1
|
Zhou X, Chen J, Xu B, Chen L. Evaluation of pitolisant, sodium oxybate, solriamfetol, and modafinil for the management of narcolepsy: a retrospective analysis of the FAERS database. Front Pharmacol 2024; 15:1415918. [PMID: 39588154 PMCID: PMC11586220 DOI: 10.3389/fphar.2024.1415918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
Objective Narcolepsy, a rare neurological disorder believed to have an autoimmune etiology, necessitates lifelong management. This study aimed to provide evidence supporting the safety of pharmacological treatment for narcolepsy. Methods Five-year data on pitolisant, sodium oxybate, solriamfetol, and modafinil were extracted from the FDA Adverse Event Reporting System (FAERS) self-reporting database for the period spanning from 2019 to 2023. Various statistical methods, including the reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian confidence propagation neural network analysis (BCPNN), and multi-item gamma Poisson shrinker (MGPS), were employed to quantify the signals. Finally, a comparative analysis was conducted between demographic data, outcomes, and inherent associations among the medications and the signals. Results After data analysis, we obtained 50 signals (a cumulative count of 762 cases) for pitolisant, 640 signals (corresponding to 46,962 cases) for sodium oxybate, 40 signals (equivalent to 1,228 cases) for solriamfetol, and finally, 72 signals (representing 632 cases) for modafinil. The majority of these patients were female. Psychiatric and nervous system disorders were identified as the predominant adverse drug events (ADEs). For sodium oxybate, it is crucial to consider psychiatric disorders (such as suicidal ideation), respiratory disorders (including sleep apnea syndrome and respiratory depression), and signs of pregnancy and congenital familial diseases. For solriamfetol, noteworthy new ADEs include drug inefficacy, suicidal ideation, restless legs syndrome, and somnambulism. Furthermore, a relationship has been observed between modafinil use and restricted fetal growth, spontaneous abortion, cognitive disorders, and drug inefficacy and abuse. Conclusion The majority of observed adverse reactions in this study were consistent with those listed in the product instructions. However, potential novel or notable ADE signals were identified through real-world pharmacovigilance analysis. It is anticipated that this paper will offer additional information regarding safe and rational medication for narcolepsy.
Collapse
Affiliation(s)
- Xiaodan Zhou
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Chen
- Department of Pharmacy, Chengdu Jinniu District People’s Hospital, Chengdu, China
| | - Bangtian Xu
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Li Chen
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Department of Pharmacy and Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Valizadeh P, Momtazmanesh S, Plazzi G, Rezaei N. Connecting the dots: An updated review of the role of autoimmunity in narcolepsy and emerging immunotherapeutic approaches. Sleep Med 2024; 113:378-396. [PMID: 38128432 DOI: 10.1016/j.sleep.2023.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Narcolepsy type 1 (NT1) is a chronic disorder characterized by pathological daytime sleepiness and cataplexy due to the disappearance of orexin immunoreactive neurons in the hypothalamus. Genetic and environmental factors point towards a potential role for inflammation and autoimmunity in the pathogenesis of the disease. This study aims to comprehensively review the latest evidence on the autoinflammatory mechanisms and immunomodulatory treatments aimed at suspected autoimmune pathways in NT1. METHODS Recent relevant literature in the field of narcolepsy, its autoimmune hypothesis, and purposed immunomodulatory treatments were reviewed. RESULTS Narcolepsy is strongly linked to specific HLA alleles and T-cell receptor polymorphisms. Furthermore, animal studies and autopsies have found infiltration of T cells in the hypothalamus, supporting T cell-mediated immunity. However, the role of autoantibodies has yet to be definitively established. Increased risk of NT1 after H1N1 infection and vaccination supports the autoimmune hypothesis, and the potential role of coronavirus disease 2019 and vaccination in triggering autoimmune neurodegeneration is a recent finding. Alterations in cytokine levels, gut microbiota, and microglial activation indicate a potential role for inflammation in the disease's development. Reports of using immunotherapies in NT1 patients are limited and inconsistent. Early treatment with IVIg, corticosteroids, plasmapheresis, and monoclonal antibodies has seldomly shown some potential benefits in some studies. CONCLUSION The current body of literature supports that narcolepsy is an autoimmune disorder most likely caused by T-cell involvement. However, the potential for immunomodulatory treatments to reverse the autoinflammatory process remains understudied. Further clinical controlled trials may provide valuable insights into this area.
