1
|
Abdel-Wahab BA, El-Shoura EAM, Habeeb MS, Aldabaan NA, Ahmed YH, Zaafar D. Piperazine ferulate impact on diabetes-induced testicular dysfunction: unveiling genetic insights, MAPK/ERK/JNK pathways, and TGF-β signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6719-6737. [PMID: 39671097 DOI: 10.1007/s00210-024-03654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024]
Abstract
Diabetic testicular dysfunction (DTD) poses a significant threat to male reproductive health. This study delves into the potential of piperazine ferulate (PF), a natural phenolic compound, in alleviating DTD and sheds light on its underlying mechanisms in rats. Animals were divided into the control, PF, diabetic, and diabetic plus PF groups. Diabetes was induced in rats with a single intraperitoneal (i.p.) injection of streptozotocin (STZ) at 50 mg/kg. PF was administered at 50 mg/kg/day via i.p. injection for four weeks. Significant changes in sexual behavior were observed in diabetic rats, which additionally revealed lower serum levels of testosterone, FSH, and LH. The abnormalities in sperm count, viability, motility, and morphology occurred along with the demonstrated suppression of genes and protein expression related to spermatogenesis. Atrophy of the seminiferous tubules and extensive degeneration and necrosis of the germ and Leydig cells were highlighted by histopathological examination. The testicular function of diabetic rats was significantly improved after PF administration, evidenced by normalized testicular histology, increased testosterone levels, and enhanced sperm quality. In addition to reducing inflammatory cytokines, COX2, and NF-κB expression, pf administration elevated the antioxidant levels and Nrf2/HO-1 expression. Furthermore, key signaling pathways involved in testicular degeneration are regulated by PF. It promoted cell survival and tissue repair by activating the protective TGF-β signaling pathway and attenuating the MAPK/ERK/JNK signaling cascade, which in turn reduced inflammation and apoptosis. PF suppressed the expression of INSL3, SPHK1, CD62E, ANGPTL2, and miR-148a-5p, while increasing the expression of testicular genes like HSD17B1, DAZL, and S1P, addressing DTD. This study highlights the potential of PF to restore testicular function and fertility in diabetic males by modulating genetic and signaling pathways.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, P.O. Box 1988, Najran, Saudi Arabia.
| | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Mohammed S Habeeb
- Department of Pharmacology, College of Pharmacy, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| | - Nayef A Aldabaan
- Department of Pharmacology, College of Pharmacy, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Pattnaik A, Sahoo GP, Maurya V, Panghal A, Kumar V, Jena G. Dimethyl Fumarate Protects Diabetes-Induced Testicular Toxicity in Rats: Investigations on Nrf-2/HO-1 and β-Catenin/OCT-4 Signalling Pathways. J Biochem Mol Toxicol 2025; 39:e70209. [PMID: 40143636 DOI: 10.1002/jbt.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 03/28/2025]
Abstract
Type 1 Diabetes Mellitus (T1DM) is associated with the destruction of insulin-producing β-cells and is characterized by prolonged hyperglycemia. This can increase oxidative stress which eventually damages the male reproductive system, disturbs the production of testosterone, alters semen quality and histological architecture, and increases testicular apoptosis. Dimethyl Fumarate (DMF) is an Nrf-2 activator that has been explored as possible protective agent in several preclinical studies, although its exact role in germ-cell toxicity is still not well-known. In the present study, an attempt has been made to elucidate the role of DMF in testicular toxicity in Sprague-Dawley (SD) rats. Animals having fasting blood glucose >250 mg/dl after treatment with Streptozotocin (STZ; 55 mg/kg, i.p) were considered diabetic. Three doses of DMF (12.5, 25, and 50 mg/kg) were administered to the diabetic animals for 4 consecutive weeks. The testicular damage was characterized by evaluating organ index, biochemical and histological parameters, sperm-related indices, DNA strand breaks, and expression of different proteins. The results revealed that treatment with DMF ameliorated diabetes-induced testicular damage by decreasing testicular oxidative stress and apoptosis, increasing testosterone production, and upregulating the expressions of Nrf-2, HO-1, IL-10, β-Catenin, OCT-4, 3β-HSD, Bcl-2 and downregulating NF-κB, Bax. The present finding suggests that DMF has a protective effect against diabetes-induced testicular damage in SD rat.
