1
|
Vrzalová A, Vrzal R, Nádvorník P, Šebela M, Dvořák Z. Modulation of aryl hydrocarbon receptor activity by halogenated indoles. Bioorg Med Chem 2024; 114:117964. [PMID: 39454560 DOI: 10.1016/j.bmc.2024.117964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic ligand-activated transcription factor integral to various physiological and pathological processes. Among its diverse ligands, indole-based compounds have garnered attention due to their significant biological activity and potential therapeutic applications. This study explores the activation of AhR by structurally diverse halogenated indoles. We evaluated the transcriptional activity of AhR and cell viability in the human LS174T-AhR-luc reporter cell line. Among the tested compounds, 4-FI, 7-FI, 6-BrI, 7-BrI, 6-Cl-2-ox, 5-Br-2-ox, and 6-Br-2-ox activated AhR in a concentration-dependent manner, displaying high efficacy and potency. Molecular docking analysis revealed moderate binding affinities of these compounds to the PAS-B domain of AhR, corroborated by competitive radioligand binding assays. Functional assays showed that halogenated indoles induce the formation of AhR-ARNT heterodimer and enhance the binding of the AhR to the CYP1A1 promoter. Additionally, 4-FI and 7-FI exhibited anti-inflammatory properties in Caco-2 cell models, highlighting their potential for therapeutic applications. This study underscores the significance of the type and position of halogen moiety in indole scaffold, suggesting their potential as candidates for developing therapeutics drugs to treat conditions such as inflammatory bowel disease via AhR activation.
Collapse
Affiliation(s)
- Aneta Vrzalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic.
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Nádvorník
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
2
|
Singla D, Sharma P, Luxami V, Paul K. In Vitro Cytotoxicity and Mechanistic Investigation of Quinazolin-4(1H)-One Linked Coumarin as a Potent Anticancer Agent. Chem Biol Drug Des 2024; 104:e70011. [PMID: 39496463 DOI: 10.1111/cbdd.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024]
Abstract
Quinazolinone-coumarin conjugates synthesized through Late-Stage Functionalization approach are evaluated for their in vitro biological activity for 60 human cancer cell lines representing nine different cancer types. Among the synthesized compounds, eight displayed significant growth inhibitory activity across a spectrum of cancer types, with compound 23 demonstrating particularly notable cytotoxicity. Further investigation involved a five-dose assay of compound 23 against NCI-60 cancer cell lines, revealing its efficacy at different concentrations. Additionally, binding studies elucidated its interaction with Human Serum Albumin (HSA) and DNA. The results indicated a strong binding affinity of 23 with HSA, evidenced by a high binding constant (2.26 × 105 M-1). Moreover, its interaction with DNA occurred via intercalation, specifically between the base pairs of DNA strands, with a binding constant of 5.51 × 104 M-1. This suggests that compound 23 has the ability to bind to both DNA and transport proteins, making it a promising pharmacophore with potential therapeutic applications.
