1
|
Xu L, Zhang R, Xue R, Wang L, Ai Z, Li L, Wu W, Wang Z. Regional cerebral blood perfusion impairment in type 1 narcolepsy patients: An arterial spin labeling study. Sleep Med 2025; 129:122-130. [PMID: 40022862 DOI: 10.1016/j.sleep.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVE To investigate the pathophysiological characteristics of cerebral blood flow (CBF) in patients with narcolepsy type 1 (NT1) via the arterial spin labeling (ASL) technique. METHODS Thirty patients with diagnostic NT1 (PTs) and 34 age- and sex-matched healthy controls (HCs) were recruited for this study. Basic information was collected, and clinical evaluation and neuroimaging, including ASL and T1-3DBRAVO, was performed. The z-normalized CBF (zCBF) and spatial coefficient of variation (sCoV) were calculated, and the changes in NT1 were compared via analysis of covariate (ANCOVA). Furthermore, spearman's correlation analysis between impaired regional perfusion and clinical features was performed. Age, sex, and normalized grey matter volume were included as covariates. RESULTS Compared with that of HCs, the zCBF of PTs significantly differed in regions of fronto-temporal-occipital cortex, right insula and posterior insula, and left rostral/dorsal anterior cingulate gyrus (ACG) (P < 0.006). Moreover, the sCoV was significantly altered in the frontotemporal cortex, rostral ACG, right hippocampus, and posterior insula (P < 0.003). In PTs, positive correlations were identified between the zCBF of the right superior/middle frontal gyrus (SFG/MFG) and mean sleep latency, and between the zCBF of the left SFG of the frontal pole and sleep hallucination severity. Moreover, the sCoV of the right MFG/hippocampus were positively associated with Rapid Eye Movement efficiency and negatively associated with Hamilton Anxiety Scale score, respectively. CONCLUSION PTs exhibited abnormal regional perfusion in the frontal-temporal-occipital cortex and limbic system regions, which may serve as patient-specific imaging markers. Alterations in perfusion may lead to the clinical manifestations of underlying psychological and sleep disorders in PTs.
Collapse
Affiliation(s)
- Lin Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruilin Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Xue
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Linlin Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Zhu Ai
- Department of Neurology, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Lili Li
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Wu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zuojun Wang
- Department of Diagnostic Radiology, University of Hong Kong, China.
| |
Collapse
|
2
|
Vringer M, Zhou J, Gool JK, Bijlenga D, Lammers GJ, Fronczek R, Schinkelshoek MS. Recent insights into the pathophysiology of narcolepsy type 1. Sleep Med Rev 2024; 78:101993. [PMID: 39241492 DOI: 10.1016/j.smrv.2024.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Narcolepsy type 1 (NT1) is a sleep-wake disorder in which people typically experience excessive daytime sleepiness, cataplexy and other sleep-wake disturbances impairing daily life activities. NT1 symptoms are due to hypocretin deficiency. The cause for the observed hypocretin deficiency remains unclear, even though the most likely hypothesis is that this is due to an auto-immune process. The search for autoantibodies and autoreactive T-cells has not yet produced conclusive evidence for or against the auto-immune hypothesis. Other mechanisms, such as reduced corticotrophin-releasing hormone production in the paraventricular nucleus have recently been suggested. There is no reversive treatment, and the therapeutic approach is symptomatic. Early diagnosis and appropriate NT1 treatment is essential, especially in children to prevent impaired cognitive, emotional and social development. Hypocretin receptor agonists have been designed to replace the attenuated hypocretin signalling. Pre-clinical and clinical trials have shown encouraging initial results. A better understanding of NT1 pathophysiology may contribute to faster diagnosis or treatments, which may cure or prevent it.
Collapse
Affiliation(s)
- Marieke Vringer
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jingru Zhou
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jari K Gool
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Anatomy & Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Compulsivity, Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Denise Bijlenga
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gert Jan Lammers
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Rolf Fronczek
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mink S Schinkelshoek
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
3
|
Juvodden HT, Alnæs D, Agartz I, Andreassen OA, Server A, Thorsby PM, Westlye LT, Knudsen-Heier S. Cortical thickness and sub-cortical volumes in post-H1N1 narcolepsy type 1: A brain-wide MRI case-control study. Sleep Med 2024; 116:81-89. [PMID: 38432031 DOI: 10.1016/j.sleep.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE There was more than a 10-fold increase in the incidence of narcolepsy type 1 (NT1) after the H1N1 mass vaccination in 2009/2010 in several countries. NT1 is associated with loss and increase of cell groups in the hypothalamus which may be associated with secondary affected sub-cortical and cortical gray matter. We performed a case-control comparison of MRI-based global and sub-cortical volume and cortical thickness in post-H1N1 NT1 patients compared with controls. METHODS We included 54 post-H1N1 NT1 patients (51 with confirmed hypocretin-deficiency; 48 H1N1-vaccinated with Pandemrix®; 39 females, mean age 21.8 ± 11.0 years) and 114 healthy controls (77 females, mean age 23.2 ± 9.0 years). 3T MRI brain scans were obtained, and the T1-weighted MRI data were processed using FreeSurfer. Group differences among three global, 10 sub-cortical volume measures and 34 cortical thickness measures for bilateral brain regions were tested using general linear models with permutation testing. RESULTS Patients had significantly thinner brain cortex bilaterally in the temporal poles (Cohen's d = 0.68, p = 0.00080), entorhinal cortex (d = 0.60, p = 0.0018) and superior temporal gyrus (d = 0.60, p = 0.0020) compared to healthy controls. The analysis revealed no significant group differences for sub-cortical volumes. CONCLUSIONS Post-H1N1(largely Pandemrix®-vaccinated) NT1 patients have significantly thinner cortex in temporal brain regions compared to controls. We speculate that this effect can be partly attributed to the hypothalamic neuronal change in NT1, including loss of function of the widely projecting hypocretin-producing neurons and secondary effects of the abnormal sleep-wake pattern in NT1 or could be specific for post-H1N1 (largely Pandemrix®-vaccinated) NT1 patients.
Collapse
Affiliation(s)
- Hilde T Juvodden
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital, Ullevål, Norway.
| | - Dag Alnæs
- NORMENT Centre, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway
| | - Andres Server
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Per M Thorsby
- Hormone Laboratory, Department of Medical Biochemistry, Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Aker, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT Centre, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Stine Knudsen-Heier
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital, Ullevål, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Juvodden HT, Alnæs D, Lund MJ, Agartz I, Andreassen OIA, Server A, Thorsby PM, Westlye LT, Knudsen Heier S. Larger hypothalamic volume in narcolepsy type 1. Sleep 2023; 46:zsad173. [PMID: 37463428 PMCID: PMC10636249 DOI: 10.1093/sleep/zsad173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 05/18/2023] [Indexed: 07/20/2023] Open
Abstract
STUDY OBJECTIVES Narcolepsy type 1 (NT1) is a neurological sleep disorder. Postmortem studies have shown 75%-90% loss of the 50 000-70 000 hypocretin-producing neurons and 64%-94% increase in the 64 000-120 000 histaminergic neurons and conflicting indications of gliosis in the hypothalamus of NT1 patients. The aim of this study was to compare MRI-based volumes of the hypothalamus in patients with NT1 and controls in vivo. METHODS We used a segmentation tool based on deep learning included in Freesurfer and computed the volume of the whole hypothalamus, left/right part of the hypothalamus, and 10 hypothalamic subregions. We included 54 patients with post-H1N1 NT1 (39 females, mean age 21.8 ± 11.0 years) and 114 controls (77 females, mean age 23.2 ± 9.0 years). Group differences were tested with general linear models using permutation testing in Permutation Analysis of Linear Models and evaluated after 10 000 permutations, yielding two-tailed P-values. Furthermore, a stepwise Bonferroni correction was performed after dividing hypothalamus into smaller regions. RESULTS The analysis revealed larger volume for patients compared to controls for the whole hypothalamus (Cohen's d = 0.71, p = 0.0028) and for the left (d = 0.70, p = 0.0037) and right part of the hypothalamus (d = 0.65, p = 0.0075) and left (d = 0.72, p = 0.0036) and right tubular-inferior (d = 0.71, p = 0.0037) hypothalamic subregions. CONCLUSIONS In conclusion, patients with post-H1N1 NT1 showed significantly larger hypothalamic volume than controls, in particular in the tubular-inferior subregions which could reflect several processes as previous studies have indicated neuroinflammation, gliosis, and changes in the numbers of different cell types.