Collapse
Affiliation(s)
- Asutosh Pattnaik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Facility for Risk Assessment and Intervention Studies, S.A.S Nagar, India
| | - Girija Prasanna Sahoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Facility for Risk Assessment and Intervention Studies, S.A.S Nagar, India
| | - Vaishali Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Facility for Risk Assessment and Intervention Studies, S.A.S Nagar, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Facility for Risk Assessment and Intervention Studies, S.A.S Nagar, India
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Facility for Risk Assessment and Intervention Studies, S.A.S Nagar, India
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Facility for Risk Assessment and Intervention Studies, S.A.S Nagar, India
| |
Collapse
|
3
|
Jawharji MT, Alshammari GM, Binobead MA, Albanyan NM, Al-Harbi LN, Yahya MA. Comparative Efficacy of Low-Carbohydrate and Ketogenic Diets on Diabetic Retinopathy and Oxidative Stress in High-Fat Diet-Induced Diabetic Rats. Nutrients 2024; 16:3074. [PMID: 39339674 PMCID: PMC11435414 DOI: 10.3390/nu16183074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
This study examined the effect of a low-carbohydrate diet (LCD) and a low-carbohydrate ketogenic diet (LCKD) on diabetic retinopathy in high-fat diet-induced diabetes mellitus in rats and studied the mechanisms of action. Rats were divided into four groups: the Control group, which was fed a normal diet for 16 weeks; the HFD group, which was fed a high-fat diet (HFD) for the first 8 weeks and then switched to a normal diet for 8 weeks; the HFD+LCD group, fed a HFD for 8 weeks followed by an LCD for 8 weeks, and the HFD+LCKD group, which was fed a HFD for 8 weeks followed by an LCKD for 8 more weeks. Both the LCD and the LCKD effectively reduced the final body and total fat weights and decreased fasting serum levels of glucose, insulin, hemoglobin A1 (HbA1C), triglycerides, cholesterol, and LDL-c. They also reduced the levels of malondialdehyde (MDA), tumor necrosis factor-α, vascular endothelial factor, caspapse-3, and bax. In the HFD rats, we found increased serum levels of β-Hydroxybutyrate and upregulated expression of Bcl2, glutathione, superoxide dismutase, and hemeoxygenase-1. Moreover, the LCD and LCKD significantly reduced mRNA levels of Kelch-like ECH-associated protein 1 (Keap1) and enhanced mRNA and nuclear concentrations of nuclear factor erythroid factor 2 (Nrf2). All these effects were associated with improved layers of the retina in the HFD - LCD and HFD + LCKD rats but not in HFD animals. The impact of the LCKD was always more profound on all measured parameters and on improving the structure of the retina compared to the LCD. In conclusion, the LCKD is superior to the LCD in preventing diabetic retinopathy in HFD-fed rats. Mechanistically, our results suggest that the hypoglycemic and hypolipidemic conditions and the Nrf2-dependent antioxidant and anti-inflammatory effects may be involved in the preventative effects of the LCD and LCKD.
Collapse
Affiliation(s)
- Monya T. Jawharji
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.J.); (M.A.B.); (L.N.A.-H.); (M.A.Y.)
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.J.); (M.A.B.); (L.N.A.-H.); (M.A.Y.)
| | - Manal Abdulaziz Binobead
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.J.); (M.A.B.); (L.N.A.-H.); (M.A.Y.)
| | - Nouf Mohammed Albanyan
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.J.); (M.A.B.); (L.N.A.-H.); (M.A.Y.)
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.J.); (M.A.B.); (L.N.A.-H.); (M.A.Y.)
