fix such issues, there is indeed a significant social need for "clean label" foods. As a result, consumers are now seeking foods that are healthier, less processed, and safer. The implementation of antifungal compounds has gotten a lot of attention in recent decades. As a result, the identification and characterization of such antifungal agents has made promising advances. The present state of information on antifungal molecules, their modes of activity, connections with specific target fungi varieties, and uses in food production systems are summarized in this review.
Collapse
Affiliation(s)
- Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
| | - Sanjay Kumar
- Department of Biotechnology, National Institute of Technology, Tadepalligudem, Andhra Pradesh 534101, India;
| | - Sanjeeb Kumar Mandal
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Lakshmayya NSV
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
- Department of Orthopedics Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
| | - Yugal Kishore Mohanta
- Department of Applied Biology, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| |
Collapse
|
19
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
20
|
Das S, Ghosh A, Mukherjee A. Nanoencapsulation-Based Edible Coating of Essential Oils as a Novel Green Strategy Against Fungal Spoilage, Mycotoxin Contamination, and Quality Deterioration of Stored Fruits: An Overview. Front Microbiol 2021; 12:768414. [PMID: 34899650 PMCID: PMC8663763 DOI: 10.3389/fmicb.2021.768414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Currently, applications of essential oils for protection of postharvest fruits against fungal infestation and mycotoxin contamination are of immense interest and research hot spot in view of their natural origin and possibly being an alternative to hazardous synthetic preservatives. However, the practical applications of essential oils in broad-scale industrial sectors have some limitations due to their volatility, less solubility, hydrophobic nature, and easy oxidation in environmental conditions. Implementation of nanotechnology for efficient incorporation of essential oils into polymeric matrices is an emerging and novel strategy to extend its applicability by controlled release and to overcome its major limitations. Moreover, different nano-engineered structures (nanoemulsion, suspension, colloidal dispersion, and nanoparticles) developed by applying a variety of nanoencapsulation processes improved essential oil efficacy along with targeted delivery, maintaining the characteristics of food ingredients. Nanoemulsion-based edible coating of essential oils in fruits poses an innovative green alternative against fungal infestation and mycotoxin contamination. Encapsulation-based coating of essential oils also improves antifungal, antimycotoxigenic, and antioxidant properties, a prerequisite for long-term enhancement of fruit shelf life. Furthermore, emulsion-based coating of essential oil is also efficient in the protection of physicochemical characteristics, viz., firmness, titrable acidity, pH, weight loss, respiration rate, and total phenolic contents, along with maintenance of organoleptic attributes and nutritional qualities of stored fruits. Based on this scenario, the present article deals with the advancement in nanoencapsulation-based edible coating of essential oil with efficient utilization as a novel safe green preservative and develops a green insight into sustainable protection of fruits against fungal- and mycotoxin-mediated quality deterioration.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, India
| | - Abhinanda Ghosh
- Department of Botany, Burdwan Raj College, Purba Bardhaman, India
| | - Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| |
Collapse
|
21
|
Al-Tamimi A, Alfarhan A, Rajagopal R. Antimicrobial and anti-biofilm activities of polyphenols extracted from different Saudi Arabian date cultivars against human pathogens. J Infect Public Health 2021; 14:1783-1787. [PMID: 34756515 DOI: 10.1016/j.jiph.2021.