Collapse
Affiliation(s)
- Hilde T Juvodden
- Department of Rare Disorders, Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Oslo University Hospital, Ullevål, Oslo, Norway
| | - Dag Alnæs
- Division of Mental Health and Addiction, NORMENT Centre, University of Oslo and Oslo University Hospital, Oslo, Norway
- Departement of Psychology, Pedagogy and Law, Kristiania University College, Oslo, Norway
| | - Martina J Lund
- Division of Mental Health and Addiction, NORMENT Centre, University of Oslo and Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - OIe A Andreassen
- Division of Mental Health and Addiction, NORMENT Centre, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Andres Server
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Per M Thorsby
- Hormone Laboratory, Department of Medical Biochemistry, Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Aker, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Division of Mental Health and Addiction, NORMENT Centre, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Stine Knudsen Heier
- Department of Rare Disorders, Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Oslo University Hospital, Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Wu L, Zhan Q, Liu Q, Xie S, Tian S, Xie L, Wu W. Abnormal Regional Spontaneous Neural Activity and Functional Connectivity in Unmedicated Patients with Narcolepsy Type 1: A Resting-State fMRI Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15482. [PMID: 36497558 PMCID: PMC9738657 DOI: 10.3390/ijerph192315482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Previous Resting-state functional magnetic resonance imaging (fMRI) studies have mainly focused on cerebral functional alteration in processing different emotional stimuli in patients with narcolepsy type 1 (NT1), but were short of exploration of characteristic brain activity and its remote interaction patterns. This study aimed to investigate the spontaneous blood oxygen fluctuations at rest and to elucidate the neural mechanisms underlying neuropsychiatric behavior. METHOD A total of 18 unmedicated patients with NT1 and matched healthy individuals were recruited in a resting-state fMRI study. Magnetic resonance imaging (MRI) data were first analyzed using fractional low-frequency amplitude of low-frequency fluctuation (fALFF) to detect changes in local neural activity, and regions with group differences were taken as regions of interest (ROIs). Secondly, functional connectivity (FC) analysis was used to explore altered connectivity between ROIs and other areas. Lastly, the relationship between functional brain activity and neuropsychiatric behaviors was analyzed with correlation analysis. RESULTS fALFF analysis revealed enhanced neural activity in bilateral fusiform gyrus (FFG), right precentral gyrus, and left postcentral gyrus (PoCG) in the NT1 group. The patients indicated reduced activity in the bilateral temporal pole middle temporal gyrus (TPOmid), left caudate nucleus (CAU), left parahippocampus, left precuneus (PCUN), right amygdala, and right anterior cingulate and paracingulate gyri. ESS score was negatively correlated with fALFF in the right FFG. The NT1 group revealed decreased connectivity between left TPOmid and right PoCG, the bilateral middle frontal gyrus, left superior frontal gyrus, medial, and right supramarginal gyrus. Epworth Sleepiness Scale (ESS) was negatively correlated with FC of the left TPOmid with left putamen (PUT) in NT1. Compared with healthy controls (HCs), enhanced FC of the left CAU with right FFG was positively associated with MSLT-SOREMPs in patients. Furthermore, increased FC of the left PCUN with right PoCG was positively correlated with SDS score. CONCLUSIONS We found that multiple functional activities related to the processing of emotional regulation and sensory information processing were abnormal, and some were related to clinical characteristics. fALFF in the left postcentral or right precentral gyrus may be used as a biomarker of narcolepsy, whereas fALFF in the right fusiform and the FC strength of the left temporal pole middle temporal gyrus with the putamen may be clinical indicators to assess the drowsiness severity of narcolepsy.
Collapse
Affiliation(s)
- Lanxiang Wu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qingqing Zhan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qian Liu
- Imaging Department, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Suheng Xie
- Imaging Department, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Sheng Tian
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wei Wu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
6
|
Chung IH, Chin WC, Huang YS, Wang CH. Pediatric Narcolepsy-A Practical Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:974. [PMID: 35883958 PMCID: PMC9320719 DOI: 10.3390/children9070974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Pediatric narcolepsy is a chronic sleep-wakefulness disorder. Its symptoms frequently begin in childhood. This review article examined the literature for research reporting on the effects of treatment of pediatric narcolepsy, as well as proposed etiology and diagnostic tools. Symptoms of pediatric narcolepsy include excessive sleepiness and cataplexy. In addition, rapid-eye-movement-related phenomena such as sleep paralysis, sleep terror, and hypnagogic or hypnapompic hallucinations can also occur. These symptoms impaired children's function and negatively influenced their social interaction, studying, quality of life, and may further lead to emotional and behavioral problems. Therefore, early diagnosis and intervention are essential for children's development. Moreover, there are differences in clinical experiences between Asian and Western population. The treatment of pediatric narcolepsy should be comprehensive. In this article, we review pediatric narcolepsy and its treatment approach: medication, behavioral modification, and education/mental support. Pharmacological treatment including some promising newly-developed medication can decrease cataplexy and daytime sleepiness in children with narcolepsy. Other forms of management such as psychosocial interventions involve close cooperation between children, school, family, medical personnel, and can further assist their adjustment.
Collapse
Affiliation(s)
- I-Hang Chung
- Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital and College of Medicine, Taoyuan 333, Taiwan; (I.-H.C.); (W.-C.C.)
| | - Wei-Chih Chin
- Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital and College of Medicine, Taoyuan 333, Taiwan; (I.-H.C.); (W.-C.C.)
| | - Yu-Shu Huang
- Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital and College of Medicine, Taoyuan 333, Taiwan; (I.-H.C.); (W.-C.C.)
| | - Chih-Huan Wang
- Department of Psychology, Zhejiang Normal University, Jinhua 321004, China;
| |
Collapse
|
7
|
Ballotta D, Talami F, Pizza F, Vaudano AE, Benuzzi F, Plazzi G, Meletti S. Hypothalamus and amygdala functional connectivity at rest in narcolepsy type 1. Neuroimage Clin 2021; 31:102748. [PMID: 34252875 PMCID: PMC8278207 DOI: 10.1016/j.nicl.2021.102748] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 01/20/2023]
Abstract
INTRODUCTION functional and structural MRI studies suggest that the orexin (hypocretin) deficiency in the dorso-lateral hypothalamus of narcoleptic patients would influence both brain metabolism and perfusion and would cause reduction in cortical grey matter. Previous fMRI studies have mainly focused on cerebral functioning during emotional processing. The aim of the present study was to explore the hemodynamic behaviour of spontaneous BOLD fluctuation at rest in patients with Narcolepsy type 1 (NT1) close to disease onset. METHODS Fifteen drug naïve children/adolescents with NT1 (9 males; mean age 11.7 ± 3 years) and fifteen healthy children/adolescents (9 males; mean age 12.4 ± 2.8 years) participated in an EEG-fMRI study in order to investigate the resting-state functional connectivity of hypothalamus and amygdala. Functional images were acquired on a 3 T system. Seed-based functional connectivity analyses were performed using SPM12. Regions of Interest were the lateral hypothalamus and the amygdala. RESULTS compared to controls, NT1 patients showed decreased functional connectivity between the lateral hypothalamus and the left superior parietal lobule, the hippocampus and the parahippocampal gyrus. Decreased functional connectivity was detected between the amygdala and the post-central gyrus and several occipital regions, whereas it was increased between the amygdala and the inferior frontal gyrus, claustrum, insula, and putamen. CONCLUSION in NT1 patients the abnormal connectivity between the hypothalamus and brain regions involved in memory consolidation during sleep, such as the hippocampus, may be linked to the loss of orexin containing neurons in the dorsolateral hypothalamus. Moreover, also functional connectivity of the amygdala seems to be influenced by the loss of orexin-containing neurons. Therefore, we can hypothesize that dysfunctional interactions between regions subserving the maintenance of arousal, memory and emotional processing may contribute to the main symptom of narcolepsy.
Collapse
Affiliation(s)
- Daniela Ballotta
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Italy
| | - Francesca Talami
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche, AUSL of Bologna, Italy
| | | | - Francesca Benuzzi
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Italy
| | - Giuseppe Plazzi
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Italy; IRCCS Istituto delle Scienze Neurologiche, AUSL of Bologna, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Italy; Neurology Unit, OCB Hospital, AOU Modena, Italy.
| |
Collapse
|
8
|
Fulong X, Karen S, Xiaosong D, Zhaolong C, Jun Z, Fang H. Morphological and Age-Related Changes in the Narcolepsy Brain. Cereb Cortex 2021; 31:5460-5469. [PMID: 34165139 DOI: 10.1093/cercor/bhab171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 11/12/2022] Open
Abstract
Morphological changes in the cortex of narcolepsy patients were investigated by surface-based morphometry analysis in this study. Fifty-one type 1 narcolepsy patients and 60 demographically group-matched healthy controls provided resting-state functional and high-resolution 3T anatomical magnetic resonance imaging scans. Vertex-level cortical thickness (CT), gyrification, and voxel-wise functional connectivity were calculated. Adolescent narcolepsy patients showed decreased CT in bilateral frontal cortex and left precuneus. Adolescent narcolepsy demonstrated increased gyrification in left occipital lobe, left precuneus, and right fusiform but decreased gyrification in left postcentral gyrus, whereas adult narcolepsy exhibited increased gyrification in left temporal lobe and right frontal cortex. Furthermore, sleepiness severity was associated with altered CT and gyrification. Increased gyrification was associated with reduced long-range functional connectivity. In adolescent patients, those with more severe sleepiness showed increased right postcentral gyrification. Decreased frontal and occipital gyrification was found in cases with hallucination. In adult patients, a wide range of regions showed reduced gyrification in those with adolescence-onset compared adult-onset narcolepsy patients. Particularly the frontal lobes showed altered brain morphology, being a thinner cortex and more gyri. The impact of narcolepsy on age-related brain morphological changes may remain from adolescence to young adulthood, and it was especially exacerbated in adolescence.
