1
|
Barutta F, Corbetta B, Bellini S, Gambino R, Bruno S, Kimura S, Hase K, Ohno H, Gruden G. Protective effect of mesenchymal stromal cells in diabetic nephropathy: the In vitro and In vivo role of the M-Sec-tunneling nanotubes. Clin Sci (Lond) 2024; 138:1537-1559. [PMID: 39535903 DOI: 10.1042/cs20242064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Mitochondrial dysfunction plays an important role in the development of podocyte injury in diabetic nephropathy (DN). Tunnelling nanotubes (TNTs) are long channels that connect cells and allow organelle exchange. Mesenchymal stromal cells (MSCs) can transfer mitochondria to other cells through the M-Sec-TNTs system. However, it remains unexplored whether MSCs can form heterotypic TNTs with podocytes, thereby enabling the replacement of diabetes-damaged mitochondria. In this study, we analysed TNT formation, mitochondrial transfer, and markers of cell injury in podocytes that were pre-exposed to diabetes-related insults and then co-cultured with diabetic or non-diabetic MSCs. Furthermore, to assess the in vivo relevance, we treated DN mice with exogenous MSCs, either expressing or lacking M-Sec, carrying fluorescent-tagged mitochondria. MSCs formed heterotypic TNTs with podocytes, allowing mitochondrial transfer, via a M-Sec-dependent mechanism. This ameliorated mitochondrial function, nephrin expression, and reduced apoptosis in recipient podocytes. However, MSCs isolated from diabetic mice failed to confer cytoprotection due to Miro-1 down-regulation. In experimental DN, treatment with exogenous MSCs significantly improved DN, but no benefit was observed in mice treated with MSCs lacking M-Sec. Mitochondrial transfer from exogenous MSCs to podocytes occurred in vivo in a M-Sec-dependent manner. These findings demonstrate that the M-Sec-TNT-mediated transfer of mitochondria from healthy MSCs to diabetes-injured podocytes can ameliorate podocyte damage. Moreover, M-Sec expression in exogenous MSCs is essential for providing renoprotection in vivo in experimental DN.
Collapse
Affiliation(s)
- Federica Barutta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Stefania Bellini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Gabriella Gruden
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Gomaa S, Nassef M, Hafez A. Potentials of bone marrow cells-derived from naïve or diabetic mice in autoimmune type 1 diabetes: immunomodulatory, anti-inflammatory, anti hyperglycemic, and antioxidative. Endocrine 2024; 86:959-979. [PMID: 39014283 PMCID: PMC11554735 DOI: 10.1007/s12020-024-03929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The scarcity of transplanted human islet tissue and the requirement for immunosuppressive drugs to prevent the rejection of allogeneic grafts have hindered the treatment of autoimmune type 1 diabetes mellitus (T1DM) through islet transplantation. However, there is hope in adoptively transferred bone marrow cells (BMCs) therapy, which has emerged as a propitious pathway for forthcoming medications. BMCs have the potential to significantly impact both replacement and regenerative therapies for a range of disorders, including diabetes mellitus, and have demonstrated anti-diabetic effects. AIM The main goal of this study is to evaluate the effectiveness of adoptively transferred bone marrow cells derived from either naïve mice (nBMCs) or diabetic mice (dBMCs) in treating a T1DM mice model. METHODS Male Swiss albino mice were starved for 16 h and then injected with streptozotocin (STZ) at a dose of 40 mg/kg body weight for 5 consecutive days to induce T1DM. After 14 days, the diabetic mice were distributed into four groups. The first group served as a diabetic control treated with sodium citrate buffer, while the other three groups were treated for two weeks, respectively, with insulin (subcutaneously at a dose of 8 U/kg/day), nBMCs (intravenously at a dose of 1 × 106 cells/mouse/once), and dBMCs (intravenously at a dose of 1 × 106 cells/mouse/once). RESULTS It is worth noting that administering adoptively transferred nBMCs or adoptively transferred dBMCs to STZ-induced T1DM mice resulted in a significant amelioration in glycemic condition, accompanied by a considerable reduction in the level of blood glucose and glycosylated hemoglobin % (HbA1C %), ultimately restoring serum insulin levels to their initial state in control mice. Administering nBMCs or dBMCs to STZ-induced T1DM mice led to a remarkable decrease in levels of inflammatory cytokine markers in the serum, including interferon-γ (INF-γ), tumor necrosis factor- α (TNF-α), tumor growth factor-β (TGF-β), interleukin-1 β (L-1β), interlekin-4 (IL-4), interleukin-6 (IL-6), and interleukin-10 (IL-10). Additionally, STZ-induced T1DM mice, when treated with nBMCs or dBMCs, experienced a notable rise in total immunoglobulin (Ig) level. Furthermore, there was a significant reduction in the levels of islet cell autoantibodies (ICA) and insulin autoantibodies (IAA). Furthermore, the serum of STZ-induced T1DM mice showed a significant increase in Zinc transporter 8 antigen protein (ZnT8), islet antigen 2 protein (IA-2), and glutamic acid decarboxylase antigen protein (GAD) levels. Interestingly, the administration of nBMCs or dBMCs resulted in a heightened expression of IA-2 protein in STZ-induced T1DM mice treated with nBMCs or dBMCs. Furthermore, the level of malondialdehyde (MDA) was increased, while the levels of catalase (CAT) and superoxide dismutase (SOD) were decreased in non-treated STZ-induced T1DM mice. However, when nBMCs or dBMCs were administered to STZ-induced T1DM mice, it had a significant impact on reducing oxidative stress. This was accomplished by reducing the levels of MDA in the serum and enhancing the activities of enzymatic antioxidants like CAT and SOD. STZ-induced T1DM mice displayed a significant elevation in the levels of liver enzymes ALT and AST, as well as heightened levels of creatinine and urea. Considering the crucial roles of the liver and kidney in metabolism and excretion, this research further examined the effects of administering nBMCs or dBMCs to STZ-induced T1DM mice. Notably, the administration of these cells alleviated the observed effects. CONCLUSION The present study suggests that utilizing adoptively transferred nBMCs or adoptively transferred dBMCs in the treatment of T1DM led to noteworthy decreases in blood glucose levels, possibly attributed to their capacity to enhance insulin secretion and improve the performance of pancreatic islets. Additionally, BMCs may exert their beneficial effects on the pancreatic islets of diabetic mice through their immunomodulatory, antioxidant, anti-inflammatory, and anti-oxidative stress properties.
Collapse
Affiliation(s)
- Soha Gomaa
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Mohamed Nassef
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Amira Hafez
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Abd El-Lateef HM, Ali LS, Qahl SH, Binjawhar DN, Fayad E, Alghamdi MA, Altalhi SA, Al-Salmi FA, Shabana ES, Radwan KH, Youssef I, Shaaban S, Rashwan HM, El-Sawah SG. Therapeutic effect of N, N-Diphenyl-1,4-phenylenediamine and adipose-derived stem cells coadministration on diabetic cardiomyopathy in type 1 diabetes mellitus-rat model. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:647-657. [PMID: 38594572 DOI: 10.1002/jez.2810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
Type 1 diabetes stem-cell-based treatment approach is among the leading therapeutic strategies for treating cardiac damage owing to the stem cells' regeneration capabilities. Mesenchymal stem cells derived from adipose tissue (AD-MSCs) have shown great potential in treating diabetic cardiomyopathy (DCM). Herein, we explored the antioxidant-supporting role of N, N'-diphenyl-1,4-phenylenediamine (DPPD) in enhancing the MSCs' therapeutic role in alleviating DCM complications in heart tissues of type 1 diabetic rats. Six male albinos Wistar rat groups have been designed into the control group, DPPD (250 mg/kg, i.p.) group, diabetic-untreated group, and three diabetic rat groups treated with either AD-MSCs (1 × 106 cell/rat, i.v.) or DPPD or both. Interestingly, all three treated diabetic groups exhibited a significant decrease in serum glucose, HbA1c, heart dysfunction markers (lactate dehydrogenase and CK-MP) levels, and lipid profile fractions (except for HDL-C), as well as some cardiac oxidative stress (OS) levels (MDA, AGEs, XO, and ROS). On the contrary, serum insulin, C-peptide, and various cardiac antioxidant levels (GSH, GST, CAT, SOD, TAC, and HO-1), beside viable cardiac cells (G0/G1%), were markedly elevated compared with the diabetic untreated group. In support of these findings, the histological assay reflected a marked enhancement in the cardiac tissues of all diabetic-treated groups, with obvious excellency of the AD-MSCs + DPPD diabetic-treated group. Such results strongly suggested the great therapeutic potentiality of either DPPD or AD-MSCs single injection in enhancing the cardiac function of diabetic rats, with a great noted enhancement superiority of DPPD and AD-MSCs coadministration.
