1
|
Xu T, Zhang H, Yang BB, Qadir J, Yuan H, Ye T. Tumor-infiltrating immune cells state-implications for various breast cancer subtypes. Front Immunol 2025; 16:1550003. [PMID: 40438111 PMCID: PMC12116345 DOI: 10.3389/fimmu.2025.1550003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/24/2025] [Indexed: 06/01/2025] Open
Abstract
Breast cancer presents a variety of subtypes due to its cellular and molecular heterogeneity. The capacity of cancer cells to proliferate, invade, and metastasize depends not only on their intrinsic characters but also on their dynamic interaction with the host tumor microenvironment (TME), which includes immune cells. Meanwhile, the infiltration of immune cells in the TME severely affects the occurrence, development, treatment, and prognosis of breast cancer. Therefore, this review aims to explore the immune invasive tumor microenvironment in different intrinsic subtypes of breast cancer. Additionally, it highlights the mechanistic influence of the infiltrating immune cells on stage-wise dynamics of breast tumorigenesis. Moreover, the present review also attempts to discern the regulatory relationship between tumor infiltrating immune cells and immune microenvironment in different molecular subtypes of breast cancer, thus, spotlighting its clinical significance.
Collapse
Affiliation(s)
- Tianshuang Xu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Hongjun Zhang
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Burton B. Yang
- Sunnybrook Research Institute and the Department of Laboratory Medicine and Pathobiology at the University of Toronto, Toronto, ON, Canada
| | - Javeria Qadir
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Hui Yuan
- School of Stomatology and School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Koirala PK, Kashyap S, Sharma HS. Effects of Kanamycin on Hearing and Vestibular Function in Multidrug-Resistant Tuberculosis Patients. Indian J Otolaryngol Head Neck Surg 2025; 77:1461-1477. [PMID: 40093437 PMCID: PMC11909340 DOI: 10.1007/s12070-025-05362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Kanamycin, an aminoglycoside antibiotic used to treat multidrug-resistant tuberculosis (MDR-TB), poses a significant risk of ototoxicity, potentially affecting hearing and balance. This study aimed to investigate the impact of kanamycin on auditory and vestibular function in MDR-TB patients focusing on the development of Sensorineural Hearing Loss (SNHL), dizziness, and tinnitus. A cohort of primarily young patients (44.4% aged 19-30, 69.4% female) underwent interviews, tuning fork tests, and Pure Tone Audiometry before and after treatment. Statistical analysis revealed significant associations between kanamycin use SNHL, dizziness, and tinnitus. A substantial proportion of participants experienced hearing loss and balance-related symptoms post-treatment. The findings underscore the need for routine auditory and vestibular monitoring in MDR-TB patients, particularly those at higher risk. Further research on minimizing kanamycin-induced ototoxicity, exploring alternative therapies, and conducting longitudinal studies to assess long-term auditory and vestibular outcomes in MDR-TB treatment.
Collapse
Affiliation(s)
- Prakash Kumar Koirala
- Respiratory Medicine, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim 737102 India
| | - Sushma Kashyap
- Department of ENT, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim 737102 India
| | - Hari Shankar Sharma
- Department of ENT, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim 737102 India
| |
Collapse
|
3
|
Jan A, Sofi S, Jan N, Mir MA. An update on cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer. Future Oncol 2025; 21:715-735. [PMID: 39936282 PMCID: PMC11881842 DOI: 10.1080/14796694.2025.2461443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Triple-negative breast cancer (TNBC) presents a formidable global health challenge, marked by its aggressive behavior and significant treatment resistance. This subtype, devoid of estrogen, progesterone, and HER2 receptors, largely relies on breast cancer stem cells (BCSCs) for its progression, metastasis, and recurrence. BCSCs, characterized by their self-renewal capacity and resistance to conventional therapies, exploit key surface markers and critical signaling pathways like Wnt, Hedgehog, Notch, TGF-β, PI3K/AKT/mTOR and Hippo-YAP/TAZ to thrive. Their adaptability is underscored by mechanisms including drug efflux and enhanced DNA repair, contributing to poor prognosis and high recurrence rates. The tumor microenvironment (TME) further facilitates BCSC survival through complex interactions with stromal and immune cells. Emerging therapeutic strategies targeting BCSCs - ranging from immunotherapy and nanoparticle-based drug delivery systems to gene-editing technologies - aim to disrupt these resistant cells. Additionally, innovative approaches focusing on exosome-mediated signaling and metabolic reprogramming show promise in overcoming chemoresistance. By elucidating the distinct characteristics of BCSCs and their role in TNBC, researchers are paving the way for novel treatments that may effectively eradicate these resilient cells, mitigate metastasis, and ultimately improve patient outcomes. This review highlights the urgent need for targeted strategies that address the unique biology of BCSCs in the pursuit of more effective therapeutic interventions for TNBC.