Collapse
Affiliation(s)
- Xiao Fulong
- Department of General Internal Medicine, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Spruyt Karen
- Lyon Neuroscience Research Center, INSERM, U1028-CNRS UMR 5292, School of Medicine, University Claude Bernard, Lyon, France
| | - Dong Xiaosong
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Cao Zhaolong
- Department of General Internal Medicine, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Zhang Jun
- Department of Neurology, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Han Fang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, People's Republic of China
| |
Collapse
|
9
|
Gool JK, Cross N, Fronczek R, Lammers GJ, van der Werf YD, Dang-Vu TT. Neuroimaging in Narcolepsy and Idiopathic Hypersomnia: from Neural Correlates to Clinical Practice. CURRENT SLEEP MEDICINE REPORTS 2020. [DOI: 10.1007/s40675-020-00185-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Cavaliere C, Longarzo M, Fogel S, Engström M, Soddu A. Neuroimaging of Narcolepsy and Primary Hypersomnias. Neuroscientist 2020; 26:310-327. [PMID: 32111133 DOI: 10.1177/1073858420905829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in neuroimaging open up the possibility for new powerful tools to be developed that potentially can be applied to clinical populations to improve the diagnosis of neurological disorders, including sleep disorders. At present, the diagnosis of narcolepsy and primary hypersomnias is largely limited to subjective assessments and objective measurements of behavior and sleep physiology. In this review, we focus on recent neuroimaging findings that provide insight into the neural basis of narcolepsy and the primary hypersomnias Kleine-Levin syndrome and idiopathic hypersomnia. We describe the role of neuroimaging in confirming previous genetic, neurochemical, and neurophysiological findings and highlight studies that permit a greater understanding of the symptoms of these sleep disorders. We conclude by considering some of the remaining challenges to overcome, the existing knowledge gaps, and the potential role for neuroimaging in understanding the pathogenesis and clinical features of narcolepsy and primary hypersomnias.
Collapse
Affiliation(s)
| | | | - Stuart Fogel
- Brain and Mind Institute, Western University, London, Ontario, Canada.,School of Psychology, University of Ottawa, Ottawa, Ontario, Canada.,Sleep Unit, The Royal's Institute for Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Maria Engström
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Andrea Soddu
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Physics & Astronomy Department, Brain and Mind Institute, Western University, London, Ontario, Canada
| |
Collapse
|
11
|
Jeon S, Cho JW, Kim H, Evans AC, Hong SB, Joo EY. A five-year longitudinal study reveals progressive cortical thinning in narcolepsy and faster cortical thinning in relation to early-onset. Brain Imaging Behav 2020; 14:200-212. [PMID: 30392082 PMCID: PMC7938668 DOI: 10.1007/s11682-018-9981-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Narcolepsy with cataplexy is characterized by excessive daytime sleepiness, cataplexy, and other REM sleep phenomena. Previous MRI studies were cross-sectional in design and could not adequately address if disease progression leads the brain structural abnormalities in narcolepsy. Our analysis in patients using longitudinally collected brain MRIs (n = 17; 2 scans per patient; scan interval: 4.7 ± 1.9 years) revealed widespread progressive cortical thinning in bilateral dorsolateral frontal and fusiform cortices, right anterior cingulate (corrected p < 0.05). Cross-sectional analyses showed faster progressive cortical thinning in patients than controls (n = 83, one scan per subject available), which we confirmed significant in the analysis of a small-set of longitudinal control data (n = 10). The pattern of progressive thinning in patients was overlapped well with those found in structural and functional studies of narcolepsy. We also found a faster progression of cortical thinning and worse disease severity (decreased sleep efficiency, increased sleep latency and arousal index) over time in a subgroup of patients with earlier disease onset (n = 9, onset age: 15.9 ± 2.5 years old) compared to later disease onset (n = 8, 25.3 ± 4.9). The faster progressive cortical thinning and worse disease severity over time in the patients with early-onset suggest compelling evidence of disease progression existing in this phenotype of narcolepsy syndrome. Our result based on a small dataset, however, demands a more careful investigation of the underlying mechanism.
Collapse
Affiliation(s)
- Seun Jeon
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jae Wook Cho
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Hosung Kim
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Seung Bong Hong
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Annex 3rd F, #7, Gangnam-gu, Seoul, 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Eun Yeon Joo
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Annex 3rd F, #7, Gangnam-gu, Seoul, 06351, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
12
|
Pomares FB, Boucetta S, Lachapelle F, Steffener J, Montplaisir J, Cha J, Kim H, Dang-Vu TT. Beyond sleepy: structural and functional changes of the default-mode network in idiopathic hypersomnia. Sleep 2019; 42:zsz156. [PMID: 31328786 PMCID: PMC6802570 DOI: 10.1093/sleep/zsz156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/08/2019] [Indexed: 01/01/2023] Open
Abstract
Idiopathic hypersomnia (IH) is characterized by excessive daytime sleepiness but, in contrast to narcolepsy, does not involve cataplexy, sleep-onset REM periods, or any consistent hypocretin-1 deficiency. The pathophysiological mechanisms of IH remain unclear. Because of the involvement of the default-mode network (DMN) in alertness and sleep, our aim was to investigate the structural and functional modifications of the DMN in IH. We conducted multimodal magnetic resonance imaging (MRI) in 12 participants with IH and 15 good sleeper controls (mean age ± SD: 32 ± 9.6 years, range 22-53 years, nine males). Self-reported as well as objective measures of daytime sleepiness were collected. Gray matter volume and cortical thickness were analyzed to investigate brain structural differences between good sleepers and IH. Structural covariance and resting-state functional connectivity were analyzed to investigate changes in the DMN. Participants with IH had greater volume and cortical thickness in the precuneus, a posterior hub of the DMN. Cortical thickness in the left medial prefrontal cortex was positively correlated with thickness of the precuneus, and the strength of this correlation was greater in IH. In contrast, functional connectivity at rest was lower within the anterior DMN (medial prefrontal cortex) in IH, and correlated with self-reported daytime sleepiness. The present results show that IH is associated with structural and functional differences in the DMN, in proportion to the severity of daytime sleepiness, suggesting that a disruption of the DMN contributes to the clinical features of IH. Larger volume and thickness in this network might reflect compensatory changes to lower functional connectivity in IH.
Collapse
Affiliation(s)
- Florence B Pomares
- Center for Studies in Behavioral Neurobiology and Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada
- PERFORM Centre, Concordia University, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Soufiane Boucetta
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
| | - Francis Lachapelle
- Center for Studies in Behavioral Neurobiology and Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada
- PERFORM Centre, Concordia University, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Jason Steffener
- Interdisciplinary School of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montreal, QC, Canada
| | - Jungho Cha
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Hosung Kim
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA
| | - Thien Thanh Dang-Vu
- Center for Studies in Behavioral Neurobiology and Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada
- PERFORM Centre, Concordia University, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
13
|
Tench C, Tanasescu R, Cottam W, Constantinescu C, Auer D. Coordinate based meta-analysis does not show grey matter atrophy in narcolepsy. Neurosci Biobehav Rev 2019; 102:427-429. [DOI: 10.1016/j.neubiorev.2016.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/14/2016] [Accepted: 10/24/2016] [Indexed: 11/29/2022]
|
14
|
Joo EY. Updates on Structural Neuroimaging of Narcolepsy with Cataplexy. PRECISION AND FUTURE MEDICINE 2019. [DOI: 10.23838/pfm.2018.00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Tezer FI, Erdal A, Gumusyayla S, Has AC, Gocmen R, Oguz KK. Differences in diffusion tensor imaging changes between narcolepsy with and without cataplexy. Sleep Med 2018; 52:128-133. [PMID: 30321819 DOI: 10.1016/j.sleep.2018.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/29/2018] [Accepted: 08/27/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The distinctive clinical finding of Type 1 narcolepsy compared to Type 2 is the presence of cataplexy. Several neuroimaging studies have also reported abnormalities in narcolepsy patients with or without cataplexy. However, there are conflicting results to differentiate them. In this study, we aimed to clarify the white matter changes in narcolepsy patients both with and without cataplexy and compared them with healthy adults to evaluate microstructural differences in the brain. METHODS Eleven narcolepsy patients with cataplexy (NC), 12 narcolepsy patients without cataplexy (NOC) and healthy age- and gender-matched controls (N = 16) were studied. Whole-brain diffusion tensor imaging (DTI) was obtained and tract-based spatial statistics were used to localize white matter abnormalities. RESULTS Compared with the healthy controls, both NC and NOC patients exhibited significant fractional anisotropy (FA) decreases in the bilateral cerebellar hemispheres, bilateral thalami, the corpus callosum and left anterior-medial temporal white matter. Compared with the controls, the NC patients' FA values were also decreased in the midbrain. No significant correlations were found between FA values and clinical-polysomnographic variables. CONCLUSION This DTI study has demonstrated white matter abnormalities in the midbrain-brainstem regions as a distinctive finding of narcolepsy patients with cataplexy. Involvement of bilateral temporal lobes with greater changes on the left lobe is also a supporting finding of patients with cataplexy. DTI changes in the midbrain-brainstem and bilateral temporal lobes can be signs of different pathological mechanisms in these patients.
