1
|
Wang H, Li H, Li C, Liu S, Zhang P. The Antarctic moss 2-oxoglutarate/Fe(II)-dependent dioxygenases (Pn2-ODD2) enhanced the tolerance to drought and oxidative stress. BMC PLANT BIOLOGY 2025; 25:549. [PMID: 40295947 PMCID: PMC12036268 DOI: 10.1186/s12870-025-06578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Flavonoid biosynthesis pathway is generally thought unique to land plants and has assisted plants to adapt the terrestrial ecosystems. In this pathway, four 2-oxoglutarate/Fe(II)-dependent dioxygenases (2-ODDs), i.e., flavone synthase I (FNSI), flavanone-3-hydroxylase (F3H), flavonol synthase (FLS) and anthocyanin synthase/leucoanthocyanidin dioxygenase (ANS/LDOX), catalyze the hydroxylation and desaturation reactions. In bryophytes, the earliest land plant group, little is known about the biological functions of these enzymes. RESULTS Here, we cloned a Pn2-ODD2 gene of flavonoid biosynthesis pathway from Antarctic moss Pohlia nutans, which was induced by exogenous NaCl, PEG and abscisic acid (ABA) treatment. Overexpression of Pn2-ODD2 increased the drought resistance in Physcomitrium patens and Arabidopsis thaliana during gametophyte growth and seed germination, respectively. Overexpressed-Pn2-ODD2 Arabidopsis also exhibited the enhanced tolerance to oxidative stress, with the downregulation of ROS generation gene and increased the total flavonoid content. Also, overexpression of Pn2-ODD2 decreased the ABA sensitivity in transgenic P. patens and Arabidopsis. Meanwhile, overexpression of Pn2-ODD2 resulted in an increase in both anthocyanins and flavonols in Arabidopsis, which was correlated with the up-regulated anthocyanin biosynthesis gene. CONCLUSIONS Taken together, Pn2-ODD2 conferred the resistance to drought and oxidative stress by regulating antioxidant defense system in plants.
Collapse
Affiliation(s)
- Huijuan Wang
- National Glycoengineering Research Center, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Han Li
- National Glycoengineering Research Center, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Chaochao Li
- National Glycoengineering Research Center, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shenghao Liu
- Marine Ecology Research Center, First Institute of Oceanography, Natural Resources Ministry, Qingdao, 266061, China
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Science, Shandong University, Qingdao, 266237, China.
- Shandong Key Laboratory of Carbohydrate and Carbohydrate-conjugate Drugs, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
2
|
Feng Y, Li J, Yin H, Shen J, Liu W. Multi-omics analysis revealed the mechanism underlying flavonol biosynthesis during petal color formation in Camellia Nitidissima. BMC PLANT BIOLOGY 2024; 24:847. [PMID: 39251901 PMCID: PMC11382509 DOI: 10.1186/s12870-024-05332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Camellia nitidissima is a rare, prized camellia species with golden-yellow flowers. It has a high ornamental, medicinal, and economic value. Previous studies have shown substantial flavonol accumulation in C. nitidissima petals during flower formation. However, the mechanisms underlying the golden flower formation in C. nitidissima remain largely unknown. RESULTS We performed an integrative analysis of the transcriptome, proteome, and metabolome of the petals at five flower developmental stages to construct the regulatory network underlying golden flower formation in C. nitidissima. Metabolome analysis revealed the presence of 323 flavonoids, and two flavonols, quercetin glycosides and kaempferol glycosides, were highly accumulated in the golden petals. Transcriptome and proteome sequencing suggested that the flavonol biosynthesis-related genes and proteins upregulated and the anthocyanin and proanthocyanidin biosynthesis-related genes and proteins downregulated in the golden petal stage. Further investigation revealed the involvement of MYBs and bHLHs in flavonoid biosynthesis. Expression analysis showed that flavonol synthase 2 (CnFLS2) was highly expressed in the petals, and its expression positively correlated with flavonol content at all flower developmental stages. Transient overexpression of CnFLS2 in the petals increased flavonol content. Furthermore, correlation analysis showed that the jasmonate (JA) pathways positively correlated with flavonol biosynthesis, and exogenous methyl jasmonate (MeJA) treatment promoted CnFLS2 expression and flavonol accumulation. CONCLUSIONS Our findings showed that the JA-CnFLS2 module regulates flavonol biosynthesis during golden petal formation in C. nitidissima.
Collapse
Affiliation(s)
- Yi Feng
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Jiyuan Li
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Hengfu Yin
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China
| | - Jian Shen
- Jinhua Forestry Technology Promotion Station of Zhejiang Province, Jinhua, Zhejiang, 321017, China.
| | - Weixin Liu
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, China.