Collapse
Affiliation(s)
- Dinesh Singla
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| | - Palak Sharma
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| | - Vijay Luxami
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| | - Kamaldeep Paul
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
3
|
Brooks KM, Baltrusaitis K, Clarke DF, Nachman S, Jao J, Purswani MU, Agwu A, Beneri C, Deville JG, Powis KM, Stek AM, Eke AC, Shapiro DE, Capparelli E, Greene E, George K, Yin DE, Jean-Philippe P, Chakhtoura N, Bone F, Bacon K, Johnston B, Reding C, Kersey K, Humeniuk R, Best BM, Mirochnick M, Momper JD. Pharmacokinetics and Safety of Remdesivir in Pregnant and Nonpregnant Women With COVID-19: Results From IMPAACT 2032. J Infect Dis 2024; 230:878-888. [PMID: 38839047 PMCID: PMC11481345 DOI: 10.1093/infdis/jiae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Pregnant people with coronavirus disease 2019 (COVID-19) experience higher risk for severe disease and adverse pregnancy outcomes, but no pharmacokinetic (PK) data exist to support dosing of COVID-19 therapeutics during pregnancy. We report PK and safety data for intravenous remdesivir in pregnancy. METHODS IMPAACT 2032 was a phase 4 prospective, open-label, nonrandomized opportunistic study of hospitalized pregnant and nonpregnant women receiving intravenous remdesivir as part of clinical care. Intensive PK sampling was performed on infusion days 3, 4, or 5 with collection of plasma and peripheral blood mononuclear cells (PBMCs). Safety data were recorded from first infusion through 4 weeks after last infusion and at delivery. Geometric mean ratios (GMR) (90% confidence intervals [CI]) of PK parameters between pregnant and nonpregnant women were calculated. RESULTS Fifty-three participants initiated remdesivir (25 pregnant; median gestational age, 27.6 weeks; interquartile range, 24.9-31.0 weeks). Plasma exposures of remdesivir, its 2 major metabolites (GS-704277 and GS-441524), and the free remdesivir fraction were similar between pregnant and nonpregnant participants. Concentrations of the active triphosphate (GS-443902) in PBMCs increased 2.04-fold (90% CI, 1.35-3.03) with each additional infusion in nonpregnant versus pregnant participants. Three adverse events in nonpregnant participants were related to treatment (1 grade 3; 2 grade 2 resulting in treatment discontinuation). There were no treatment-related adverse pregnancy outcomes or congenital anomalies detected. CONCLUSIONS Plasma remdesivir PK parameters were comparable between pregnant and nonpregnant women, and no safety concerns were identified based on our limited data. These findings suggest no dose adjustments are indicated for intravenous remdesivir during pregnancy. CLINICAL TRIALS REGISTRATION NCT04582266.
Collapse
Affiliation(s)
- Kristina M Brooks
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristin Baltrusaitis
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Diana F Clarke
- Section of Pediatric Infectious Diseases, Boston Medical Center, Boston, Massachusetts, USA
| | - Sharon Nachman
- Division of Pediatric Infectious Diseases, Stony Brook Children's Hospital, Stony Brook, New York, USA
| | - Jennifer Jao
- Division of Pediatric Infectious Diseases, Division of Adult Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Murli U Purswani
- Division of Pediatric Infectious Diseases, BronxCare Health System, Bronx, New York, USA
| | - Allison Agwu
- Department of Pediatric Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christy Beneri
- Division of Pediatric Infectious Diseases, Stony Brook Children's Hospital, Stony Brook, New York, USA
| | - Jaime G Deville
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Kathleen M Powis
- Departments of Medicine and Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Alice M Stek
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ahizechukwu C Eke
- Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David E Shapiro
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Edmund Capparelli
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Pediatrics Department, School of Medicine-Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | | | - Kathleen George
- IMPAACT Operations Center, FHI 360, Durham North Carolina, USA
| | - Dwight E Yin
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Patrick Jean-Philippe
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Nahida Chakhtoura
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Frederic Bone
- Frontier Science and Technology Research Foundation, Inc, Amherst, New York, USA
| | - Kira Bacon
- Frontier Science and Technology Research Foundation, Inc, Amherst, New York, USA
| | - Benjamin Johnston
- Frontier Science and Technology Research Foundation, Inc, Amherst, New York, USA
| | - Christina Reding
- Frontier Science and Technology Research Foundation, Inc, Amherst, New York, USA
| | | | | | - Brookie M Best