| |
Collapse
|
4
|
Alshareef NS, AlSedairy SA, Al-Harbi LN, Alshammari GM, Yahya MA. Carthamus tinctorius L. (Safflower) Flower Extract Attenuates Hepatic Injury and Steatosis in a Rat Model of Type 2 Diabetes Mellitus via Nrf2-Dependent Hypoglycemic, Antioxidant, and Hypolipidemic Effects. Antioxidants (Basel) 2024; 13:1098. [PMID: 39334757 PMCID: PMC11428842 DOI: 10.3390/antiox13091098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to examine the hepatic and anti-steatotic protective effects of methanolic extract from Carthamus tinctorius (safflower) flowers (SFFE), using a rat model of type 2 diabetes mellitus (T2DM), and to examine the molecular mechanisms underlying these effects. Adult male Wistar rats were used for this study. First, T2DM was induced in some rats by feeding them a high-fat diet (HFD) for 4 weeks, followed by a single dose of streptozotocin (STZ) (35 mg/kg, i.p.). Experimental groups included the following five groups (n = 8 in each): control, control + SFFE, T2DM, T2DM + SFFE, and T2DM + SFFE + brusatol (an Nrf2 inhibitor, 2 mg/kg, i.p.). SFFE was administered at a concentration of 300 mg/kg, and all experiments concluded after 8 weeks. Treatments with SFFE significantly reduced fasting blood glucose levels, free fatty acids (FFAs), cholesterol, triglycerides, and low-density lipoprotein cholesterol in both the control and T2DM rats, but they failed to reduce fasting insulin levels in these groups. SFFE treatments also improved the liver structure and reduced hepatocyte vacuolization and hepatic levels of triglycerides and cholesterol in T2DM rats, in addition to increasing the hepatic mRNA levels of keap1 and the cytoplasmic levels and nuclear activities of Nrf2 in both the control and T2DM rats. SFFE also stimulated the expression levels of PPARα and CPT-1 but reduced the malondialdehyde (MDA), mRNA levels of SREBP1, fatty acid synthase, and acetyl CoA carboxylase in both the control and T2DM rats; meanwhile, it reduced hepatic mRNA and the nuclear activities of NF-κB and increased levels of glutathione, superoxide dismutase, and heme oxygenase-1 in the livers of both groups of treated rats. Furthermore, SFFE suppressed the levels of caspase-3, Bax, tumor necrosis factor-α, and interleukin-6 in the T2DM rats. Treatment with brusatol prevented all of these effects of SFFE. In conclusion, SFFE suppresses liver damage and hepatic steatosis in T2DM through Nrf2-dependent hypoglycemic, antioxidant, anti-inflammatory, and hypolipidemic effects.
Collapse
Affiliation(s)
| | | | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (S.A.A.); (G.M.A.); (M.A.Y.)
| | | | | |
Collapse
|
5
|
Khan MZ, Khan A, Huang B, Wei R, Kou X, Wang X, Chen W, Li L, Zahoor M, Wang C. Bioactive Compounds Protect Mammalian Reproductive Cells from Xenobiotics and Heat Stress-Induced Oxidative Distress via Nrf2 Signaling Activation: A Narrative Review. Antioxidants (Basel) 2024; 13:597. [PMID: 38790702 PMCID: PMC11118937 DOI: 10.3390/antiox13050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the body's antioxidant defenses. It poses a significant threat to the physiological function of reproductive cells. Factors such as xenobiotics and heat can worsen this stress, leading to cellular damage and apoptosis, ultimately decreasing reproductive efficiency. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway plays a crucial role in defending against oxidative stress and protecting reproductive cells via enhancing antioxidant responses. Dysregulation of Nrf2 signaling has been associated with infertility and suboptimal reproductive performance in mammals. Recent advancements in therapeutic interventions have underscored the critical role of Nrf2 in mitigating oxidative damage and restoring the functional integrity of reproductive cells. In this narrative review, we delineate the harmful effects of heat and xenobiotic-induced oxidative stress on reproductive cells and explain how Nrf2 signaling provides protection against these challenges. Recent studies have shown that activating the Nrf2 signaling pathway using various bioactive compounds can ameliorate heat stress and xenobiotic-induced oxidative distress and apoptosis in mammalian reproductive cells. By comprehensively analyzing the existing literature, we propose Nrf2 as a key therapeutic target for mitigating oxidative damage and apoptosis in reproductive cells caused by exposure to xenobiotic exposure and heat stress. Additionally, based on the synthesis of these findings, we discuss the potential of therapies focused on the Nrf2 signaling pathway to improve mammalian reproductive efficiency.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Ren Wei
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Xinrui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien, 90372 Oslo, Norway
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
6
|
Alsabaani NA, Amawi K, Eleawa SM, Nabeel Ibrahim W, Aldhaban W, Alaraj AM, Alkhalaf B, Sami W, Alshaikhli H, Alkhateeb MA. Nrf-2-dependent antioxidant and anti-inflammatory effects underlie the protective effect of esculeoside A against retinal damage in streptozotocin-induced diabetic rats. Biomed Pharmacother 2024; 173:116461. [PMID: 38503237 DOI: 10.1016/j.biopha.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Esculeoside A (ESA) is a tomato-derived glycoside with antioxidant and anti-inflammatory properties. The protective effect of ESA against diabetic retinopathy is not well-investigated and was the core objective of this study. In addition, we tested if such protection involves the activation of Nrf2 signaling. Type 1 diabetes mellitus (T1DM) was induced in adult Wistar male rats by an intraperitoneal injection of streptozotocin (65 mg/kg). Non-diabetic and T1DM rats were divided into two subgroup groups given either the vehicle or ESA (100 mg)/kg. An additional T1DM group was given ESA (100 mg/kg) and an Nrf2 inhibitor (2 mg/kg) (n=8 rats/group). Treatments continued for 12 weeks. In this study, according to the histological features, ESA improved the structure of ganglionic cells and increased the number of cells of the inner nuclear and plexiform layers in the retinas of T1DM rats. Concomitantly, it reduced the retina levels of malondialdehyde (lipid peroxides), vascular endothelial growth factor, interleukin-6, tumor necrosis factor-α, Bax, and caspase-3. In the retinas of the control and diabetic rats, ESA boosted the levels of total glutathione, superoxide dismutase, heme-oxygenase-1, and Bcl2, reduced the mRNA levels of REDD1, and enhanced cytoplasmic and nuclear levels of Nrf2. However, ESA failed to alter the mRNA levels of Nrf2 and keap1, protein levels of keap1, plasma glucose, plasma insulin, serum triglycerides, cholesterol, and LDL-c in both the control and T1DM rats. In conclusion, ESA alleviates retinopathy in T1DM rats by suppressing REDD1-associated degradation and inhibiting the Nrf2/antioxidant axis.