Collapse
Affiliation(s)
- F Irsel Tezer
- Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara, Turkey.
| | - Abidin Erdal
- Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara, Turkey
| | - Sadiye Gumusyayla
- Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara, Turkey
| | - Arzu Ceylan Has
- University Hospital Hamburg-Eppendorf, Institute of Neuroimmunology and Multiple Sclerosis, Hamburg, Germany
| | - Rahsan Gocmen
- Hacettepe University, Faculty of Medicine, Department of Radiology, Ankara, Turkey
| | - Kader K Oguz
- Hacettepe University, Faculty of Medicine, Department of Radiology, Ankara, Turkey
| |
Collapse
|
16
|
Wada M, Mimura M, Noda Y, Takasu S, Plitman E, Honda M, Natsubori A, Ogyu K, Tarumi R, Graff-Guerrero A, Nakajima S. Neuroimaging correlates of narcolepsy with cataplexy: A systematic review. Neurosci Res 2018; 142:16-29. [PMID: 29580887 DOI: 10.1016/j.neures.2018.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 11/29/2022]
Abstract
Recent developments in neuroimaging techniques have advanced our understanding of biological mechanisms underpinning narcolepsy. We used MEDLINE to retrieve neuroimaging studies to compare patients with narcolepsy and healthy controls. Thirty-seven studies were identified and demonstrated several replicated abnormalities: (1) gray matter reductions in superior frontal, superior and inferior temporal, and middle occipital gyri, hypothalamus, amygdala, insula, hippocampus, cingulate cortex, thalamus, and nucleus accumbens, (2) decreased fractional anisotropy in white matter of fronto-orbital and cingulate area, (3) reduced brain metabolism or cerebral blood flow in middle and superior frontal, and cingulate cortex (4) increased activity in inferior frontal gyri, insula, amygdala, and nucleus accumbens, and (5) N-acetylaspartate/creatine-phosphocreatine level reduction in hypothalamus. In conclusion, all the replicated findings are still controversial due to the limitations such as heterogeneity or size of the samples and lack of multimodal imaging or follow-up. Thus, future neuroimaging studies should employ multimodal imaging methods in a large sample size of patients with narcolepsy and consider age, duration of disease, age at onset, severity, human leukocyte antigen type, cerebrospinal fluid hypocretin levels, and medication intake in order to elucidate possible neuroimaging characteristic of narcolepsy and identify therapeutic targets.
Collapse
Affiliation(s)
- Masataka Wada
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yoshihiro Noda
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Shotaro Takasu
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Eric Plitman
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, 250 College, Toronto, Ontario, M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Makoto Honda
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan; Seiwa Hospital, 91 Bententyo, Sinjyuku-ku, Tokyo, 162-0851, Japan.
| | - Akiyo Natsubori
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Kamiyu Ogyu
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, 250 College, Toronto, Ontario, M5T 1R8, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, Ontario, M6J 1H4, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, 250 College, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.
| |
Collapse
|
17
|
Tondelli M, Pizza F, Vaudano AE, Plazzi G, Meletti S. Cortical and Subcortical Brain Changes in Children and Adolescents With Narcolepsy Type 1. Sleep 2017; 41:4737104. [DOI: 10.1093/sleep/zsx192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Manuela Tondelli
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche, AUSL di Bologna, Bologna, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche, AUSL di Bologna, Bologna, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, OCSAE Hospital, AOU Modena, Italy
| |
Collapse
|
18
|
|
19
|
Drissi NM, Szakács A, Witt ST, Wretman A, Ulander M, Ståhlbrandt H, Darin N, Hallböök T, Landtblom AM, Engström M. Altered Brain Microstate Dynamics in Adolescents with Narcolepsy. Front Hum Neurosci 2016; 10:369. [PMID: 27536225 PMCID: PMC4971065 DOI: 10.3389/fnhum.2016.00369] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/11/2016] [Indexed: 11/13/2022] Open
Abstract
Narcolepsy is a chronic sleep disorder caused by a loss of hypocretin-1 producing neurons in the hypothalamus. Previous neuroimaging studies have investigated brain function in narcolepsy during rest using positron emission tomography (PET) and single photon emission computed tomography (SPECT). In addition to hypothalamic and thalamic dysfunction they showed aberrant prefrontal perfusion and glucose metabolism in narcolepsy. Given these findings in brain structure and metabolism in narcolepsy, we anticipated that changes in functional magnetic resonance imaging (fMRI) resting state network (RSN) dynamics might also be apparent in patients with narcolepsy. The objective of this study was to investigate and describe brain microstate activity in adolescents with narcolepsy and correlate these to RSNs using simultaneous fMRI and electroencephalography (EEG). Sixteen adolescents (ages 13-20) with a confirmed diagnosis of narcolepsy were recruited and compared to age-matched healthy controls. Simultaneous EEG and fMRI data were collected during 10 min of wakeful rest. EEG data were analyzed for microstates, which are discrete epochs of stable global brain states obtained from topographical EEG analysis. Functional MRI data were analyzed for RSNs. Data showed that narcolepsy patients were less likely than controls to spend time in a microstate which we found to be related to the default mode network and may suggest a disruption of this network that is disease specific. We concluded that adolescents with narcolepsy have altered resting state brain dynamics.
Collapse
Affiliation(s)
- Natasha M Drissi
- Department of Medical and Health Sciences (IMH), Linköping UniversityLinköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping UniversityLinköping, Sweden
| | - Attila Szakács
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Suzanne T Witt
- Center for Medical Image Science and Visualization (CMIV), Linköping University Linköping, Sweden
| | - Anna Wretman
- Department of Behavioral Science and Learning, Linköping University Linköping, Sweden
| | - Martin Ulander
- Department of Clinical and Experimental Medicine, Linköping University Linköping, Sweden
| | | | - Niklas Darin
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Tove Hallböök
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Anne-Marie Landtblom
- Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden; Department of Neurology, Uppsala UniversityUppsala, Sweden
| | - Maria Engström
- Department of Medical and Health Sciences (IMH), Linköping UniversityLinköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping UniversityLinköping, Sweden
| |
Collapse
|
20
|
Park YK, Kwon OH, Joo EY, Kim JH, Lee JM, Kim ST, Hong SB. White matter alterations in narcolepsy patients with cataplexy: tract-based spatial statistics. J Sleep Res 2015; 25:181-9. [PMID: 26610427 DOI: 10.1111/jsr.12366] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Yun K. Park
- Department of Neurology; Neuroscience Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Oh-Hun Kwon
- Computational NeuroImage Analysis Laboratory; Department of Biomedical Engineering; Hanyang University; Seoul Korea
| | - Eun Yeon Joo
- Department of Neurology; Neuroscience Center; Sungkyunkwan University School of Medicine; Seoul Korea
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Seoul Korea
| | - Jae-Hun Kim
- Department of Radiology; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Jong M. Lee
- Computational NeuroImage Analysis Laboratory; Department of Biomedical Engineering; Hanyang University; Seoul Korea
| | - Sung T. Kim
- Department of Radiology; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Seung B. Hong
- Department of Neurology; Neuroscience Center; Sungkyunkwan University School of Medicine; Seoul Korea
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Seoul Korea
| |
Collapse
|
21
|
Belke M, Heverhagen JT, Keil B, Rosenow F, Oertel WH, Stiasny-Kolster K, Knake S, Menzler K. DTI and VBM reveal white matter changes without associated gray matter changes in patients with idiopathic restless legs syndrome. Brain Behav 2015; 5:e00327. [PMID: 26442748 PMCID: PMC4589804 DOI: 10.1002/brb3.327] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE We evaluated cerebral white and gray matter changes in patients with iRLS in order to shed light on the pathophysiology of this disease. METHODS Twelve patients with iRLS were compared to 12 age- and sex-matched controls using whole-head diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) techniques. Evaluation of the DTI scans included the voxelwise analysis of the fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). RESULTS Diffusion tensor imaging revealed areas of altered FA in subcortical white matter bilaterally, mainly in temporal regions as well as in the right internal capsule, the pons, and the right cerebellum. These changes overlapped with changes in RD. Voxel-based morphometry did not reveal any gray matter alterations. CONCLUSIONS We showed altered diffusion properties in several white matter regions in patients with iRLS. White matter changes could mainly be attributed to changes in RD, a parameter thought to reflect altered myelination. Areas with altered white matter microstructure included areas in the internal capsule which include the corticospinal tract to the lower limbs, thereby supporting studies that suggest changes in sensorimotor pathways associated with RLS.