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Pediatrics Department, School of Medicine-Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Mark Mirochnick
- Division of Neonatalogy, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Jeremiah D Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Kathiresan N, Harini K, Veera Ravi A, Veerabharathi P, Pandi S, Ramesh M, Awere CO, Langeswaran K. Deciphering the Potential Therapeutic Effects of Hydnocarpus wightianus Seed Extracts using in vitro and in silico approaches. Microb Pathog 2024; 194:106798. [PMID: 39025383 DOI: 10.1016/j.micpath.2024.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Phytocompounds possess the potential to treat a broad spectrum of disorders due to their remarkable bioactivity. Naturally occurring compounds possess lower toxicity profiles, which making them attractive targets for drug development. Hydnocarpus wightianus seeds were extracted using ethanol, acetone, and hexane solvents. The extracts were evaluated for phytochemicals screening and other therapeutic characteristics, such as free radicals scavenging, anti α-amylase, anti α-glucosidase, and anti-bacterial activities. The ethanolic extract exhibited noteworthy antibacterial characteristics and demonstrated considerable antioxidant, and anti-diabetic effects. The IC50 value of the ethanolic extract for Dpph, α-amylase, and α-glucosidase were found to be 77.299 ± 3.381 μg/mL, 165.56 2.56 μg/mL, and 136.58 ± 5.82 μg/mL, respectively. The ethanolic extract was effective against Methicillin resistant Staphylococcus aureus (26 mm zone of inhibition at 100 μL concentration). Molecular docking investigations revealed the phytoconstituent's inhibitory mechanisms against diabetic, free radicals, and bacterial activity. Docking score for phytocompounds against targeted protein varies from -7.2 to -5.1 kcal/mol. The bioactive compounds present in the ethanolic extract were identified by Gas chromatography/Mass spectrometry analysis, followed by molecular docking and molecular dynamic simulation studies to further explore the phytoconstituent's inhibitory mechanism of α-glucosidase, ∝-amylase, radical scavenging, and bacterial activity. The electronic structure and possible pharmacological actions of the phytocompound were revealed through the use of Density Functional Theory (DFT) analysis. Computational and in vitro studies revealed that these identified compounds have anti-diabetic, anti-oxidant, and anti-bacterial activities against antibiotic-resistant strain of Staphylococcus aureus.
Collapse
Affiliation(s)
- Nachammai Kathiresan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Kasilingam Harini
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Arumugam Veera Ravi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | | | - Sangavi Pandi
- Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Collince Omondi Awere
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Kulanthaivel Langeswaran
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India; Department of Biomedical Science, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
5
|
Tekyeh MSH, Shushtarian SMM, Bakhsh AI, Tackallou SH, Lanjanian H. Spectroscopic investigation and structural simulation in human serum albumin with hydroxychloroquine/Silybum marianum and a possible potential COVID-19 drug candidate. Arch Pharm (Weinheim) 2024; 357:e2300751. [PMID: 38644340 DOI: 10.1002/ardp.202300751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
In this study, the interaction between human serum albumin (HSA) and the hydroxychloroquine/Silybum marianum (HCQ/SM) mixture was investigated using various techniques. The observed high binding constant (Kb) and Stern-Volmer quenching constant (KSV) indicate a strong binding affinity between the HCQ/SM mixture and HSA. The circular dichroism (CD) analysis revealed that HCQ/SM induced conformational changes in the secondary structure of HSA, leading to a decrease in the α-helical content. UV-Vis analysis exhibited a slight redshift, indicating that the HCQ/SM mixture could adapt to the flexible structure of HSA. The experimental results demonstrated the significant conformational changes in HSA upon binding with HCQ/SM. Theoretical studies were carried out using molecular dynamics simulation via the Gromacs simulation package to explore insights into the drug interaction with HSA-binding sites. Furthermore, molecular docking studies demonstrated that HCQ/SM-HSA exhibited favorable docking scores with the receptor (5FUZ), suggesting a potential therapeutic relevance in combating COVID-19 with a value of -6.24 kcal mol-1. HCQ/SM exhibited stronger interaction with both SARS-CoV-2 virus main proteases compared to favipiravir. Ultimately, the experimental data and molecular docking analysis presented in this research offer valuable insights into the pharmaceutical and biological properties of HCQ/SM mixtures when interacting with serum albumin.