Collapse
Affiliation(s)
- Asma Jan
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Shazia Sofi
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Nusrat Jan
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Manzoor Ahmad Mir
- Cancer Biology Laboratory, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
4
|
Zheng QY, Xiao LF, An TY, Zhang L, Long X, Wang Q, Wang XZ, Pan HM. IL20RA Is the Key Factor Contributing to the Stronger Antioxidant Capacity of Rongchang Pig Sertoli Cells. Antioxidants (Basel) 2024; 13:1545. [PMID: 39765872 PMCID: PMC11727484 DOI: 10.3390/antiox13121545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/15/2025] Open
Abstract
Variations in disease resistance among pig breeds have been extensively documented, with Sertoli cells (SCs) playing a pivotal role in spermatogenesis. Infections can induce oxidative stress, which can lead to damage to these cells. This study aimed to compare the levels of oxidative stress in SCs from Rongchang and Landrace pig breeds following LPS challenge. SCs were isolated, cultured, and stimulated with LPS to assess cell viability and markers of oxidative stress. Cell viability was evaluated along with oxidative stress markers such as reactive oxygen species (ROS), mitochondrial superoxide, malondialdehyde, and antioxidant enzymes. Mitochondrial function was assessed using JC-1 and Calcein AM probes. Transcriptomic analysis identified differentially expressed genes (DEGs), while ingenuity pathway analysis (IPA) explored enriched pathways. IL20RA, identified through transcriptomics, was validated using the siRNA knockdown technique. The results showed that Rongchang SCs exhibited lower levels of oxidative stress compared to Landrace SCs along with higher activity of antioxidant enzymes. IL20RA emerged as a key regulator since its knockdown affected mitochondrial superoxide production and catalase secretion. The findings suggest that Rongchang SCs possess superior antioxidant capacity, possibly due to the IL20RA-mediated protection of mitochondria, thereby providing insights into breed-specific resistance against oxidative stress and highlighting the role of IL20RA in maintaining stem cell function.
Collapse
Affiliation(s)
- Qi-Yue Zheng
- Chongqing Academy of Animal Science, Chongqing 402460, China
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Li-Fei Xiao
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Tian-Yi An
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Liang Zhang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Xi Long
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Qing Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Hong-Mei Pan
- Chongqing Academy of Animal Science, Chongqing 402460, China
| |
Collapse
|
5
|
Qayoom H, Haq BU, Sofi S, Jan N, Jan A, Mir MA. Targeting mutant p53: a key player in breast cancer pathogenesis and beyond. Cell Commun Signal 2024; 22:484. [PMID: 39390510 PMCID: PMC11466041 DOI: 10.1186/s12964-024-01863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
The p53 mutation is the most common genetic mutation associated with human neoplasia. TP53 missense mutations, which frequently arise early in breast cancer, are present in over thirty percent of breast tumors. In breast cancer, p53 mutations are linked to a more aggressive course of the disease and worse overall survival rates. TP53 mutations are mostly seen in triple-negative breast cancer, a very diverse kind of the disease. The majority of TP53 mutations originate in the replacement of individual amino acids within the p53 protein's core domain, giving rise to a variety of variations referred to as "mutant p53s." In addition to gaining carcinogenic qualities through gain-of-function pathways, these mutants lose the typical tumor-suppressive features of p53 to variable degrees. The gain-of-function impact of stabilized mutant p53 causes tumor-specific dependency and resistance to therapy. P53 is a prospective target for cancer therapy because of its tumor-suppressive qualities and the numerous alterations that it experiences in tumors. Phenotypic abnormalities in breast cancer, notably poorly differentiated basal-like tumors are frequently linked to high-grade tumors. By comparing data from cell and animal models with clinical outcomes in breast cancer, this study investigates the molecular mechanisms that convert gene alterations into the pathogenic consequences of mutant p53's tumorigenic activity. The study delves into current and novel treatment approaches aimed at targeting p53 mutations, taking into account the similarities and differences in p53 regulatory mechanisms between mutant and wild-type forms, as well.