Collapse
Affiliation(s)
- Marcus Belke
- Department of Neurology, Philipps-University MarburgBaldingerstrasse, Marburg, 35043, Germany
| | - Johannes T Heverhagen
- Department of Diagnostic Radiology, Philipps-University MarburgBaldingerstrasse, Marburg, 35043, Germany
| | - Boris Keil
- Department of Diagnostic Radiology, Philipps-University MarburgBaldingerstrasse, Marburg, 35043, Germany
| | - Felix Rosenow
- Department of Neurology, Philipps-University MarburgBaldingerstrasse, Marburg, 35043, Germany
- Epilepsy Center Franfurt Rhein-Main, Department of Neurology, Johann Wolfgang Goethe UniversityFrankfurt am Main, Germany
| | - Wolfgang H Oertel
- Department of Neurology, Philipps-University MarburgBaldingerstrasse, Marburg, 35043, Germany
| | - Karin Stiasny-Kolster
- Department of Neurology, Philipps-University MarburgBaldingerstrasse, Marburg, 35043, Germany
- Somnomar, Institute for Medical Research and Sleep Medicine MarburgMarburger Strasse 9a, Marburg, 35043, Germany
| | - Susanne Knake
- Department of Neurology, Philipps-University MarburgBaldingerstrasse, Marburg, 35043, Germany
| | - Katja Menzler
- Department of Neurology, Philipps-University MarburgBaldingerstrasse, Marburg, 35043, Germany
| |
Collapse
|
22
|
Weng HH, Chen CF, Tsai YH, Wu CY, Lee M, Lin YC, Yang CT, Tsai YH, Yang CY. Gray matter atrophy in narcolepsy: An activation likelihood estimation meta-analysis. Neurosci Biobehav Rev 2015; 59:53-63. [PMID: 25825285 DOI: 10.1016/j.neubiorev.2015.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 02/07/2015] [Accepted: 03/19/2015] [Indexed: 12/17/2022]
Abstract
The authors reviewed the literature on the use of voxel-based morphometry (VBM) in narcolepsy magnetic resonance imaging (MRI) studies via the use of a meta-analysis of neuroimaging to identify concordant and specific structural deficits in patients with narcolepsy as compared with healthy subjects. We used PubMed to retrieve articles published between January 2000 and March 2014. The authors included all VBM research on narcolepsy and compared the findings of the studies by using gray matter volume (GMV) or gray matter concentration (GMC) to index differences in gray matter. Stereotactic data were extracted from 8 VBM studies of 149 narcoleptic patients and 162 control subjects. We applied activation likelihood estimation (ALE) technique and found significant regional gray matter reduction in the bilateral hypothalamus, thalamus, globus pallidus, extending to nucleus accumbens (NAcc) and anterior cingulate cortex (ACC), left mid orbital and rectal gyri (BAs 10 and 11), right inferior frontal gyrus (BA 47), and the right superior temporal gyrus (BA 41) in patients with narcolepsy. The significant gray matter deficits in narcoleptic patients occurred in the bilateral hypothalamus and frontotemporal regions, which may be related to the emotional processing abnormalities and orexin/hypocretin pathway common among populations of patients with narcolepsy.
Collapse
Affiliation(s)
- Hsu-Huei Weng
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan; Department of Psychology, National Chung Cheng University, Chiayi, Taiwan
| | - Chih-Feng Chen
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taiwan
| | - Yuan-Hsiung Tsai
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taiwan
| | - Chih-Ying Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taiwan
| | - Meng Lee
- Department of Neurology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taiwan
| | - Yu-Ching Lin
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan; Division of Pulmonary and Critical Care Medicine and Department of Respiratory Care, Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Respiratory Care, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Ta Yang
- Division of Pulmonary and Critical Care Medicine of Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Respiratory Care, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Huang Tsai
- Division of Pulmonary and Critical Care Medicine of Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan.
| | - Chun-Yuh Yang
- Faculty of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Narcoleptic Patients Show Fragmented EEG-Microstructure During Early NREM Sleep. Brain Topogr 2014; 28:619-35. [PMID: 25168255 DOI: 10.1007/s10548-014-0387-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 07/20/2014] [Indexed: 10/24/2022]
Abstract
Narcolepsy is a chronic disorder of the sleep-wake cycle with pathological shifts between sleep stages. These abrupt shifts are induced by a sleep-regulating flip-flop mechanism which is destabilized in narcolepsy without obvious alterations in EEG oscillations. Here, we focus on the question whether the pathology of narcolepsy is reflected in EEG microstate patterns. 30 channel awake and NREM sleep EEGs of 12 narcoleptic patients and 32 healthy subjects were analyzed. Fitting back the dominant amplitude topography maps into the EEG led to a temporal sequence of maps. Mean microstate duration, ratio total time (RTT), global explained variance (GEV) and transition probability of each map were compared between both groups. Nine patients reached N1, 5 N2 and only 4 N3. All healthy subjects reached at least N2, 19 also N3. Four dominant maps could be found during wakefulness and all NREM- sleep stages in healthy subjects. During N3, narcolepsy patients showed an additional fifth map. The mean microstate duration was significantly shorter in narcoleptic patients than controls, most prominent in deep sleep. Single maps' GEV and RTT were also altered in narcolepsy. Being aware of the limitation of our low sample size, narcolepsy patients showed wake-like features during sleep as reflected in shorter microstate durations. These microstructural EEG alterations might reflect the intrusion of brain states characteristic of wakefulness into sleep and an instability of the sleep-regulating flip-flop mechanism resulting not only in pathological switches between REM- and NREM-sleep but also within NREM sleep itself, which may lead to a microstructural fragmentation of the EEG.
Collapse
|
24
|
|
25
|
Abstract
Various brain imaging techniques have been used to study narcolepsy with cataplexy. Anatomical data with magnetic resonance imaging have characterized specific alterations in grey and white matter and their potential implications on disease severity. Functional neuroimaging studies have described changes in brain perfusion or glucose metabolism during resting wakefulness, as well as brain responses to emotional stimulation in narcoleptic patients. These different imaging modalities provide evidence for structural and functional abnormalities compatible with a deficit in the hypocretinergic system. They also indicate the involvement of other neural structures, such as the amygdala, nucleus accumbens, midbrain, thalamus, hippocampus, and fronto-temporal cortical areas. This article reviews the contribution of neuroimaging to the pathophysiology of narcolepsy with cataplexy, focusing on the most recent developments.
Collapse
Affiliation(s)
- Thien Thanh Dang-Vu
- Department of Exercise Science, Concordia University, 7141 Sherbrooke St W, Room SP 165.27, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
26
|
Neuroimágenes en las alteraciones del sueño. REVISTA MÉDICA CLÍNICA LAS CONDES 2013. [DOI: 10.1016/s0716-8640(13)70188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Shen S, Sterr A. Is DARTEL-based voxel-based morphometry affected by width of smoothing kernel and group size? A study using simulated atrophy. J Magn Reson Imaging 2012; 37:1468-75. [PMID: 23172789 DOI: 10.1002/jmri.23927] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 10/01/2012] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To quantify to what extent the new registration method, DARTEL (Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra), may reduce the smoothing kernel width required and investigate the minimum group size necessary for voxel-based morphometry (VBM) studies. MATERIALS AND METHODS A simulated atrophy approach was employed to explore the role of smoothing kernel, group size, and their interactions on VBM detection accuracy. Group sizes of 10, 15, 25, and 50 were compared for kernels between 0-12 mm. RESULTS A smoothing kernel of 6 mm achieved the highest atrophy detection accuracy for groups with 50 participants and 8-10 mm for the groups of 25 at P < 0.05 with familywise correction. The results further demonstrated that a group size of 25 was the lower limit when two different groups of participants were compared, whereas a group size of 15 was the minimum for longitudinal comparisons but at P < 0.05 with false discovery rate correction. CONCLUSION Our data confirmed DARTEL-based VBM generally benefits from smaller kernels and different kernels perform best for different group sizes with a tendency of smaller kernels for larger groups. Importantly, the kernel selection was also affected by the threshold applied. This highlighted that the choice of kernel in relation to group size should be considered with care.
Collapse
Affiliation(s)
- Shan Shen
- Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, UK.
| | | |
Collapse
|
28
|
Menzler K, Belke M, Unger MM, Ohletz T, Keil B, Heverhagen JT, Rosenow F, Mayer G, Oertel WH, Möller JC, Knake S. DTI reveals hypothalamic and brainstem white matter lesions in patients with idiopathic narcolepsy. Sleep Med 2012; 13:736-42. [PMID: 22541810 DOI: 10.1016/j.sleep.2012.02.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/24/2012] [Accepted: 02/29/2012] [Indexed: 11/19/2022]
Affiliation(s)
- K Menzler
- Philipps-University Marburg, Department of Neurology, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Scherfler C, Frauscher B, Schocke M, Nocker M, Gschliesser V, Ehrmann L, Niederreiter M, Esterhammer R, Seppi K, Brandauer E, Poewe W, Högl B. White and gray matter abnormalities in narcolepsy with cataplexy. Sleep 2012; 35:345-51. [PMID: 22379240 DOI: 10.5665/sleep.1692] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES The authors applied diffusion-tensor imaging including measurements of mean diffusivity (MD), which is a parameter of brain tissue integrity, fractional anisotropy (FA), which is a parameter of neuronal fiber integrity, and voxel-based morphometry, which is a measure of gray and white matter volume, to detect brain tissue changes in patients with narcolepsy-cataplexy. DESIGN N/A. PATIENTS Patients with narcolepsy-cataplexy (n = 16) and age-matched healthy control subjects (n = 12) were studied. INTERVENTIONS Whole cerebral MD, FA measures, and the volumes of the gray and white matter compartments were analyzed using statistical parametric mapping. MEASUREMENT AND RESULTS Significant MD increases and concomitant FA decreases were localized in the fronto-orbital cortex (P < 0.001) and the anterior cingulate (FA, P < 0.001; MD, P = 0.03) in narcolepsy-cataplexy. Additional MD increases without FA changes were detected in the ventral tegmental area, the dorsal raphe nuclei (P < 0.001), and the hypothalamus (P < 0.01). FA signal decreases were observed in the white matter tracts of the inferior frontal and inferior temporal cortices of narcolepsy-cataplexy patients (P < 0.001). Brain volume loss was evident in focal areas of the inferior and superior temporal cortices (P < 0.001) and the cingulate (P = 0.038). CONCLUSIONS Areas of increased diffusivity in the hypothalamus appear consistent with hypocretinergic cell loss reported in narcolepsy-cataplexy. Signal abnormalities in the ventral tegmental area and the dorsal raphe nuclei correspond to major synaptic targets of hypocretin neurons that were associated with the regulation of the sleep-wake cycle. Brain tissue alterations identified in the frontal cortex and cingulate are crucial in the maintenance of attention and reward-dependent decision making, both known to be impaired in narcolepsy-cataplexy.