Collapse
Affiliation(s)
- Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Lashin S Ali
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
- Physiology Department, Faculty of Medicine, Mansoura University, Mansours, Egypt
| | - Safa H Qahl
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Dalal N Binjawhar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Maha A Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Sarah A Altalhi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Fawziah A Al-Salmi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - El Shaimaa Shabana
- Fellow of Biochemistry, Genetic Unit, Children Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Kholoud H Radwan
- Department of Biochemistry, Horus University in Egypt HUE, Damietta, Egypt
| | - Ibrahim Youssef
- Department of Chemistry, College of Science, Mansoura University, Mansoura, Egypt
- Neuroradiology and Neuro-intervention Section, Department of Radiology, UTSW Medical Center, Dallas, USA
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, College of Science, Mansoura University, Mansoura, Egypt
| | - Hanan M Rashwan
- Zoology Department, Faculty of Science, Arish University, North Sinai, Egypt
| | - Shady G El-Sawah
- Zoology Department, Faculty of Science, Arish University, North Sinai, Egypt
| |
Collapse
|
4
|
Liu L, Chen Y, Li X, Wang J, Yang L. Therapeutic potential: The role of mesenchymal stem cells from diverse sources and their derived exosomes in diabetic nephropathy. Biomed Pharmacother 2024; 175:116672. [PMID: 38677249 DOI: 10.1016/j.biopha.2024.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetic patients, with its incidence continuously increasing in recent years. DN causes renal tissue damage and functional decline, expedites the aging process of the kidneys, and may ultimately progress leading to end-stage renal disease, severely impacting the patient's quality of life and prognosis. Mesenchymal stem cells (MSCs) are highly valued for their multipotent differentiation, paracrine functions, immunomodulatory effects, and capacity for tissue repair. Particularly, exosomes (Exo) derived from MSCs (MSCs-Exo) are rich in bioactive molecules and facilitate intercellular communication, participating in various physiological and pathological processes. MSCs and MSCs-Exo, in particular, have been demonstrated to have therapeutic effects in DN treatment research by encouraging tissue repair, fibrosis inhibition, and inflammation reduction. Research has shown that MSCs and MSCs-Exo have therapeutic effects in DN treatment by promoting tissue repair, inhibiting fibrosis, and reducing inflammation. Recent studies underscore the potential of MSCs and MSCs-Exo, highlighting their broad applicability in DN treatment. This review aims to provide a comprehensive summary of the scientific developments in treating DN using MSCs and MSCs-Exo from diverse sources, while also exploring their future therapeutic possibilities in detail.
Collapse
Affiliation(s)
- Lixin Liu
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Yiman Chen
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Xuan Li
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Juan Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Lina Yang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
5
|
Mikłosz A, Chabowski A. Efficacy of adipose-derived mesenchymal stem cell therapy in the treatment of chronic micro- and macrovascular complications of diabetes. Diabetes Obes Metab 2024; 26:793-808. [PMID: 38073423 DOI: 10.1111/dom.15375] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 02/06/2024]
Abstract
Diabetes mellitus is a highly prevalent disease characterized by hyperglycaemia that damages the vascular system, leading to micro- (retinopathy, neuropathy, nephropathy) and macrovascular diseases (cardiovascular disease). There are also secondary complications of diabetes (cardiomyopathy, erectile dysfunction or diabetic foot ulcers). Stem cell-based therapies have become a promising tool targeting diabetes symptoms and its chronic complications. Among all stem cells, adipose-derived mesenchymal stem cells (ADMSCs) are of great importance because of their abundance, non-invasive isolation and no ethical limitations. Characteristics that make ADMSCs good candidates for cell-based therapy are their wide immunomodulatory properties and paracrine activities through the secretion of an array of growth factors, chemokines, cytokines, angiogenic factors and anti-apoptotic molecules. Besides, after transplantation, ADMSCs show great ex vivo expansion capacity and differentiation to other cell types, including insulin-producing cells, cardiomyocytes, chondrocytes, hepatocyte-like cells, neurons, endothelial cells, photoreceptor-like cells, or astrocytes. Preclinical studies have shown that ADMSC-based therapy effectively improved visual acuity, ameliorated polyneuropathy and foot ulceration, arrested the development and progression of diabetic kidney disease, or alleviated the diabetes-induced cardiomyocyte hypertrophy. However, despite the positive results obtained in animal models, there are still several challenges that need to be overcome before the results of preclinical studies can be translated into clinical applications. To date, there are several clinical trials or ongoing trials using ADMSCs in the treatment of diabetic complications, most of them in the treatment of diabetic foot ulcers. This narrative review summarizes the most recent outcomes on the usage of ADMSCs in the treatment of long-term complications of diabetes in both animal models and clinical trials.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Yudhawati R, Shimizu K. PGE2 Produced by Exogenous MSCs Promotes Immunoregulation in ARDS Induced by Highly Pathogenic Influenza A through Activation of the Wnt-β-Catenin Signaling Pathway. Int J Mol Sci 2023; 24:ijms24087299. [PMID: 37108459 PMCID: PMC10138595 DOI: 10.3390/ijms24087299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Acute respiratory distress syndrome is an acute respiratory failure caused by cytokine storms; highly pathogenic influenza A virus infection can induce cytokine storms. The innate immune response is vital in this cytokine storm, acting by activating the transcription factor NF-κB. Tissue injury releases a danger-associated molecular pattern that provides positive feedback for NF-κB activation. Exogenous mesenchymal stem cells can also modulate immune responses by producing potent immunosuppressive substances, such as prostaglandin E2. Prostaglandin E2 is a critical mediator that regulates various physiological and pathological processes through autocrine or paracrine mechanisms. Activation of prostaglandin E2 results in the accumulation of unphosphorylated β-catenin in the cytoplasm, which subsequently reaches the nucleus to inhibit the transcription factor NF-κB. The inhibition of NF-κB by β-catenin is a mechanism that reduces inflammation.