Collapse
Affiliation(s)
- Parya Valizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Giuseppe Plazzi
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic, and Neural Sciences, Università Degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Dye TJ, Simakajornboon N. Narcolepsy in Children: Sleep disorders in children, A rapidly evolving field seeking consensus. Pediatr Pulmonol 2022; 57:1952-1962. [PMID: 34021733 DOI: 10.1002/ppul.25512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/09/2022]
Abstract
Narcolepsy is a life-long sleep disorder with two distinct subtypes, narcolepsy type I and narcolepsy type II. It is now well recognized that the loss of hypocretin neurons underlies the pathogenesis of narcolepsy type I, however, the pathogenesis of narcolepsy type II is currently unknown. Both genetic and environmental factors play an important role in the pathogenesis of narcolepsy. There is increasing evidence that autoimmune processes may play a critical role in the loss of hypocretin neurons. Infections especially streptococcus and influenza have been proposed as a potential trigger for the autoimmune-mediated mechanism. Several recent studies have shown increased cases of pediatric narcolepsy following the 2009 H1N1 pandemic. The increased cases in Europe seem to be related to a specific type of H1N1 influenza vaccination (Pandemrix), while the increased cases in China are related to influenza infection. Children with narcolepsy can have an unusual presentation at disease onset including complex motor movements which may lead to delayed diagnosis. All classic narcolepsy tetrads are present in only a small proportion of children. The diagnosis of narcolepsy is confirmed by either obtaining cerebrospinal fluid hypocretin or overnight sleep study with the multiple sleep latency test (MSLT). There are limitations of using MSLT in young children such that a negative MSLT test cannot exclude narcolepsy. HLA markers have limited utility in narcolepsy, but it may be useful in young children with clinical suspicion of narcolepsy. For management, both pharmacologic and non-pharmacologic treatments are important in the management of narcolepsy. Pharmacotherapy is primarily aimed to address excessive daytime sleepiness and REM-related symptoms such as cataplexy. In addition to pharmacotherapy, routine screening of behavioral and psychosocial issues is warranted to identify patients who would benefit from bio-behavior intervention.
Collapse
Affiliation(s)
- Thomas J Dye
- Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Narong Simakajornboon
- Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Viste R, Viken MK, Lie BA, Juvodden HT, Nordstrand SEH, Thorsby PM, Rootwelt T, Kornum BR, Knudsen-Heier S. High nocturnal sleep fragmentation is associated with low T lymphocyte P2Y11 protein levels in narcolepsy type 1. Sleep 2021; 44:zsab062. [PMID: 33710305 PMCID: PMC8361345 DOI: 10.1093/sleep/zsab062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/31/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES Narcolepsy type 1 (NT1) is associated with hypocretin neuron loss. However, there are still unexplained phenotypic NT1 features. We investigated the associations between clinical and sleep phenotypic characteristics, the NT1-associated P2RY11 polymorphism rs2305795, and P2Y11 protein levels in T lymphocytes in patients with NT1, their first-degree relatives and unrelated controls. METHODS The P2RY11 SNP was genotyped in 100 patients (90/100 H1N1-(Pandemrix)-vaccinated), 119 related and 123 non-related controls. CD4 and CD8 T lymphocyte P2Y11 protein levels were quantified using flow cytometry in 167 patients and relatives. Symptoms and sleep recording parameters were also collected. RESULTS We found an association between NT1 and the rs2305795 A allele (OR = 2, 95% CI (1.3, 3.0), p = 0.001). T lymphocyte P2Y11 protein levels were significantly lower in patients and relatives homozygous for the rs2305795 risk A allele (CD4: p = 0.012; CD8: p = 0.007). The nocturnal sleep fragmentation index was significantly negatively correlated with patients' P2Y11 protein levels (CD4: p = 0.004; CD8: p = 0.006). Mean MSLT sleep latency, REM-sleep latency, and core clinical symptoms were not associated with P2Y11 protein levels. CONCLUSIONS We confirmed that the P2RY11 polymorphism rs2305795 is associated with NT1 also in a mainly H1N1-(Pandemrix)-vaccinated cohort. We demonstrated that homozygosity for the A risk allele is associated with lower P2Y11 protein levels. A high level of nocturnal sleep fragmentation was associated with low P2Y11 levels in patients. This suggests that P2Y11 has a previously unknown function in sleep-wake stabilization that affects the severity of NT1.