Collapse
|
30
|
SCHAER MARIE, PORYAZOVA ROSITSA, SCHWARTZ SOPHIE, BASSETTI CLAUDIOL, BAUMANN CHRISTIANR. Cortical morphometry in narcolepsy with cataplexy. J Sleep Res 2012; 21:487-94. [DOI: 10.1111/j.1365-2869.2012.01000.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Van Schie MKM, Thijs RD, Fronczek R, Middelkoop HAM, Lammers GJ, Van Dijk JG. Sustained attention to response task (SART) shows impaired vigilance in a spectrum of disorders of excessive daytime sleepiness. J Sleep Res 2011; 21:390-5. [PMID: 22098127 DOI: 10.1111/j.1365-2869.2011.00979.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The sustained attention to response task comprises withholding key presses to one in nine of 225 target stimuli; it proved to be a sensitive measure of vigilance in a small group of narcoleptics. We studied sustained attention to response task results in 96 patients from a tertiary narcolepsy referral centre. Diagnoses according to ICSD-2 criteria were narcolepsy with (n=42) and without cataplexy (n=5), idiopathic hypersomnia without long sleep time (n=37), and obstructive sleep apnoea syndrome (n=12). The sustained attention to response task was administered prior to each of five multiple sleep latency test sessions. Analysis concerned error rates, mean reaction time, reaction time variability and post-error slowing, as well as the correlation of sustained attention to response task results with mean latency of the multiple sleep latency test and possible time of day influences. Median sustained attention to response task error scores ranged from 8.4 to 11.1, and mean reaction times from 332 to 366ms. Sustained attention to response task error score and mean reaction time did not differ significantly between patient groups. Sustained attention to response task error score did not correlate with multiple sleep latency test sleep latency. Reaction time was more variable as the error score was higher. Sustained attention to response task error score was highest for the first session. We conclude that a high sustained attention to response task error rate reflects vigilance impairment in excessive daytime sleepiness irrespective of its cause. The sustained attention to response task and the multiple sleep latency test reflect different aspects of sleep/wakefulness and are complementary.
Collapse
Affiliation(s)
- Mojca K M Van Schie
- Leiden University Medical Centre, Department of Neurology and Clinical Neurophysiology, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Cognitive evoked potentials in narcolepsy: A review of the literature. Neurosci Biobehav Rev 2011; 35:1144-53. [DOI: 10.1016/j.neubiorev.2010.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 10/26/2010] [Accepted: 12/05/2010] [Indexed: 12/14/2022]
|
33
|
Desseilles M, Dang-Vu T, Maquet P. Functional neuroimaging in sleep, sleep deprivation, and sleep disorders. HANDBOOK OF CLINICAL NEUROLOGY 2011; 98:71-94. [DOI: 10.1016/b978-0-444-52006-7.00006-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
The efficacy of a voxel-based morphometry on the analysis of imaging in schizophrenia, temporal lobe epilepsy, and Alzheimer's disease/mild cognitive impairment: a review. Neuroradiology 2010; 52:711-21. [PMID: 20495793 DOI: 10.1007/s00234-010-0717-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 05/07/2010] [Indexed: 12/11/2022]
Abstract
Voxel-based morphometry (VBM) done by means of MRI have provided new insights into the neuroanatomical basis for subjects with several conditions. Recently, VBM has been applied to investigate not only regional volumetric changes but also voxel-wise maps of fractional anisotropy (FA) computed from diffusion tensor imaging (DTI). The aim of this article is to review the recent work using VBM technique in particular focusing on schizophrenia, temporal lobe epilepsy (TLE), and Alzheimer's disease (AD)/mild cognitive impairment (MCI). In patients with schizophrenia, VBM approach detects the structural brain abnormalities that appear normal on conventional MRI. Moreover, this technique also has the potential to emerge as a useful clinical tool for early detection and monitoring of disease progression and treatment response in patients with schizophrenia or AD/MCI. In TLE, VBM approach may help elucidate some unresolved important research questions such as how recurrent temporal lobe seizures affect hippocampal and extrahippocampal morphology. Thus, in the future, large cohort studies to monitor whole brain changes on a VBM basis will lead to a further understanding of the neuropathology of several conditions.
Collapse
|
35
|
Bican A, Bora İ, Algın O, Hakyemez B, Özkol V, Alper E. Neuroimaging in narcolepsy. Sleep Med 2010; 11:225-6. [DOI: 10.1016/j.sleep.2009.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 05/10/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022]
|
36
|
Joo EY, Tae WS, Kim ST, Hong SB. Gray matter concentration abnormality in brains of narcolepsy patients. Korean J Radiol 2010; 10:552-8. [PMID: 19885310 PMCID: PMC2770823 DOI: 10.3348/kjr.2009.10.6.552] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/08/2009] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate gray matter concentration changes in the brains of narcoleptic patients. MATERIALS AND METHODS Twenty-nine narcoleptic patient with cataplexy and 29 age and sex-matched normal subjects (mean age, 31 years old) underwent volumetric MRIs. The MRIs were spatially normalized to a standard T1 template and subdivided into gray matter, white matter, and cerebrospinal fluid (CSF). These segmented images were then smoothed using a 12-mm full width at half maximum (FWHM) isotropic Gaussian kernel. An optimized voxel-based morphometry protocol was used to analyze brain tissue concentrations using SPM2 (statistical parametric mapping). A one-way analysis of variance was applied to the concentration analysis of gray matter images. RESULTS Narcoleptics with cataplexy showed reduced gray matter concentration in bilateral thalami, left gyrus rectus, bilateral frontopolar gyri, bilateral short insular gyri, bilateral superior frontal gyri, and right superior temporal and left inferior temporal gyri compared to normal subjects (uncorrected p < 0.001). Furthermore, small volume correction revealed gray matter concentration reduction in bilateral nuclei accumbens, hypothalami, and thalami (false discovery rate corrected p < 0.05). CONCLUSION Gray matter concentration reductions were observed in brain regions related to excessive daytime sleepiness, cognition, attention, and memory in narcoleptics with cataplexy.
Collapse
Affiliation(s)
- Eun Yeon Joo
- Department of Neurology, Sleep Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | | | | | | |
Collapse
|
37
|
Bigler ED, Abildskov TJ, Petrie JA, Johnson M, Lange N, Chipman J, Lu J, McMahon W, Lainhart JE. Volumetric and voxel-based morphometry findings in autism subjects with and without macrocephaly. Dev Neuropsychol 2010; 35:278-95. [PMID: 20446133 PMCID: PMC4459788 DOI: 10.1080/87565641003696817] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study sought to replicate Herbert et al. (2003a), which found increased overall white matter (WM) volume in subjects with autism, even after controlling for head size differences. To avoid the possibility that greater WM volume in autism is merely an epiphenomena of macrocephaly overrepresentation associated with the disorder, the current study included control subjects with benign macrocephaly. The control group also included subjects with a reading disability to insure cognitive heterogeneity. WM volume in autism was significantly larger, even when controlling for brain volume, rate of macrocephaly, and other demographic variables. Autism and controls differed little on whole-brain WM voxel-based morphometry (VBM) analyses suggesting that the overall increase in WM volume was non-localized. Autism subjects exhibited a differential pattern of IQ relationships with brain volumetry findings from controls. Current theories of brain overgrowth and their importance in the development of autism are discussed in the context of these findings.