Collapse
Affiliation(s)
- Hina Qayoom
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Burhan Ul Haq
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Shazia Sofi
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Nusrat Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Asma Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Manzoor A Mir
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India.
| |
Collapse
|
6
|
Qayoom H, Bashir S, Khan R, Hussain MU, Wani S, Mir MA. Exploring SALL4 as a significant prognostic marker in breast cancer and its association with progression pathways involved in cancer genesis. Comput Biol Chem 2024; 112:108164. [PMID: 39098137 DOI: 10.1016/j.compbiolchem.2024.108164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Breast carcinoma is the leading factor in women's cancer-related fatalities. Due to its numerous inherent molecular subtypes, breast cancer is an extremely diverse illness. The human epidermal growth factor receptor 2 (HER2) positive subtypes stands out among these subtypes as being especially prone to cancer development and illness recurrence. The regulation of embryonic stem cells' pluripotency and self-renewal is carried out by the SALL4 (Spalt-like transcription factor 4) family member. Numerous molecular pathways operating at the transcriptional, post-transcriptional, and epigenomic levels regulate the expression of SALL4. Many transcription factors control the expression of SALL4, with STAT3 being the primary regulator in hepatocellular carcinoma (HCC) and breast carcinoma. Moreover, this oncogene has been connected to a number of cellular functions, including invasion, apoptosis, proliferation, and resistance to therapy. Reduced patient survival rates and a worse prognosis have been linked to higher levels of SALL4. In order to target the undruggable SALL4 that is overexpressed in breast carcinoma, we investigated the prognostic levels of SALL4 in breast carcinoma and its interaction with various related proteins. Using TIMER 2.0 analysis, the expression pattern of SALL4 was investigated across all TCGA datasets. The research revealed that SALL4 expression was elevated in various cancers. The UALCAN findings demonstrated that SALL4 was overexpressed in all tumor samples including breast cancer especially TNBC (Triple negative breast cancer). The web-based ENRICHR program was used for gene ontology analysis that revealed SALL4 was actively involved in the development of the nervous system, positive regulation of stem cell proliferation, regulation of stem cell proliferation, regulation of the activin receptor signaling pathway, regulation of transcription using DNA templates, miRNA metabolic processes, and regulation of transcription by RNA Polymerase I. Using the STRING database, we analyzed the interaction and involvement of SALL4 with other abruptly activated proteins and used Cytoscape 3.8.0 for visualization. Additionally, using bc-GenExMiner, we studied the impact of SALL4 on pathways abruptly activated in different breast cancer subtypes that revealed SALL4 was highly correlated with WNT2B, NOTCH4, AKT3, and PIK3CA. Furthermore, to target SALL4, we evaluated and analyzed the impact of CLP and its analogues, revealing promising outcomes.
Collapse
Affiliation(s)
- Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Sania Bashir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Rumaisa Khan
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Mahboob Ul Hussain
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Shameema Wani
- Department of Surgical Oncology, Super Specialty Hospital, Govt Medical College Srinagar, 190001, India
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
7
|
Qayoom H, Mir MA. Mutant P53 modulation by cryptolepine through cell cycle arrest and apoptosis in triple negative breast cancer. Biomed Pharmacother 2024; 179:117351. [PMID: 39216450 DOI: 10.1016/j.biopha.2024.117351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Triple Negative Breast cancer is an aggressive breast cancer subtype. It has a more aggressive clinical course, an earlier age of onset, a larger propensity for metastasis, and worse clinical outcomes as evidenced by a higher risk of recurrence and a shorter survival rate. Currently, the primary options for TNBC treatment are surgery, radiation, and chemotherapy. These treatments however remain ineffective due to recurrence. However, given that p53 mutations have been identified in more than 60-88 % of TNBC, translating p53 into the clinical situation is particularly important in TNBC. In this study, we screened and evaluated the therapeutic potential of cryptolepine (CRP) in TNBC in-vitro models being an anti-malarial drug it could be repurposed as an anti-cancer therapeutic targeting TNBC. Moreover, the cytotoxicity activity of cryptolepine to TNBC cells and a detailed anti-tumor mechanism in mutant P53 has not been reported before. METHODS MTT assays were used to examine the cytotoxicity and cell viability activity of Cryptolepine in TNBC, non-TNBC T47D and MCF-7 and non-malignant MCF10A cells. Scratch wound and clonogenic assay was used to evaluate the cryptolepine's effect on migration and colony forming ability of TNBC cells. Flow cytometry, MMP and DAPI was used to assess cell cycle arrest and cell apoptosis mechanism. The expression of proteins was detected by western blots. The differential expression of RNAs was evaluated by RT-PCR and the interaction between P53 and drug was evaluated computationally using in-silico approach and in-vitro using ChIP assay. RESULTS In this study, we found that cryptolepine has more preferential cytotoxicity in TNBC than non-TNBC cells. Notably, our studies revealed the mechanism by which cryptolepine induces intrinsic apoptosis and inhibit migration, colony formation ability, induce cell cycle arrest by inducing conformational change in the mutant P53 thereby increasing its DNA binding ability, hence activating its tumor suppressing potential significantly. CONCLUSION Our study revealed that CRP significantly reduced the proliferation, migration and colony forming ability of TNBC cells lines. Moreover, it was revealed that CRP induces cell cycle arrest and apoptosis by activating mutant P53 and enhancing its DNA binding ability to induce its tumor suppressing ability.