Collapse
Affiliation(s)
- Rannveig Viste
- Norwegian Center of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marte K Viken
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Benedicte A Lie
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Hilde T Juvodden
- Norwegian Center of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Sebjørg E H Nordstrand
- Norwegian Center of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Per M Thorsby
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Terje Rootwelt
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Knudsen-Heier
- Norwegian Center of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Ollila HM. Narcolepsy type 1: what have we learned from genetics? Sleep 2021; 43:5842137. [PMID: 32442260 PMCID: PMC7658635 DOI: 10.1093/sleep/zsaa099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/22/2020] [Indexed: 01/12/2023] Open
Abstract
Type-1 narcolepsy is a severe neurological disorder with distinct characteristic of loss of hypocretin neurotransmitter. Genetic analysis in type-1 narcolepsy have revealed a unique signal pointing toward autoimmune, rather than psychiatric origin. While type-1 narcolepsy has been intensively studied, the other subtypes of hypersomnolence, narcolepsy, and hypersomnia are less thoroughly understood. This review summarizes the latest breakthroughs in the field in narcolepsy. The goal of this article is to help the reader to understand better the risk from genetic factors and their interplay with immune, genetic, and epidemiological aspects in narcolepsy.
Collapse
Affiliation(s)
- Hanna M Ollila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA.,Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
6
|
Ouyang H, Han F, Zhou ZC, Zhang J. Differences in clinical and genetic characteristics between early- and late-onset narcolepsy in a Han Chinese cohort. Neural Regen Res 2020; 15:1887-1893. [PMID: 32246636 PMCID: PMC7513989 DOI: 10.4103/1673-5374.280322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/05/2019] [Accepted: 12/31/2019] [Indexed: 01/16/2023] Open
Abstract
Early- and late-onset narcolepsy constitutes two distinct diagnostic subgroups. However, it is not clear whether symptomology and genetic risk factors differ between early- and late-onset narcoleptics. This study compared clinical data and single-nucleotide polymorphisms (SNPs) between early- and late-onset patients in a large cohort of 899 Han Chinese narcolepsy patients. Blood, cerebrospinal fluid, and clinical data were prospectively collected from patients, and patients were genotyped for 40 previously reported narcolepsy risk-conferring SNPs. Genetic risk scores (GRSs), associations of five different sets of SNPs (GRS1-GRS5) with early- and late-onset narcolepsy, were evaluated using logistic regression and receiver operating characteristic curves. Mean sleep latency was significantly shorter in early-onset cases than in late-onset cases. Symptom severity was greater among late-onset patients, with higher rates of sleep paralysis, hypnagogic hallucinations, health-related quality of life impairment, and concurrent presentation with four or more symptoms. Hypocretin levels did not differ significantly between early- and late-onset cases. Only rs3181077 (CCR1/CCR3) and rs9274477 (HLA-DQB1) were more prevalent among early-onset cases. Only GRS1 (26 SNPs; OR = 1.513, 95% CI: 0.893-2.585; P < 0.05) and GRS5 (6 SNPs; OR = 1.893, 95% CI: 1.204-2.993; P < 0.05) were associated with early-onset narcolepsy, with areas under the receiver operating characteristic curves of 0.731 and 0.732, respectively. Neither GRS1 nor GRS5 included SNPs in HLA regions. Our results indicate that symptomology and genetic risk factors differ between early- and late-onset narcolepsy. This protocol was approved by the Institutional Review Board (IRB) Panels on Medical Human Subjects at Peking University People's Hospital, China (approval No. Yuanlunshenlinyi 86) in October 2011.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Clinical Neurology, Peking University People's Hospital, Beijing, China
| | - Fang Han
- Department of Clinical Pulmonology, Peking University People's Hospital, Beijing, China
| | - Ze-Chen Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Clinical Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
7
|
Ouyang H, Zhou Z, Zheng Q, Zhang J. Analyzing Functional Pathways and constructing gene-gene network for Narcolepsy based on candidate genes. Int J Med Sci 2020; 17:1508-1514. [PMID: 32669953 PMCID: PMC7359385 DOI: 10.7150/ijms.41812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/15/2020] [Indexed: 12/02/2022] Open
Abstract