| |
Collapse
|
3
|
Xiao P, Zhang H, Liao Q, Zhu N, Chen J, Ma L, Zhang M, Shen S. Insight into the Molecular Mechanism of Flower Color Regulation in Rhododendron latoucheae Franch: A Multi-Omics Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:2897. [PMID: 37631109 PMCID: PMC10458524 DOI: 10.3390/plants12162897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Rhododendron latoucheae Franch. (R. latoucheae) is a valuable woody plant known for its high ornamental value. While purple flowers are a distinct and attractive variant phenotype of R. latoucheae, the underlying mechanism regulating its flower color is still poorly understood. To investigate the molecular regulatory mechanism responsible for the variation in flower color, we selected plants with white-pink and purple petals as the object and conducted analyses of metabolites, key genes, and transcription factors associated with flower color. A combined metabolome-transcriptome analysis was performed, and the expression of key genes was subsequently verified through qRT-PCR experiments. The results of our study demonstrated a significant enrichment of differential metabolites in the flavonoid metabolic pathway. Changes in anthocyanin content followed the same trend as the observed flower color variations, specifically showing significant correlations with the contents of malvidin-3-O-glucoside, dihydromyricetin, gallocatechin, and peonidin-3-O-glucoside. Furthermore, we identified three key structural genes (F3GT1, LAR, ANR) and four transcription factors (bHLH130, bHLH41, bHLH123, MYB4) that are potentially associated with the biosynthesis of flavonoid compounds, thereby influencing the appearance of purple flower color in R. latoucheae.
Collapse
Affiliation(s)
- Peng Xiao
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Big Data Engineering Technology Research Center of Natural Reserve and Landscape Resource, Changsha 410004, China
- Institute of Human Settlements and Green Infrastructure, Central South University of Forestry and Technology, Changsha 410083, China
| | - Hui Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Big Data Engineering Technology Research Center of Natural Reserve and Landscape Resource, Changsha 410004, China
- Institute of Human Settlements and Green Infrastructure, Central South University of Forestry and Technology, Changsha 410083, China
| | - Qiulin Liao
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Big Data Engineering Technology Research Center of Natural Reserve and Landscape Resource, Changsha 410004, China
- Institute of Human Settlements and Green Infrastructure, Central South University of Forestry and Technology, Changsha 410083, China
| | - Ninghua Zhu
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiaao Chen
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Big Data Engineering Technology Research Center of Natural Reserve and Landscape Resource, Changsha 410004, China
- Institute of Human Settlements and Green Infrastructure, Central South University of Forestry and Technology, Changsha 410083, China
| | - Lehan Ma
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Big Data Engineering Technology Research Center of Natural Reserve and Landscape Resource, Changsha 410004, China
- Institute of Human Settlements and Green Infrastructure, Central South University of Forestry and Technology, Changsha 410083, China
| | - Minhuan Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Big Data Engineering Technology Research Center of Natural Reserve and Landscape Resource, Changsha 410004, China
- Institute of Human Settlements and Green Infrastructure, Central South University of Forestry and Technology, Changsha 410083, China
| | - Shouyun Shen
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Big Data Engineering Technology Research Center of Natural Reserve and Landscape Resource, Changsha 410004, China
- Institute of Human Settlements and Green Infrastructure, Central South University of Forestry and Technology, Changsha 410083, China
| |
Collapse
|
4
|
Zhang Y, Liu Y, Ling L, Huo W, Li Y, Xu L, Xiang L, Yang Y, Xiong X, Zhang D, Yu X, Li Y. Phenotypic, Physiological, and Molecular Response of Loropetalum chinense var. rubrum under Different Light Quality Treatments Based on Leaf Color Changes. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112169. [PMID: 37299148 DOI: 10.3390/plants12112169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Light quality is a vital environmental signal used to trigger growth and to develop structural differentiation in plants, and it influences morphological, physiological, and biochemical metabolites. In previous studies, different light qualities were found to regulate the synthesis of anthocyanin. However, the mechanism of the synthesis and accumulation of anthocyanins in leaves in response to light quality remains unclear. In this study, the Loropetalum chinense var. rubrum "Xiangnong Fendai" plant was treated with white light (WL), blue light (BL), ultraviolet-A light (UL), and blue light plus ultraviolet-A light (BL + UL), respectively. Under BL, the leaves were described as increasing in redness from "olive green" to "reddish-brown". The chlorophyll, carotenoid, anthocyanin, and total flavonoid content were significantly higher at 7 d than at 0 d. In addition, BL treatment also significantly increased the accumulation of soluble sugar and soluble protein. In contrast to BL, ultraviolet-A light increased the malondialdehyde (MDA) content and the activities of three antioxidant enzymes in the leaves, including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), in varying degrees over time. Moreover, we also found that the CRY-like gene, HY5-like gene, BBX-like gene, MYB-like gene, CHS-like gene, DFR-like gene, ANS-like gene, and UFGT-like gene were significantly upregulated. Furthermore, the SOD-like, POD-like, and CAT-like gene expressions related to antioxidase synthesis were found under ultraviolet-A light conditions. In summary, BL is more conducive to reddening the leaves of "Xiangnong Fendai" and will not lead to excessive photooxidation. This provides an effective ecological strategy for light-induced leaf-color changes, thereby promoting the ornamental and economic value of L. chinense var. rubrum.
Collapse
Affiliation(s)
- Yifan Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Yang Liu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Lin Ling
- School of Economics, Hunan Agricultural University, Changsha 410128, China
| | - Wenwen Huo
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Yang Li
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Lu Xu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Lili Xiang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Yujie Yang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Xingyao Xiong
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Kunpeng Institute of Modern Agriculture, Foshan 528225, China
- Agricultural Genomics Institute at Shenzheng, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Donglin Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Xiaoying Yu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410128, China
| | - Yanlin Li
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Kunpeng Institute of Modern Agriculture, Foshan 528225, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410128, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|