Collapse
Affiliation(s)
- Nasser A Alsabaani
- Department of Ophthalmology, College of Medicine, King Khalid University, Abha P.O.Box 61421, Saudi Arabia.
| | - Kawther Amawi
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa, P.O. Box: 132222, Jordan.
| | - Samy M Eleawa
- Department of Applied Medical Sciences. College of Health Sciences, Public Authority for Applied Education and Training (PAAET), Kuwait P.O. Box: 2378, Kuwait.
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU health, Qatar University, Doha, P.O. Box: 2713, Qatar.
| | - Walid Aldhaban
- Department of Ophthalmology, College of Medicine, King Khalid University, Abha P.O.Box 61421, Saudi Arabia.
| | - Ahmad Mohammad Alaraj
- Department of Ophthalmology, College of Medicine, Qassim University, Qassim P.O. Box 52751, Saudi Arabia.
| | - Badr Alkhalaf
- Department of Environmental Sciences. College of Health Health Sciences, PAAET, Kuwait.
| | - Waqas Sami
- Department of pre-clinical affairs, College of Nursing, QU health, Qatar University, Doha P.O. Box: 2713, Qatar.
| | - Hisham Alshaikhli
- Department of pre-clinical affairs, College of Nursing, QU health, Qatar University, Doha P.O. Box: 2713, Qatar.
| | - Mahmoud A Alkhateeb
- Department of pre-clinical affairs, College of Nursing, QU health, Qatar University, Doha P.O. Box: 2713, Qatar.
| |
Collapse
|
7
|
Shen H, Cai Y, Zhu K, Wang D, Yu R, Chen X. Enniatin B1 induces damage to Leydig cells via inhibition of the Nrf2/HO-1 and JAK/STAT3 signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116116. [PMID: 38387140 DOI: 10.1016/j.ecoenv.2024.116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Enniatin B1 (ENN B1) is a mycotoxin that can be found in various foods. However, whether ENN B1 is hazardous to the reproductive system is still elusive. Leydig cells are testosterone-generating cells that reside in the interstitial compartment between seminiferous tubules. Dysfunction of Leydig cells could result in male infertility. This study aimed to examine the toxicological effects of ENN B1 against TM3 Leydig cells. ENN B1 significantly inhibited cell viability in a dose-dependent manner. ENN B1 treatment also decreased the expression of functional genes in Leydig cells. Moreover, ENN B1 induced Leydig cells apoptosis and oxidative stress. Mechanistically, ENN B1 leads to the upregulation of Bax and downregulation of Bcl-2 in Leydig cells. In addition, ENN B1 inhibited the Nrf2/HO-1 pathway, which is critical for the induction of oxidative stress. Additionally, ENN B1 treatment repressed the JAK/STAT3 signaling pathway in Leydig cells. Rescue experiments showed that activation of STAT3 resulted in alleviation of ENN B1-induced damage in Leydig cells. Collectively, our study demonstrated that ENN B1 induced Leydig cell dysfunction via multiple mechanisms.
Collapse
Affiliation(s)
- Hongping Shen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Yili Cai
- Department of Acupuncture, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Keqi Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Dong Wang
- Shanghai Houyu Medical Equiment Co., Ltd, China
| | - Rui Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningbo University, China.
| | - Xueqin Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China.
| |
Collapse
|