Collapse
Affiliation(s)
- Erin D Bigler
- Department of Psychology, Brigham Young University, Provo, Utah 84602, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tonon C, Franceschini C, Testa C, Manners DN, Poli F, Mostacci B, Mignot E, Montagna P, Barbiroli B, Lodi R, Plazzi G. Distribution of neurochemical abnormalities in patients with narcolepsy with cataplexy: An in vivo brain proton MR spectroscopy study. Brain Res Bull 2009; 80:147-50. [DOI: 10.1016/j.brainresbull.2009.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 12/24/2022]
|
39
|
Coert JH, Stenekes MW, Paans AMJ, Nicolai JPA, De Jong BM. Clinical implications of cerebral reorganisation after primary digital flexor tendon repair. J Hand Surg Eur Vol 2009; 34:444-8. [PMID: 19587080 DOI: 10.1177/1753193408099827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
After flexor tendon injury, most attention is given to the quality of the tendon repair and postoperative early passive dynamic mobilisation. Schemes for active mobilisation have been developed to prevent tendon adhesions and joint stiffness. This paper describes five patients to demonstrate the cerebral consequences of immobilisation allowing only passive movements, which implies a prolonged absence of actual motor commands. At the end of such immobilisation, PET imaging revealed reduced blood flow in specific motor areas, associated with temporary loss of efficient motor control. Effective motor control was regained after active flexion exercises which was reflected in normalised cerebral activations. This suggests that temporary, reversible cerebral dysfunction may affect the outcome of flexor tendon injuries.
Collapse
Affiliation(s)
- J H Coert
- Department of Plastic Surgery, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
40
|
Poryazova R, Schnepf B, Werth E, Khatami R, Dydak U, Meier D, Boesiger P, Bassetti CL. Evidence for metabolic hypothalamo-amygdala dysfunction in narcolepsy. Sleep 2009; 32:607-13. [PMID: 19480227 DOI: 10.1093/sleep/32.5.607] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES Proton resonance spectroscopy (1H-MRS) allows noninvasive chemical tissue analysis in the living brain. As neuronal loss and gliosis have been described in narcolepsy, metabolites of primary interest are N-acetylaspartate (NAA), a marker of neuronal integrity and myo-Inositol (ml), a glial marker and second messenger involved in the regulation of intracellular calcium. One 1H-MRS study in narcolepsy found no metabolic changes in the pontomedullary junction. Another study showed a reduction in NAA/creatine-phosphocreatine (Cr) in the hypothalamus of narcolepsy patients with cataplexy. We aimed to test for metabolic changes in specific brain areas, "regions of interest," thought to be involved in emotional processing, sleep regulation and pathophysiology of narcolepsy: hypothalamus, pontomesencephalic junction and both amygdalae. DESIGN We performed 1H-MRS using a 3T Philips Achieva whole body MR scanner. Single-voxel proton MR spectra were acquired and quantified with LCModel to determine metabolite concentration ratios. SETTING The participants in the study were recruited at the outpatient clinic for sleep medicine, Department of Neurology and magnetic resonance spectroscopy was performed at the MRI facility, University Hospital Zurich. PARTICIPANTS 1H-MRS was performed in fourteen narcolepsy patients with cataplexy, CSF hypocretin deficiency (10/10) and HLA-DQB1*0602 positivity (14/14) and 14 age, gender and body mass index matched controls. Patients were treatment naïve or off therapy for at least 14 days before scanning. MEASUREMENTS AND RESULTS No differences were observed in the regions of interest for (total NAA)/Cr ratios. Myo-Inositol (ml)/Cr was significantly lower in the right amygdala of the patients, compared to controls (P < 0.042). Significant negative correlations only in the patients group were found between (total NAA)/Cr in hypothalamus and ml/Cr in the right amygdala (r = -0.89, P < 0.001), between ml/Cr in hypothalamus and (total NAA)/Cr in the right amygdala (r = -63, P < 0.05) and between ml/Cr in the left amygdala and total NAA)/Cr in the pontomesencephalic junction (r = -0.69, P < 0.05). CONCLUSION Our findings suggest amygdala involvement and possible hypothalamo-amygdala dysfunction in narcolepsy.
Collapse
Affiliation(s)
- Rositsa Poryazova
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Saletu M, Anderer P, Saletu-Zyhlarz GM, Mandl M, Saletu B, Zeitlhofer J. Modafinil improves information processing speed and increases energetic resources for orientation of attention in narcoleptics: double-blind, placebo-controlled ERP studies with low-resolution brain electromagnetic tomography (LORETA). Sleep Med 2009; 10:850-8. [PMID: 19342295 DOI: 10.1016/j.sleep.2008.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 12/20/2008] [Accepted: 12/23/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Recent neuroimaging studies in narcolepsy discovered significant gray matter loss in the right prefrontal and frontomesial cortex, a critical region for executive processing. In the present study, event-related potential (ERP) low-resolution brain electromagnetic tomography (LORETA) was used to investigate cognition before and after modafinil as compared with placebo. PATIENTS AND METHODS In a double-blind, placebo-controlled cross-over design, 15 patients were treated with a 3-week fixed titration scheme of modafinil and placebo. The Epworth Sleepiness Scale (ESS), Maintenance of Wakefulness Test (MWT) and auditory ERPs (odd-ball paradigm) were obtained before and after the 3 weeks of therapy. Latencies, amplitudes and LORETA sources were determined for standard (N1 and P2) and target (N2 and P300) ERP components. RESULTS The ESS score improved significantly from 15.4 (+/- 4.0) under placebo to 10.2 (+/- 4.1) under 400mg modafinil (p=0.004). In the MWT, latency to sleep increased nonsignificantly after modafinil treatment (11.9+/-6.9 versus 13.3+/-7.1 min). In the ERP, N2 and P300 latencies were shortened significantly. While ERP amplitudes showed only minor changes, LORETA revealed increased source strengths: for N1 in the left auditory cortex and for P300 in the medial and right dorsolateral prefrontal cortex. CONCLUSION LORETA revealed that modafinil improved information processing speed and increased energetic resources in prefrontal cortical regions, which is in agreement with other neuroimaging studies.
Collapse
Affiliation(s)
- Michael Saletu
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
42
|
Kim SJ, Lyoo IK, Lee YS, Lee JY, Yoon SJ, Kim JE, Kim JH, Hong SJ, Jeong DU. Gray matter deficits in young adults with narcolepsy. Acta Neurol Scand 2009; 119:61-7. [PMID: 18624787 DOI: 10.1111/j.1600-0404.2008.01063.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this study was to investigate gray matter volume changes in narcolepsy. MATERIALS AND METHODS An optimized voxel-based morphometry was conducted for 17 young adults with a sole diagnosis of human leukocyte antigen DQB(1) 0602 positive narcolepsy with cataplexy (26.6 +/- 5.2 years old) and 17 comparison subjects (24.6 +/- 4.9 years old) using 3 Tesla scanner. Gray matter volumes in the bilateral hypothalamic voxel of interests (VOI) were also calculated. RESULTS Compared with the comparison subjects, narcoleptic patients had gray matter volume decrease in the right hypothalamus and other regions including subcortical, prefrontal, limbic and occipital areas. Narcoleptic patients also had lower gray matter volume on predefined VOI at the bilateral hypothalamus, which correlated with the Ullanlinna Narcolepsy Scale score. CONCLUSIONS Current findings suggest that narcoleptic patients have structural abnormalities in hypothalamus, which might be related to the clinical manifestation of narcolepsy with cataplexy.
Collapse
Affiliation(s)
- S J Kim
- Department of Psychiatry, Gachon University of Medicine and Science, Incheon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Khatami R, von Büdingen HC, Bassetti CL. Sleep–Wake Disturbances in Neurologic Autoimmune Disorders. Sleep Med Clin 2008. [DOI: 10.1016/j.jsmc.2008.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Desseilles M, Dang-Vu T, Schabus M, Sterpenich V, Maquet P, Schwartz S. Neuroimaging insights into the pathophysiology of sleep disorders. Sleep 2008; 31:777-94. [PMID: 18548822 PMCID: PMC2442420 DOI: 10.1093/sleep/31.6.777] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neuroimaging methods can be used to investigate whether sleep disorders are associated with specific changes in brain structure or regional activity. However, it is still unclear how these new data might improve our understanding of the pathophysiology underlying adult sleep disorders. Here we review functional brain imaging findings in major intrinsic sleep disorders (i.e., idiopathic insomnia, narcolepsy, and obstructive sleep apnea) and in abnormal motor behavior during sleep (i.e., periodic limb movement disorder and REM sleep behavior disorder). The studies reviewed include neuroanatomical assessments (voxel-based morphometry, magnetic resonance spectroscopy), metabolic/functional investigations (positron emission tomography, single photon emission computed tomography, functional magnetic resonance imaging), and ligand marker measurements. Based on the current state of the research, we suggest that brain imaging is a useful approach to assess the structural and functional correlates of sleep impairments as well as better understand the cerebral consequences of various therapeutic approaches. Modem neuroimaging techniques therefore provide a valuable tool to gain insight into possible pathophysiological mechanisms of sleep disorders in adult humans.
Collapse
|
45
|
Abstract
Narcolepsy with cataplexy is a debilitating sleep disorder with an estimated prevalence of about 0.05%. Narcolepsy is caused by a selective loss of hypocretin (orexin) producing neurons in the perifornical hypothalamus. Based on the very strong association with the HLA subtype DQB1*0602, it is currently hypothesized narcolepsy is caused by an autoimmune-mediated process directed at the hypocretin neurons. So far however, studies focusing on general markers of (auto)immune activation, as well as humoral immunity against the hypocretin system have not yielded consistent results supporting this hypothesis.