Collapse
Affiliation(s)
- Hina Qayoom
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Manzoor A Mir
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
8
|
Jan N, Sofi S, Abo Mansoor A, Abdelrahim A, Ahmad I, Almilabairy A, Ahmad F, Mir MA. Exploring the role of trifarotene against RAR-α: an investigation of expression pattern and clinicopathological significance of RAR-α in breast cancer. Front Pharmacol 2024; 15:1361679. [PMID: 38910889 PMCID: PMC11190336 DOI: 10.3389/fphar.2024.1361679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction The members retinoic acid receptors (RARs) (α, β, and γ) and retinoid X receptors (RXRs) (α, β, and γ) belong to the retinoid receptor family. They regulate the biological action of classical retinoids through nuclear retinoid receptors, a transcription factor that is regulated by ligands. Through the binding of particular retinoic acid-responsive elements (RAREs) located in target gene promoters, RARs and members of the RXRs form heterodimers. By binding to its nuclear receptors and triggering the transcription of the target genes downstream, retinoic acid (RA) mediates the expression of certain genes. Retinoids so mainly control gene expression to carry out their biological actions. RARs are essential for many biological processes, such as development, immunity, reproduction, organogenesis, and homeostasis. Apart from their physiological functions, RARs are also linked to pathologies and tumors due to mutations, protein fusions, changes in expression levels, or abnormal post-translational changes that lead to aberrant functions and homeostasis breakdown. The oncogenic development of animal tissues or cultured cells is linked to altered expression of retinoid receptors. The RAR-α is over-expressed in several malignancies. Increased invasion and migration in several cancer forms, including HNSC carcinoma, pediatric low-grade gliomas, lung adenocarcinoma, and breast cancer, have been linked to its upregulated expression. Numerous approved therapeutic regimens targeting RAR-α have been developed, improving patient survival rates. Objective This study's main objective was to identify novel RAR-α-targeting drugs and evaluate the expression patterns of RAR-α in breast cancer patients. Methodology In-silico investigation using a variety of bioinformatics tools like UALCAN, TISCH, TIMER 2.0, ENRICHR, and others were employed to examine the expression of RAR-α. Further we evaluated in-silico inhibition of RAR-α with trifarotene and also tested the cytotoxicity of trifarotene in breast cancer cells. Results Our research indicates that RAR-α is upregulated in several malignancies including Breast Cancer. It regulates granulocyte differentiation and has an association with the retinoic acid receptor signaling pathway and cellular response to estrogen stimulus. Furthermore, trifarotene was found as a potential synthetic compound that targets RAR-α through in silico and in-vitro study. Discussion Overall, this research indicates that elevated expression of RAR-α enhances the onset of breast cancer. Using trifarotene medication to target RAR-α will significantly boost the response of breast cancer individuals to treatment and delay the development of resistance to drugs.
Collapse
Affiliation(s)
- Nusrat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Shazia Sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Adel Abo Mansoor
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences (CAMS), King Khalid University, Abha, Saudi Arabia
| | - Adil Abdelrahim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences (CAMS), King Khalid University, Abha, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences (CAMS), King Khalid University, Abha, Saudi Arabia
| | - Abdullah Almilabairy
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
| | - Fuzail Ahmad
- College of Applied Sciences Almaarefa University, Riyadh, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
9
|
Alshehri B. The geranium genus: A comprehensive study on ethnomedicinal uses, phytochemical compounds, and pharmacological importance. Saudi J Biol Sci 2024; 31:103940. [PMID: 38371877 PMCID: PMC10873751 DOI: 10.1016/j.sjbs.2024.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
The geranium genus consists of about 400 species, which have been utilized for a long time in ancient medical practices throughout the world. As a result, herbal medications based on species are commonly utilized to treat a range of illnesses. This investigation aims to provide an extensive assessment of the literature on the phytochemistry, ethnomedicinal and pharmacological importance of the genus Geranium. Data were collected through systemic computer searches among the most reputable scientific databases, Web of Science, Google Scholar, and Scopus. Occasionally, information published as peer-reviewed literature was added to data from sources that these databases do not include. This review includes all published works through the end of 2022. The assessment of the biological characteristics of medicinal plant species in the genus Geranium has received a great deal of attention, primarily in the last 20 years, in tandem with the growing interest in herbal remedies in general. The detailed and systematic comparative analysis presented here provides valuable information on the current Geranium species. It paves the way for other beneficial species of Geranium to be studied in the fields of ethnobotany, phytochemistry, and new drug discovery.