Aims: To investigate the interactions among narcolepsy-associated genes and reveal the pathways these genes involved through bioinformatics analyses. Methods: The study was performed with the following steps: 1) Selected the previously discovered narcolepsy risk genes through literature review, 2) pathway enrichment analysis, and construction of gene-gene and protein-protein interaction (PPI) networks for narcolepsy. Results: 1) GO analysis revealed the positive regulation of interferon-gamma production as the most enriched terms in biological process, and C-C chemokine receptor activity as the most enriched term in molecular function, 2) KEGG pathway enrichment analysis revealed selective enrichment of genes in cytokine-cytokine receptor interaction signaling pathways, and 3) five hub genes were identified (IFNAR1, IL10RB, DNMT1, TNFSF4 and NFATC2). Conclusion: The bioinformatics results provide new insights into the molecular pathogenesis of narcolepsy and the identification of potential therapeutic targets for narcolepsy treatment.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Neuromedicine, Peking University People's Hospital, Beijing, China
| | - Zechen Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Qiwen Zheng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Neuromedicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
8
|
McGaugh SE, Passow CN, Jaggard JB, Stahl BA, Keene AC. Unique transcriptional signatures of sleep loss across independently evolved cavefish populations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:497-510. [PMID: 32351033 DOI: 10.1002/jez.b.22949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/28/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
Animals respond to sleep loss with compensatory rebound sleep, and this is thought to be critical for the maintenance of physiological homeostasis. Sleep duration varies dramatically across animal species, but it is not known whether evolutionary differences in sleep duration are associated with differences in sleep homeostasis. The Mexican cavefish, Astyanax mexicanus, has emerged as a powerful model for studying the evolution of sleep. While eyed surface populations of A. mexicanus sleep approximately 8 hr each day, multiple blind cavefish populations have converged on sleep patterns that total as little as 2 hr each day, providing the opportunity to examine whether the evolution of sleep loss is accompanied by changes in sleep homeostasis. Here, we examine the behavioral and molecular response to sleep deprivation across four independent populations of A. mexicanus. Our behavioral analysis indicates that surface fish and all three cavefish populations display robust recovery sleep during the day following nighttime sleep deprivation, suggesting sleep homeostasis remains intact in cavefish. We profiled transcriptome-wide changes associated with sleep deprivation in surface fish and cavefish. While the total number of differentially expressed genes was not greater for the surface population, the surface population exhibited the highest number of uniquely differentially expressed genes than any other population. Strikingly, a majority of the differentially expressed genes are unique to individual cave populations, suggesting unique expression responses are exhibited across independently evolved cavefish populations. Together, these findings suggest sleep homeostasis is intact in cavefish despite a dramatic reduction in overall sleep duration.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - Courtney N Passow
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - James Brian Jaggard
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Bethany A Stahl
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| |
Collapse
|
9
|
Relationship between T-cell receptor α gene polymorphisms and symptomatic differences in patients with narcolepsy type 1. Chin Med J (Engl) 2019; 132:1796-1801. [PMID: 31343434 PMCID: PMC6759118 DOI: 10.1097/cm9.0000000000000348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Supplemental Digital Content is available in the text Background: Recent genome-wide association studies have identified an important role of T-cell receptor α (TRA) gene in the development of narcolepsy type 1. However, the role of TRA haplotype polymorphisms in the symptomatic diversity of narcolepsy remains unclear. This study aimed to investigate whether TRA polymorphisms can influence the symptomatic diversity of narcolepsy. Methods: Totally, 903 patients with narcolepsy type 1 were included in the study. Patients were divided into different groups according to their symptoms. First, 13 genotyped single nucleotide polymorphisms in the TRA were assessed for their association with symptoms of narcolepsy. We used the Chi-square test to determine differences in genotype frequencies in patients with narcolepsy. Further, we identified the haplotypes and variations of the TRA and tested their association with the symptoms of narcolepsy using a logistic regression model. Results: According to the results of the logistic regression, TRA haplotypes TG and CT were significantly associated with auditory hallucination, with odds ratios of 1.235 (95% confidence interval [CI], 1.012–1.507) and 1.236 (95% CI, 1.012–1.511), respectively (P < 0.05). Conclusions: The patterns of haplotype in TRA (haplotypes TG and CT) are associated with hypnagogic auditory hallucination in patients with narcolepsy type 1. However, further studies are needed to confirm our results and explore the underlying mechanisms.