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Microbial diseases have emerged as a serious threat to the healthcare system globally and also in Saudi Arabia; various diseases are associated with higher mortality and increased spreading rates. Dietary sources are often entertained to improve the immune system of the body to fight against these infections. The date fruit (Phoenix dactylifera L) is one such functional food that is less explored for its actual potentials. METHODS The polyphenols isolated from the different cultivars of dates in Saudi Arabia (Ajwa, Safawi, Khalas, and Sukkary) was evaluated for their antibacterial, anti-fungal and anti-biofilm forming abilities. The anti-radical properties of the phenolic extract were conducted in terms of the scavenging of diphenyl-1-picrylhydrazyl radical, hydrogen peroxide radicals and ABTS radicals. The anti-inflammatory potential was analyzed in terms of lipoxygenase activity inhibition. RESULTS The phenolic compounds of different dates were spectrophotometrically estimated and cultivars such as Ajwa and Sukkary had the highest polyphenol content. It was also noteworthy that they exerted potent antibacterial activities against Staphylococcus aureus, Streptococcus pyogenes, and Pseudomonas aeruginosa as estimated by the least minimal inhibitory concentration (MIC) or minimal bactericidal concentration (MBC) values. Besides, these polyphenols reduced the biofilm formation by these bacterial pathogens; it is thus possible that the polyphenols from dates can be a promising antimicrobial agent against various pathogenic strains. Corroborating with these, the polyphenol extracts from different Saudi Arabian dates were found to inhibit the growth of mycelium in strains of Candida albicans and Aspergillus niger. Apart from these, the polyphenol isolates also exhibited significant anti-radical properties against different reactive radical systems. CONCLUSION Overall, the efficacy of phenolic compounds extracted from the dried date fruits are not only restricted to the functional food features; instead, these molecules are capable of preventing the growth of microbial pathogens of humans. Hence, it may emerge as potent antibacterial, anti-fungal and anti-biofilm forming candidates.
Collapse
Affiliation(s)
- Amal Al-Tamimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 87991, Riyadh 11652, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
22
|
Yang R, Chen X, Huang Q, Chen C, Rengasamy KRR, Chen J, Wan C(C. Mining RNA-Seq Data to Depict How Penicillium digitatum Shapes Its Transcriptome in Response to Nanoemulsion. Front Nutr 2021; 8:724419. [PMID: 34595200 PMCID: PMC8476847 DOI: 10.3389/fnut.2021.724419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Penicillium digitatum is the most severe pathogen that infects citrus fruits during storage. It can cause fruit rot and bring significant economic losses. The continuous use of fungicides has resulted in the emergence of drug-resistant strains. Consequently, there is a need to develop naturally and efficiently antifungal fungicides. Natural antimicrobial agents such as clove oil, cinnamon oil, and thyme oil can be extracted from different plant parts. They exhibited broad-spectrum antimicrobial properties and have great potential in the food industry. Here, we exploit a novel cinnamaldehyde (CA), eugenol (EUG), or carvacrol (CAR) combination antifungal therapy and formulate it into nanoemulsion form to overcome lower solubility and instability of essential oil. In this study, the antifungal activity evaluation and transcriptional profile of Penicillium digitatum exposed to compound nanoemulsion were evaluated. Results showed that compound nanoemulsion had a striking inhibitory effect on P. digitatum in a dose-dependent manner. According to RNA-seq analysis, there were 2,169 differentially expressed genes (DEGs) between control and nanoemulsion-treated samples, including 1,028 downregulated and 1,141 upregulated genes. Gene Ontology (GO) analysis indicated that the DEGs were mainly involved in intracellular organelle parts of cell component: cellular respiration, proton transmembrane transport of biological process, and guanyl nucleotide-binding molecular function. KEGG analysis revealed that metabolic pathway, biosynthesis of secondary metabolites, and glyoxylate and dicarboxylate metabolism were the most highly enriched pathways for these DEGs. Taken together, we can conclude the promising antifungal activity of nanoemulsion with multiple action sites against P. digitatum. These outcomes would deepen our knowledge of the inhibitory mechanism from molecular aspects and exploit naturally, efficiently, and harmlessly antifungal agents in the citrus postharvest industry.
Collapse
Affiliation(s)
- Ruopeng Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Life Science and Technology, Honghe University, Mengzi, China
| | - Xiu Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Qiang Huang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Kannan R. R. Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Mankweng, South Africa
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
| | - Chunpeng (Craig) Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|