Collapse
Affiliation(s)
- Resti Yudhawati
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga-Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
- Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya 60286, Indonesia
| | - Kazufumi Shimizu
- Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya 60286, Indonesia
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
7
|
Wan P, Cai B, Chen H, Chen D, Zhao X, Yuan H, Huang J, Chen X, Luo L, Pan J. Antidiabetic effects of protein hydrolysates from Trachinotus ovatus and identification and screening of peptides with α-amylase and DPP-IV inhibitory activities. Curr Res Food Sci 2023; 6:100446. [PMID: 36816000 PMCID: PMC9932700 DOI: 10.1016/j.crfs.2023.100446] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023] Open
Abstract
In the present study, the antidiabetic properties of Trachinotus ovatus protein hydrolysates (TOH) in streptozotocin-induced diabetic mice were investigated, and peptides with α-amylase (AAM) and dipeptidyl peptidase IV (DPP-IV) inhibitory activities were identified and screened. The results showed that TOH alleviated body weight loss, polyphagia, blood glucose elevation and insulin secretion decline in diabetic mice. After 4 weeks of TOH administration, random blood glucose (RBG) decreased significantly. The TOH groups showed a dose-dependent reduction in fasting blood glucose (FBG), especially in the high-dose TOH group, which reduced FBG by 58% versus the effect of metformin. Moreover, TOH exerted a remarkable protective effect on hepatorenal function, as evidenced by increased superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) and decreased serum urea levels. Histopathological studies confirmed that TOH can significantly protect the kidney and pancreas from histological changes, which was of great benefit for ensuring the normal secretion of insulin and preventing the occurrence of complications such as diabetic nephropathy. Two fractions with higher inhibitory activity against AAM and DPP-IV, F4 and F6, were obtained from the ultrafiltration of TOH-2 (≤3 kDa). A total of 19 potentially active peptides from F4 and 3 potentially active peptides from F6 were screened by LC‒MS/MS combined with bioinformatic analysis. These peptides are small molecular peptides composed of 2-6 amino acids, rich in characteristic amino acids such as proline, arginine, phenylalanine and asparagine, and contain high proportions of peptides (68% for F4, 67% for F6) with hydrophobicity ≥50%. They offer potent antidiabetic potential and could potentially bind to the active sites in the internal cavities of the target enzymes AAM and DPP-IV. In summary, this study revealed for the first time the antidiabetic effects of protein hydrolysates of Trachinotus ovatus and their derived peptides, which are promising natural ingredients with the potential to be used for the treatment or prevention of diabetes.