Collapse
Affiliation(s)
- Sebastiaan Overeem
- Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
46
|
Shen S, Szameitat AJ, Sterr A. VBM lesion detection depends on the normalization template: a study using simulated atrophy. Magn Reson Imaging 2007; 25:1385-96. [PMID: 17467945 DOI: 10.1016/j.mri.2007.03.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/14/2007] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
Abstract
Structural neuroimaging studies are of great interest for neuroscientists, which are reflected in the rising number of papers using voxel-based morphometry (VBM). One major step in VBM is the transformation of images to a standard template, a spatial normalization necessary to ensure that homologous regions are compared while interindividual characteristics are maintained. Templates can be created in different ways, and this may affect the likelihood that differences in gray/white matter density between groups are detected. However, studies investigating the interaction of normalization template and VBM accuracy are sparse. Existing work is based on patient-control group comparisons, and the emerging results are inconclusive. The present paper therefore used simulated atrophy in a simplified one-lesion model to systematically study template effects of VBM analyses implemented in SPM. This allowed us to characterize template-specific biases in reference to a set of prespecified parameters of anatomical difference. The data suggest that the likelihood of correctly detecting the prespecified lesion is modulated by the normalization template. Thereby, the relationship between template-related VBM accuracy and specific group/study characteristics is complex, and there does not appear to be one 'best template.' Our data show that template effects are critical and clearly suggest that the choice of template needs careful consideration in relation to the specific research question and study constraints.
Collapse
Affiliation(s)
- Shan Shen
- Department of Psychology, University of Surrey, GU2 7XH Guildford, UK.
| | | | | |
Collapse
|
47
|
Dang-Vu TT, Desseilles M, Petit D, Mazza S, Montplaisir J, Maquet P. Neuroimaging in sleep medicine. Sleep Med 2007; 8:349-72. [PMID: 17470413 DOI: 10.1016/j.sleep.2007.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
The development of neuroimaging techniques has made possible the characterization of cerebral function throughout the sleep-wake cycle in normal human subjects. Indeed, human brain activity during sleep is segregated within specific cortical and subcortical areas in relation to the sleep stage, sleep physiological events and previous waking activity. This approach has allowed sleep physiological theories developed from animal data to be confirmed, but has also introduced original concepts about the neurobiological mechanisms of sleep, dreams and memory in humans. In contrast, at present, few neuroimaging studies have been dedicated to human sleep disorders. The available work has brought interesting data that describe some aspects of the pathophysiology and neural consequences of disorders such as insomnia, sleep apnea and narcolepsy. However, the interpretation of many of these results is restricted by limited sample size and spatial/temporal resolution of the employed technique. The use of neuroimaging in sleep medicine is actually restrained by concerns resulting from the technical experimental settings and the characteristics of the diseases. Nevertheless, we predict that future studies, conducted with state of the art techniques on larger numbers of patients, will be able to address these issues and contribute significantly to the understanding of the neural basis of sleep pathologies. This may finally offer the opportunity to use neuroimaging, in addition to the clinical and electrophysiological assessments, as a helpful tool in the diagnosis, classification, treatment and monitoring of sleep disorders in humans.
Collapse
Affiliation(s)
- Thien Thanh Dang-Vu
- Cyclotron Research Centre B30, University of Liege - Sart Tilman, 4000 Liege, Belgium.
| | | | | | | | | | | |
Collapse
|
48
|
Saletu M, Anderer P, Semlitsch HV, Saletu-Zyhlarz GM, Mandl M, Zeitlhofer J, Saletu B. Low-resolution brain electromagnetic tomography (LORETA) identifies brain regions linked to psychometric performance under modafinil in narcolepsy. Psychiatry Res 2007; 154:69-84. [PMID: 17187965 DOI: 10.1016/j.pscychresns.2006.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 03/15/2006] [Accepted: 04/02/2006] [Indexed: 11/23/2022]
Abstract
Low-resolution brain electromagnetic tomography (LORETA) showed a functional deterioration of the fronto-temporo-parietal network of the right hemispheric vigilance system in narcolepsy and a therapeutic effect of modafinil. The aim of this study was to determine the effects of modafinil on cognitive and thymopsychic variables in patients with narcolepsy and investigate whether neurophysiological vigilance changes correlate with cognitive and subjective vigilance alterations at the behavioral level. In a double-blind, placebo-controlled crossover design, EEG-LORETA and psychometric data were obtained during midmorning hours in 15 narcoleptics before and after 3 weeks of placebo or 400 mg modafinil. Cognitive investigations included the Pauli Test and complex reaction time. Thymopsychic/psychophysiological evaluation comprised drive, mood, affectivity, wakefulness, depression, anxiety, the Symptom Checklist 90 and critical flicker frequency. The Multiple Sleep Latency Test (MSLT) and the Epworth Sleepiness Scale (ESS) were performed too. Cognitive performance (Pauli Test) was significantly better after modafinil than after placebo. Concerning reaction time and thymopsychic variables, no significant differences were observed. Correlation analyses revealed that a decrease in prefrontal delta, theta and alpha-1 power correlated with an improvement in cognitive performance. Moreover, drowsiness was positively correlated with theta power in parietal and medial prefrontal regions and beta-1 and beta-2 power in occipital regions. A less significant correlation was observed between midmorning EEG LORETA and the MSLT; between EEG LORETA and the ESS, the correlation was even weaker. In conclusion, modafinil did not influence thymopsychic variables in narcolepsy, but it significantly improved cognitive performance, which may be related to medial prefrontal activity processes identified by LORETA.
Collapse
Affiliation(s)
- Michael Saletu
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
49
|
Terzano MG, Smerieri A, Del Felice A, Giglia F, Palomba V, Parrino L. Cyclic alternating pattern (CAP) alterations in narcolepsy. Sleep Med 2006; 7:619-26. [PMID: 16740406 DOI: 10.1016/j.sleep.2005.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 10/24/2005] [Accepted: 12/02/2005] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Narcolepsy is a sleep disorder with clinical symptoms attributed to a reduced activation of the arousal system. Cyclic alternating pattern (CAP) is the expression of rhythmic arousability during non-rapid eye movement (NREM) sleep. CAP parameters, arousals and conventional sleep measures were studied in narcoleptic patients with cataplexy. PATIENTS AND METHODS Data were collected from all-night polysomnographic (PSG) recordings and the multiple sleep latency test (MSLT) on the intervening day of 25 drug-naive patients (10 males and 15 females; mean age: 34+/-16 years) after adaptation and exclusion of other sleep disorders. A group of 25 age- and gender-matched normal sleepers were selected as controls. Each PSG recording was subdivided into sleep cycles. Analysis of CAP included classification of A phases into subtypes A1, A2, and A3. RESULTS There was an increase in sleep period time mainly due to an increased wake time after sleep onset. REM latency was sharply reduced. The percentage of NREM sleep was slightly reduced and the balance between light sleep (S1+S2) and deep sleep (S3+S4) showed a curtailment of the former, while deep sleep was slightly increased. Excluding sleep cycles with sleep onset REM periods (SOREMPs), the duration of ordered sleep cycles was not different between narcoleptics and controls. The two groups showed similar values of arousal index, while CAP time, CAP rate, number of CAP cycles and of phase A subtypes (in particular subtypes A1) were significantly reduced in narcoleptic patients. CONCLUSIONS The reduced periods of CAP in narcoleptic NREM sleep could be the electroencephalographic (EEG) expression of a generally reduced arousability or an increased strength of sleep-promoting forces in the balance between sleep and arousal systems. This can explain some of the clinical correlates of the disorder, i.e. excessive sleepiness, short sleep latency and impaired attentive performances, even without any sign of arousal-induced sleep fragmentation.
Collapse
Affiliation(s)
- Mario Giovanni Terzano
- Department of Neuroscience, Sleep Disorders Center, University of Parma, Via Gramsci, 14, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW In contrast to traditional anatomical and pathological methods, magnetic resonance morphometry of the brain allows the in-vivo study of temporal changes in brain morphology and the correlation of brain morphology with brain function. Magnetic resonance morphometry has thereby recently emerged as one of the most promising fields in clinical neuroscience. This review covers the last 3 years, which have witnessed remarkable progress in this alluring new field. RECENT FINDINGS Next to the detection of structural differences in grey and white matter in a number of brain diseases, a very important recent finding of magnetic resonance-based morphometry is the discovery of the brain's ability to alter its shape within weeks, reflecting structural adaptation to physical and mental activity. Consequently, magnetic resonance morphometry promises to be a powerful method to study disease states of the brain and to track the effects of novel therapies. SUMMARY Despite these fascinating prospects, the results of morphometric studies are still dependent on the properties of the individual magnetic resonance scanner, which renders pooling of data almost impossible. It is also not known what the structural plasticity is based on at the histological or cellular level. Once these obstacles are overcome, magnetic resonance-based morphometry will become a powerful method for multicenter and therapeutic trials of several brain diseases.
Collapse
Affiliation(s)
- Arne May
- Department of Systems Neuroscience, University of Hamburg, Hamburg, Germany.
| | | |
Collapse
|