Collapse
|
10
|
Beltrán E, Nguyen XH, Quériault C, Barateau L, Dauvilliers Y, Dornmair K, Liblau RS. Shared T cell receptor chains in blood memory CD4 + T cells of narcolepsy type 1 patients. J Autoimmun 2019; 100:1-6. [PMID: 30948158 DOI: 10.1016/j.jaut.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 11/28/2022]
Abstract
Convergent evidence points to the involvement of T cells in the pathogenesis of narcolepsy type 1 (NT1). Here, we hypothesized that expanded disease-specific T cell clones could be detected in the blood of NT1 patients. We compared the TCR repertoire of circulating antigen-experienced CD4+ and CD8+ T cells from 13 recently diagnosed NT1 patients and 11 age-, sex-, and HLA-DQB1*06:02-matched healthy controls. We detected a bias in the usage of TRAV3 and TRAV8 families, with public CDR3α motifs only present in CD4+ T cells from patients with NT1. These findings may offer a unique tool to identify disease-relevant antigens.
Collapse
Affiliation(s)
- Eduardo Beltrán
- Institute of Clinical Neuroimmunology, Biomedical Center and Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Xuan-Hung Nguyen
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France; Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec International Hospital, Hanoi, Viet Nam
| | - Clémence Quériault
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Lucie Barateau
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, INSERM U1061, Montpellier, France
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, INSERM U1061, Montpellier, France
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Biomedical Center and Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Roland S Liblau
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France.
| |
Collapse
|
11
|
Nguyen XH, Dauvilliers Y, Quériault C, Perals C, Romieu-Mourez R, Paulet PE, Bernard-Valnet R, Fazilleau N, Liblau R. Circulating follicular helper T cells exhibit reduced ICOS expression and impaired function in narcolepsy type 1 patients. J Autoimmun 2018; 94:134-142. [PMID: 30104107 DOI: 10.1016/j.jaut.2018.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/08/2023]
Abstract
Despite genetic and epidemiological evidence strongly supporting an autoimmune basis for narcolepsy type 1, the mechanisms involved have remained largely unknown. Here, we aimed to investigate whether the frequency and function of circulating follicular helper and follicular regulatory T cells are altered in narcolepsy type 1. Peripheral blood mononuclear cells were collected from 32 patients with narcolepsy type 1, including 11 who developed disease after Pandemrix® vaccination, and 32 age-, sex-, and HLA-DQB1*06:02-matched healthy individuals. The frequency and phenotype of the different circulating B cell and follicular T cell subsets were examined by flow cytometry. The function of follicular helper T cells was evaluated by assessing the differentiation of naïve and memory B cells in a co-culture assay. We revealed a notable increase in the frequency of circulating B cells and CD4+CXCR5+ follicular T cells in narcolepsy patients compared to age-, sex- and HLA-matched healthy controls. However, the inducible T-cell costimulator molecule, ICOS, was selectively down-regulated on follicular T cells from patients. Reduced frequency of activated ICOS+ and PD1high blood follicular T cells was also observed in the narcolepsy group. Importantly, follicular T cells isolated from patients with narcolepsy type 1 had a reduced capacity to drive the proliferation/survival and differentiation of memory B cells. Our results provide novel insights into the potential involvement of T cell-dependent B cell responses in the pathogenesis of narcolepsy type 1 in which down-regulation of ICOS expression on follicular helper T cells correlates with their reduced function. We hypothesize that these changes contribute to regulation of the deleterious autoimmune process after disease onset.
Collapse
Affiliation(s)
- Xuan-Hung Nguyen
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France.