Collapse
Affiliation(s)
- Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah 11952, Saudi Arabia
| |
Collapse
|
10
|
Almilaibary A. Phyto-therapeutics as anti-cancer agents in breast cancer: Pathway targeting and mechanistic elucidation. Saudi J Biol Sci 2024; 31:103935. [PMID: 38327657 PMCID: PMC10847379 DOI: 10.1016/j.sjbs.2024.103935] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Cancer of the breast is the mainly prevalent class of cancer in females diagnosed over the globe. It also happens to be the 2nd most prevalent reason of cancer-related deaths among females worldwide. Some of the most common type's therapies for carcinoma of the breast involve radiation therapy, chemotherapy, and resection. Many studies are being conducted to develop new therapeutic strategies for better diagnosis of breast cancer. An enormous number of anticancer medications have been developed as a result of growing understanding of the molecular pathways behind the advancement of cancer. Over the past few decades, the general survival rate has not greatly increased due to the usage of chemically manufactured medications. Therefore, in order to increase the effectiveness of current cancer treatments, new tactics and cutting-edge chemoprevention drugs are required. Phytochemicals, which are naturally occurring molecules derived from plants, are important sources for both cancer therapy and innovative medication development. These phytochemicals frequently work by controlling molecular pathways linked to the development and spread of cancer. Increasing antioxidant status, inactivating carcinogens, preventing proliferation, causing cell cycle arrest and apoptosis, and immune system control are some of the specific ways. This primary objective of this review is to provide an overview of the active ingredients found in natural goods, including information on their pharmacologic action, molecular targets, and current state of knowledge. We have given a thorough description of a number of natural substances that specifically target the pathways linked to breast carcinoma in this study. We've conducted a great deal of study on a few natural compounds that may help us identify novel targets for the detection of breast carcinoma.
Collapse
Affiliation(s)
- Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Albaha University, Albaha, Saudi Arabia
| |
Collapse
|
11
|
Jan N, Sofi S, Qayoom H, Shabir A, Haq BU, Macha MA, Almilaibary A, Mir MA. Metronomic chemotherapy and drug repurposing: A paradigm shift in oncology. Heliyon 2024; 10:e24670. [PMID: 38314272 PMCID: PMC10837507 DOI: 10.1016/j.heliyon.2024.e24670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/03/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Cancer represents a significant global health and economic burden due to its high mortality rates. While effective in some instances, traditional chemotherapy often falls short of entirely eradicating various types of cancer. It can cause severe side effects due to harm to healthy cells. Two therapeutic approaches have risen to the forefront to address these limitations: metronomic chemotherapy (MCT) and drug repurposing. Metronomic chemotherapy is an innovative approach that breaks from traditional models. It involves the administration of chemotherapeutic regimens at lower doses, without long drug-free intervals that have previously been a hallmark of such treatments. This method offers a significant reduction in side effects and improved disease management. Simultaneously, drug repurposing has gained considerable attraction in cancer treatment. This approach involves utilizing existing drugs, initially developed for other therapeutic purposes, as potential cancer treatments. The application of known drugs in a new context accelerates the timeline from laboratory to patient due to pre-existing safety and dosage data. The intersection of these two strategies gives rise to a novel therapeutic approach named 'Metronomics.' This approach encapsulates the benefits of both MCT and drug repurposing, leading to reduced toxicity, potential for oral administration, improved patient quality of life, accelerated clinical implementation, and enhanced affordability. Numerous clinical studies have endorsed the efficacy of metronomic chemotherapy with tolerable side effects, underlining the potential of Metronomics in better cancer management, particularly in low- and middle-income countries. This review underscores the benefits and applications of metronomic chemotherapy and drug repurposing, specifically in the context of breast cancer, showcasing the promising results of pre-clinical and clinical studies. However, we acknowledge the necessity of additional clinical investigations to definitively establish the role of metronomic chemotherapy in conjunction with other treatments in comprehensive cancer management.
Collapse
Affiliation(s)
- Nusrat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Shazia Sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Aisha Shabir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Burhan Ul Haq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Muzaffar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, India
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| |
Collapse
|