Collapse
Affiliation(s)
- Maryam S H Tekyeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed M M Shushtarian
- Department of Biophysics and Biochemistry, Faculty of Advance Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza I Bakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeed H Tackallou
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Lanjanian
- Software Engineering Department, Engineering Faculty, Istanbul Topkapi University, Istanbul, Turkey
| |
Collapse
|
6
|
Rieder GS, Nogara PA, Omage FB, Duarte T, Dalla Corte CL, da Rocha JBT. Computational analysis of the interactions between Ebselen and derivatives with the active site of the main protease from SARS-CoV-2. Comput Biol Chem 2023; 107:107956. [PMID: 37748316 DOI: 10.1016/j.compbiolchem.2023.107956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
The main protease (Mpro) of the novel coronavirus SARS-CoV-2 is a key target for developing antiviral drugs. Ebselen (EbSe) is a selenium-containing compound that has been shown to inhibit Mpro in vitro by forming a covalent bond with the cysteine (Cys) residue in the active site of the enzyme. However, EbSe can also bind to other proteins, like albumin, and low molecular weight compounds that have free thiol groups, such as Cys and glutathione (GSH), which may affect its availability and activity. In this study, we analyzed the Mpro interaction with EbSe, its analogues, and its metabolites with Cys, GSH, and albumin by molecular docking. We also simulated the electronic structure of the generated molecules by density functional theory (DFT) and explored the stability of EbSe and one of its best derivatives, EbSe-2,5-MeClPh, in the catalytic pocket of Mpro through covalent docking and molecular dynamics. Our results show that EbSe and its analogues bound to GSH/albumin have larger distance between the selenium atom of the ligands and the sulfur atom of Cys145 of Mpro than the other compounds. This suggests that EbSe and its GSH/albumin-analogues may have less affinity for the active site of Mpro. EbSe-2,5-MeClPh was found one of the best molecules, and in molecular dynamics simulations, it showed to undergo more conformational changes in the active site of Mpro, in relation to EbSe, which remained stable in the catalytic pocket. Moreover, this study also reveals that all compounds have the potential to interact closely with the active site of Mpro, providing us with a concept of which derivatives may be promising for in vitro analysis in the future. We propose that these compounds are potential covalent inhibitors of Mpro and that organoselenium compounds are molecules that should be studied for their antiviral properties.
Collapse
Affiliation(s)
- Guilherme Schmitt Rieder
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Pablo Andrei Nogara
- Federal Institute of Education, Science and Technology Sul-rio-grandense (IFSul), Bagé 96418-400, RS, Brazil
| | - Folorunsho Bright Omage
- Biological Chemistry Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Computational Biology Research Group, Embrapa Agricultural Informatics, Campinas, São Paulo, Brazil
| | - Tâmie Duarte
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Cristiane Lenz Dalla Corte
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - João Batista Teixeira da Rocha
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil; Department of Biochemistry, Institute of Basic Health Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil, 90035-003.
| |
Collapse
|
7
|
Cavalieri G, Cilurzo G, Pettorosso L, Mansueto A, Laurini E, Pricl S. Biophysical and docking study on the interaction of anticancer drugs encorafenib and binimetinib with human serum albumin. Eur J Pharm Sci 2023; 189:106550. [PMID: 37527692 DOI: 10.1016/j.ejps.2023.106550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
The utilization of BRAF and MEK inhibitors in combination therapy has demonstrated superior outcomes in the treatment of melanoma as compared to monotherapy. In the present scenario, the combination therapy of Encorafenib (ENC), a BRAF inhibitor, and Binimetinib (BINI), a MEK inhibitor, has been identified as one of the most efficacious treatment modalities for this malignancy. Investigations of protein binding, particularly with human serum albumin (HSA), are essential to understand drug performance and enhance therapeutic outcomes. The investigation of the interplay between small molecule drugs and HSA is of paramount importance, given that such interactions can exert a substantial influence on the pharmacokinetics of these therapeutic agents. The present study aims to bridge these lacunae by implementing a comprehensive approach that integrates fluorescence spectroscopy (FS), isothermal titration calorimetry (ITC), far-ultraviolet circular dichroism (far-UV CD), and molecular simulations. Through analysis of the fluorescence quenching of HSA at three distinct temperatures, it was ascertained that the association constants for the complexes formed between drugs and HSA were of the magnitude of 104 M-1. This suggests that the interactions between the compounds and albumin were moderate and comparable. Simultaneously, the investigation of fluorescence indicated a contrasting binding mechanism for the two inhibitors: ENC predominantly binds to HSA through enthalpic interaction, while BINI/HSA is stabilized by entropic contributions. The data obtained was confirmed through experimental procedures conducted using the ITC method. The results of ligand-competitive displacement experiments indicate that ENC and BINI can bind to HSA within subdomain IIA, specifically Sudlow site I. However, far-UV CD studies show that there are no notable alterations in the structure of HSA upon binding with either of the two inhibitors. Ultimately, the results were supported by computational molecular analysis, which identified the key interactions that contribute to the stabilization of the two ligand/HSA complexes.