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, INSERM U1061, Montpellier, France
| | - Clémence Quériault
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Corine Perals
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Raphaelle Romieu-Mourez
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Pierre-Emmanuel Paulet
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Raphaël Bernard-Valnet
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Nicolas Fazilleau
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Roland Liblau
- INSERM U1043, CNRS UMR, 5282, Toulouse III University, Center for Pathophysiology Toulouse Purpan, Toulouse, France; Department of Immunology, Toulouse University Hospitals, Toulouse, France.
| |
Collapse
|
12
|
Vaccine-associated inflammatory diseases of the central nervous system: from signals to causation. Curr Opin Neurol 2018; 29:362-71. [PMID: 27023738 DOI: 10.1097/wco.0000000000000318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW As the most cost-effective intervention in preventive medicine and as a crucial element of any public health program, vaccination is used extensively with over 90% coverage in many countries. As approximately 5-8% of the population in developed countries suffer from an autoimmune disorder, people with an autoimmune disease are most likely to be exposed to some vaccines before or after the disease onset. In fact, a number of inflammatory disorders of the central nervous system have been associated with the administration of various vaccines. These adverse events, be they spurious associations or genuine reactions to the vaccine, may lead to difficulties in obtaining public trust in mass vaccination programs. There is, thus, an urgent need to understand whether vaccination triggers or enhances autoimmune responses. RECENT FINDINGS By reviewing vaccine-associated inflammatory diseases of the central nervous system, this study describes the current knowledge on whether the safety signal was coincidental, as in the case of multiple sclerosis with several vaccines, or truly reflected a causal link, as in narcolepsy with cataplexy following pandemic H1N1 influenza virus vaccination. SUMMARY The lessons learnt emphasize a central role of thorough, ideally prospective, epidemiological studies followed, if the signal is deemed plausible or real, by immunological investigations.
Collapse
|
13
|
Dye TJ, Gurbani N, Simakajornboon N. Epidemiology and Pathophysiology of Childhood Narcolepsy. Paediatr Respir Rev 2018; 25:14-18. [PMID: 28108192 DOI: 10.1016/j.prrv.2016.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/14/2016] [Indexed: 12/22/2022]
Abstract
It is now recognized that there are two types of narcolepsy. Narcolepsy type I or Narcolepsy with cataplexy is caused by the loss of hypocretin or orexin neurons. Narcolepsy type II or narcolepsy without cataplexy has normal hypocretin and the etiology is unknown. Hypocretin is a neuropeptide produced by neurons in the lateral hypothalamus. Both genetic and environmental factors play a crucial role in the pathogenesis of narcolepsy. Most patients with narcolepsy type I and half of patients with narcolepsy type II carry HLA-DQB1*0602. HLA-DQB1*0602 forms a heterodimer with HLA-DQA1*0102 and may act as an antigen presenter to the T cell receptors, resulting in narcolepsy susceptibility. In addition, narcolepsy has been shown to be linked to polymorphisms in other non-HLA genes that may affect immune regulatory function, leading to speculation that autoimmune processes may play a crucial role in the loss of hypocretin neurons. Infections have been proposed as a potential trigger for the autoimmune-mediated mechanism. Several recent studies have shown increased cases of narcolepsy, especially in children and adolescents in relation with H1N1 influenza. The increased cases in Europe seems to be related to a specific type of H1N1 influenza vaccination (Pandemrix), while the increased cases in China are related to influenza infection. The data from the Pediatric Working Group of the Sleep Research Network have shown similar increases of early onset narcolepsy in the United States.
Collapse
Affiliation(s)
- Thomas J Dye
- Sleep Center, Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45219, USA
| | - Neepa Gurbani
- Sleep Center, Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45219, USA
| | - Narong Simakajornboon
- Sleep Center, Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45219, USA.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Summarize the recent findings in narcolepsy focusing on the environmental and genetic risk factors in disease development. RECENT FINDINGS Both genetic and epidemiological evidence point towards an autoimmune mechanism in the destruction of orexin/hypocretin neurons. Recent studies suggest both humoral and cellular immune responses in the disease development. SUMMARY Narcolepsy is a severe sleep disorder, in which neurons producing orexin/hypocretin in the hypothalamus are destroyed. The core symptoms of narcolepsy are debilitating, extreme sleepiness, cataplexy, and abnormalities in the structure of sleep. Both genetic and epidemiological evidence point towards an autoimmune mechanism in the destruction of orexin/hypocretin neurons. Importantly, the highest environmental risk is seen with influenza-A infection and immunization. However, how the cells are destroyed is currently unknown. In this review we summarize the disease symptoms, and focus on the immunological findings in narcolepsy. We also discuss the environmental and genetic risk factors as well as propose a model for disease development.