Collapse
Affiliation(s)
- Peng Wan
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, China
| | - Bingna Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Hua Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Deke Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Xiangtan Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Huabiao Yuan
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jingtong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xin Chen
- School of Environment and Chemical Engineering, Foshan University, Foshan, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jianyu Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
- Corresponding author. Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, Guangdong, China.
| |
Collapse
|
8
|
Wu G, Su Q, Li J, Xue C, Zhu J, Cai Q, Huang J, Ji S, Cheng B, Ge H. NAMPT encapsulated by extracellular vesicles from young adipose-derived mesenchymal stem cells treated tendinopathy in a "One-Stone-Two-Birds" manner. J Nanobiotechnology 2023; 21:7. [PMID: 36604715 PMCID: PMC9814467 DOI: 10.1186/s12951-022-01763-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Tendinopathy is the leading sports-related injury and will cause severe weakness and tenderness. Effective therapy for tendinopathy remains limited, and extracellular vesicles (EVs) derived from adipose tissue-derived mesenchymal stem cells (ADMSCs) have demonstrated great potential in tendinopathy treatment; however, the influence of aging status on EV treatment has not been previously described. RESULTS In this study, it was found that ADMSCs derived from old mice (ADMSCold) demonstrated remarkable cellular senescence and impaired NAD+ metabolism compared with ADMSCs derived from young mice (ADMSCyoung). Lower NAMPT contents were detected in both ADMSCold and its secreted EVs (ADMSCold-EVs). Advanced animal experiments demonstrated that ADMSCyoung-EVs, but not ADMSCold-EVs, alleviated the pathological structural, functional and biomechanical properties in tendinopathy mice. Mechanistic analyses demonstrated that ADMSCyoung-EVs improved cell viability and relieved cellular senescence of tenocytes through the NAMPT/SIRT1/PPARγ/PGC-1α pathway. ADMSCyoung-EVs, but not ADMSCold-EVs, promoted phagocytosis and M2 polarization in macrophages through the NAMPT/SIRT1/Nf-κb p65/NLRP3 pathway. The macrophage/tenocyte crosstalk in tendinopathy was influenced by ADMSCyoung-EV treatment and thus it demonstrated "One-Stone-Two-Birds" effects in tendinopathy treatment. CONCLUSIONS This study demonstrates an effective novel therapy for tendinopathy and uncovers the influence of donor age on curative effects by clarifying the detailed biological mechanism.
Collapse
Affiliation(s)
- Guanghao Wu
- grid.43555.320000 0000 8841 6246School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Qihang Su
- grid.24516.340000000123704535Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Jie Li
- Department of Orthopedics, Zhabei Central Hospital of Jing’an District, Shanghai, 200070 China
| | - Chao Xue
- grid.24516.340000000123704535Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Jie Zhu
- grid.9227.e0000000119573309National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Qiuchen Cai
- grid.24516.340000000123704535Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Jingbiao Huang
- grid.24516.340000000123704535Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072 China
| | - Shaoyang Ji
- grid.9227.e0000000119573309National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Biao Cheng
- grid.24516.340000000123704535Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065 China
| | - Hengan Ge
- grid.24516.340000000123704535Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065 China
| |
Collapse
|
9
|
Jayasinghe M, Prathiraja O, Perera PB, Jena R, Silva MS, Weerawarna P, Singhal M, Kayani AMA, Karnakoti S, Jain S. The Role of Mesenchymal Stem Cells in the Treatment of Type 1 Diabetes. Cureus 2022; 14:e27337. [PMID: 36042996 PMCID: PMC9414788 DOI: 10.7759/cureus.27337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic disease characterized by inadequate or absent insulin production due to the autoimmune destruction of beta (β) cells in the pancreas. It was once called "juvenile diabetes" since the disease frequently occurs in children, but it can also develop in adults. According to the International Diabetes Federation, an estimated 700 million adults will suffer from diabetes by 2045. Although the exact cause of diabetes remains unknown, it is hypothesized that genetic factors, environmental factors, and exposure to certain viruses play a role in the development of T1D. To date, exogenous insulin is the most common treatment for T1D. However, it is not a cure for the disease. Islet cell transplantation and pancreatic transplantation are two additional treatments that have gained popularity in recent years, but their clinical application may be limited by the need for high doses of immunosuppressants, the rarity of human cadaveric islets, and the need for extensive surgery in pancreatic transplantation. Mesenchymal stem cells (MSCs) are a highly promising novel treatment for T1D and their discovery has advanced biological sciences by allowing for modification of cell fate and the development of higher-order cellular structures. They play an essential role in lowering levels of fasting blood sugar, hemoglobin A1c, and C-peptide, and in treating microvascular complications associated with T1D. However, some of the disadvantages of its use in clinical practice are limited to its method of collection, proliferation rate, cell activity with age, and the risk of tumour formation identified in some studies. Large-scale studies are required to discover the mechanism of action of MSCs after administration as well as the optimal route, dose, and timing to maximize the benefits to patients. This article focuses primarily on the role of MSCs in the treatment of T1D and compares the feasibility, benefits, and drawbacks of MSCs in the treatment of T1D.
Collapse
|