Collapse
Affiliation(s)
- Gabriele Cavalieri
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Giulia Cilurzo
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Lorenzo Pettorosso
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Andrea Mansueto
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy.
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| |
Collapse
|
8
|
Tassakka ACMAR, Iskandar IW, Alam JF, Permana AD, Massi MN, Jompa J, Liao LM. Docking Studies and Molecular Dynamics Simulations of Potential Inhibitors from the Brown Seaweed Sargassum polycystum (Phaeophyceae) against PLpro of SARS-CoV-2. BIOTECH 2023; 12:46. [PMID: 37366794 DOI: 10.3390/biotech12020046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
The COVID-19 disease is a major problem affecting human health all over the world. Consequently, researchers have been trying to find solutions to treat this pandemic-scale disease. Even if there are vaccines and approved drugs that could decrease the spread of this pandemic, multidisciplinary approaches are still needed to identify new small molecules as alternatives to combat COVID-19, especially those from nature. In this study, we employed computational approaches by screening 17 natural compounds from the tropical brown seaweed Sargassum polycystum known to have anti-viral properties that benefit human health. This study assessed some seaweed natural products that are bound to the PLpro of SARS-CoV-2. By employing pharmacophore and molecular docking, these natural compounds from S. polycystum showed remarkable scores for protein targets with competitive scores compared to X-ray crystallography ligands and well-known antiviral compounds. This study provides insightful information for advanced study and further in vitro examination and clinical investigation for drug development prospects of abundant yet underexploited tropical seaweeds.
Collapse
Affiliation(s)
| | | | - Jamaluddin Fitrah Alam
- Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | | | - Jamaluddin Jompa
- Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Lawrence Manzano Liao
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
9
|
Trusova VM, Zhytniakivska OA, Tarabara UK, Vus KA, Gorbenko GP. Deciphering the molecular details of interactions between anti-COVID drugs and functional human proteins: in silico approach. J Pharm Biomed Anal 2023; 233:115448. [PMID: 37167767 DOI: 10.1016/j.jpba.2023.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
The molecular docking calculations have been employed to investigate the interactions a set of proteins with the repurposed anti-COVID drugs. The position of the therapeutic agents within the protein structure was dependent on a particular drug-protein system and varied from the binding cleft to the periphery of the polypeptide chain. Interactions involved in the drug-protein complexation includes predominantly hydrogen bonding and hydrophobic contacts. The obtained results may be of particular importance while developing the anti-COVID strategies as well as for deeper understanding of the drug pharmacodynamics and pharmacokinetics.
Collapse
Affiliation(s)
- Valeriya M Trusova
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine.
| | - Olga A Zhytniakivska
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Uliana K Tarabara
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Kateryna A Vus
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Galyna P Gorbenko
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
10
|
Tanuja Safala Bodapati A, Srinivas Reddy R, Lavanya K, Rao Madku S, Ketan Sahoo B. A comprehensive biophysical and theoretical study on the binding of dexlansoprazole with human serum albumin. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
11
|
Chen Y, Guo Y, Li S, Xu J, Ning W, Zhao C, Wang J, Qu Y, Zhang M, Zhou W, Cui Q, Zhang H. Remdesivir inhibits the progression of glioblastoma by enhancing endoplasmic reticulum stress. Biomed Pharmacother 2023; 157:114037. [PMID: 36427388 DOI: 10.1016/j.biopha.2022.114037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive primary malignant brain tumors. The major challenge is the lack of effective therapeutic drugs due to the blood-brain barrier (BBB) and tumor heterogeneity. Remdesivir (RDV), a new member of the nucleotide analog family, has previously been shown to have excellent antiviral effects and BBB penetration, and was predicted here to have anti-GBM effects. In vitro experiments, RDV significantly inhibited the growth of GBM cells, with IC50 values markedly lower than those of normal cell lines or the same cell lines treated with temozolomide. Moreover, in multiple mouse models, RDV not only distinctly inhibited the progression and improved the prognosis of GBM but also exhibited a promising biosafety profile, as manifested by the lack of significant body weight loss, liver or kidney dysfunction or organ structural damage after administration. Furthermore, we investigated the anti-GBM mechanism by RNA-seq and identified that RDV might induce apoptosis of GBM cells by enhancing endoplasmic reticulum (ER) stress and activating the PERK-mediated unfolded protein response. In conclusion, our results indicated that RDV might serve as a novel agent for GBM treatment by increasing ER stress and inducing apoptosis in GBM cells.