Collapse
Affiliation(s)
- Melodie Bonvalet
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Palo Alto, CA 94304, USA
| | - Hanna M. Ollila
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Palo Alto, CA 94304, USA
- National Institute for Health and Welfare, Public Genomics Unit, Helsinki, Finland
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Aditya Ambati
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Palo Alto, CA 94304, USA
| | - Emmanuel Mignot
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Palo Alto, CA 94304, USA
| |
Collapse
|
15
|
|
16
|
|
17
|
Degn M, Dauvilliers Y, Dreisig K, Lopez R, Pfister C, Pradervand S, Rahbek Kornum B, Tafti M. Rare missense mutations in P2RY11 in narcolepsy with cataplexy. Brain 2017; 140:1657-1668. [DOI: 10.1093/brain/awx093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/23/2017] [Indexed: 12/30/2022] Open
|
18
|
Idiopathic hypersomnia. Sleep Med Rev 2016; 29:23-33. [DOI: 10.1016/j.smrv.2015.08.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022]
|
19
|
Liguori C, Placidi F, Izzi F, Nuccetelli M, Bernardini S, Sarpa MG, Cum F, Marciani MG, Mercuri NB, Romigi A. Beta-amyloid and phosphorylated tau metabolism changes in narcolepsy over time. Sleep Breath 2016; 20:277-83; discussion 283. [PMID: 26803606 DOI: 10.1007/s11325-015-1305-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 11/26/2015] [Accepted: 12/23/2015] [Indexed: 02/01/2023]
|
20
|
Abstract
Sleep disorders are, in part, attributable to genetic variability across individuals. There has been considerable progress in understanding the role of genes for some sleep disorders, such as the identification of a human leukocyte antigen gene for narcolepsy. For other sleep disorders, such as insomnia, little work has been done. Optimizing phenotyping strategies is critical, as is the case for sleep apnea, for which intermediate traits such as obesity and craniofacial features may prove to be more tractable for genetic studies. Rapid advances in genotyping and statistical genetics are likely to lead to greater discoveries in the near future.
Collapse
Affiliation(s)
- Philip R Gehrman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Suite 670, Philadelphia, PA 19104, USA.
| | - Brendan T Keenan
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Suite 2100, Philadelphia, PA 19104-3403, USA
| | - Enda M Byrne
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Suite 2100, Philadelphia, PA 19104-3403, USA; Queensland Brain Institute, Brisbane QLD 4072, Australia
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Suite 2100, Philadelphia, PA 19104-3403, USA
| |
Collapse
|
21
|
Sun R, Xu F, Wang C, Dong E. NSFC spurs significant basic research progress of respiratory medicine in China. CLINICAL RESPIRATORY JOURNAL 2015; 11:271-284. [PMID: 26176299 PMCID: PMC7159156 DOI: 10.1111/crj.12351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/24/2022]
Abstract
Over the years, research in respiratory medicine has progressed rapidly in China. This commentary narrates the role of the National Natural Science Foundation of China (NSFC) in supporting the basic research of respiratory medicine, summarizes the major progress of respiratory medicine in China, and addresses the main future research directions sponsored by the NSFC.
Collapse
Affiliation(s)
- Ruijuan Sun
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| | - Feng Xu
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China.,Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Wang
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Erdan Dong
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
22
|
Donelson NC, Sanyal S. Use of Drosophila in the investigation of sleep disorders. Exp Neurol 2015; 274:72-9. [PMID: 26160555 DOI: 10.1016/j.expneurol.2015.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/24/2022]
Abstract
Genetic underpinnings for sleep disorders in humans remain poorly identified, investigated and understood. This is due to the inherent complexity of sleep and a disruption of normal sleep parameters in a number of neurological disorders. On the other hand, there have been steady and remarkable developments in the investigation of sleep using model organisms such as Drosophila. These studies have illuminated conserved genetic pathways, neural circuits and intra-cellular signaling modules in the regulation of sleep. Additionally, work in model systems is beginning to clarify the role of the circadian clock and basal sleep need in this process. There have also been initial efforts to directly model sleep disorders in flies in a few instances where a genetic basis has been suspected. Here, we discuss the opportunities and limitations of studying sleep disorders in Drosophila and propose that a greater convergence of basic sleep research in model organisms and human genetics should catalyze better understanding of sleep disorders and generate viable therapeutic options.