Collapse
Affiliation(s)
- Yujia Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuduo Guo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Shenglun Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jiacheng Xu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Chao Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jun Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yanming Qu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Mingshan Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Wanlu Zhou
- Co., Ltd of JeaMoon Technology, 6Rd Middle Zuojiazhuang, Beijing 100028, China
| | - Qinghua Cui
- Co., Ltd of JeaMoon Technology, 6Rd Middle Zuojiazhuang, Beijing 100028, China.
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China.
| |
Collapse
|
12
|
Assessment of alteration in antiviral plasma concentration across dialysis days: computational and analytical study. Bioanalysis 2022; 14:1563-1581. [PMID: 36846891 DOI: 10.4155/bio-2022-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Aim: Protein-bound uremic toxins (PBUTs) may displace drugs from the plasma proteins and render them more liable to clearance. This study aims to investigate the possible interplay between PBUTs and directly acting antivirals (DAAs). Methods: PBUT plasma protein binding was compared to those of paritaprevir (PRT), ombitasivir (OMB) and ritonavir (RTV) in silico to assess the possible competitive displacement. The three drugs were LC-MS/MS determined in seven patients across dialysis and non-dialysis days and results were compared. Results & conclusion: Results showed that the PBUT exhibited a lower binding than DAA reducing the liability of their competitive displacement. This was echoed by an unaltered plasma concentration across dialysis days. Results may indicate that PBUT accumulation may have limited effect on disposition of DAA.
Collapse
|
13
|
Azeem K, Ahmed M, Mohammad T, Uddin A, Shamsi A, Hassan MI, Singh S, Patel R, Abid M. A multi-spectroscopic and computational simulations study to delineate the interaction between antimalarial drug hydroxychloroquine and human serum albumin. J Biomol Struct Dyn 2022:1-17. [PMID: 35924780 DOI: 10.1080/07391102.2022.2107077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Hydroxychloroquine (HCQ), a quinoline based medicine is commonly used to treat malaria and autoimmune diseases such as rheumatoid arthritis. Since, human serum albumin (HSA) serves as excipient for vaccines or therapeutic protein drugs, it is important to understand the effect of HCQ on the structural stability of HSA. In this study, the binding mechanism of HCQ and their effect on stability of HSA have been studied using various spectroscopic techniques and molecular dynamic simulation. The UV-VIS results confirmed the strong binding of HCQ with HSA. The calculated thermodynamics parameters confirmed that binding is spontaneous in nature and van der Waals forces and hydrogen bonding are involved in the binding system which is also confirmed by molecular docking results. The steady-state fluorescence confirms the static quenching mechanism in the interaction system, which was further validated by time-resolved fluorescence. The synchronous fluorescence confirmed the more abrupt binding of HCQ with tryptophan residue of HSA compared to Tyr residue of HSA. Isothermal titration calorimetry (ITC) was done to validate the thermodynamics parameters of HSA-HCQ complex in one experiment, supporting the values obtained from the spectroscopic techniques. The circular dichroism (CD) demonstrated that the HCQ affected the secondary structure of HSA protein by reducing their α-helical content. The docking and molecular dynamic simulation results further helped in understanding the effect of HCQ on conformational changes of HSA. Overall, present work defined the physicochemical properties and interaction mechanism of HCQ with HSA that have extensively been elucidated by both in vitro and in silico approaches.
Collapse
Affiliation(s)
- Kashish Azeem
- Department of Biosciences, Medicinal Chemistry Laboratory, New Delhi, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mofieed Ahmed
- Department of Biosciences, Medicinal Chemistry Laboratory, New Delhi, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Amad Uddin
- Department of Biosciences, Medicinal Chemistry Laboratory, New Delhi, India.,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rajan Patel
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Biosciences, Medicinal Chemistry Laboratory, New Delhi, India
| |
Collapse
|