Collapse
Affiliation(s)
- Nathan C Donelson
- Neurology Research, 115 Broadway, Bio 6 Building, Biogen, Cambridge, MA 02142, USA
| | - Subhabrata Sanyal
- Neurology Research, 115 Broadway, Bio 6 Building, Biogen, Cambridge, MA 02142, USA.
| |
Collapse
|
23
|
Gill JM, Lee H, Baxter T, Reddy SY, Barr T, Kim HS, Wang D, Mysliwiec V. A Diagnosis of Insomnia Is Associated With Differential Expression of Sleep-Regulating Genes in Military Personnel. Biol Res Nurs 2015; 17:384-92. [PMID: 25767060 DOI: 10.1177/1099800415575343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sleep disturbance is a common and disturbing symptom in military personnel, with many individuals progressing to the development of insomnia, which is characterized by increased arousals, wakefulness after sleep onset, and distorted sleep architecture. The molecular mechanisms underlying insomnia remain elusive, limiting future therapeutic development to address this critical issue. We examined whole gene expression profiles associated with insomnia. We compared subjects with insomnia (n = 25) to controls (n = 13) without insomnia using microarray gene expression profiles obtained from peripheral samples of whole blood obtained from military personnel. Compared to controls, participants with insomnia had differential expression of 44 transcripts from 43 identified genes. Among the identified genes, urotensin 2 was downregulated by more than 6 times in insomnia participants, and the fold-change remained significant after controlling for depression, posttraumatic stress disorder, and medication use. Urotensin 2 is involved in regulation of orexin A and B activity and rapid eye movement during sleep. These findings suggest that differential expression of these sleep-regulating genes contributes to symptoms of insomnia and, specifically, that switching between rapid eye movement and nonrapid eye movement sleep stages underlies insomnia symptoms. Future work to identify therapeutic agents that are able to regulate these pathways may provide novel treatments for insomnia.
Collapse
Affiliation(s)
- Jessica M Gill
- National Institutes of Health, National Institutes of Nursing Research, Bethesda, MD, USA
| | - Hyunhwa Lee
- School of Nursing, University of Nevada-Las Vegas, Las Vegas, NV, USA
| | | | | | - Taura Barr
- West Virginia University, Morgantown, WV, USA
| | - Hyung-Suk Kim
- National Institutes of Health, National Institutes of Nursing Research, Bethesda, MD, USA
| | - Dan Wang
- National Institutes of Health, National Institutes of Nursing Research, Bethesda, MD, USA
| | | |
Collapse
|
24
|
Arango MT, Kivity S, Shoenfeld Y. Is narcolepsy a classical autoimmune disease? Pharmacol Res 2015; 92:6-12. [PMID: 25447795 DOI: 10.1016/j.phrs.2014.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/19/2022]
Affiliation(s)
- María-Teresa Arango
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Israel; Center for Autoimmune Diseases Research - CREA, Universidad del Rosario, Bogota, Colombia; Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogota, Colombia
| | - Shaye Kivity
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Israel; Rheumatic Disease Unit, Sheba Medical Center, Tel-Hashomer, Israel; The Dr. Pinchas Borenstein Talpiot Medical Leadership Program 2013, Sheba Medical Center, Tel-Hashomer, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel; Incumbent of the Laura Schwarz-Kip Chair for Research of Autoimmune Diseases, Tel Aviv University, Israel.
| |
Collapse
|
25
|
Partinen M, Kornum BR, Plazzi G, Jennum P, Julkunen I, Vaarala O. Narcolepsy as an autoimmune disease: the role of H1N1 infection and vaccination. Lancet Neurol 2014; 13:600-13. [PMID: 24849861 DOI: 10.1016/s1474-4422(14)70075-4] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Narcolepsy is a sleep disorder characterised by loss of hypothalamic hypocretin (orexin) neurons. The prevalence of narcolepsy is about 30 per 100 000 people, and typical age at onset is 12-16 years. Narcolepsy is strongly associated with the HLA-DQB1*06:02 genotype, and has been thought of as an immune-mediated disease. Other risk genes, such as T-cell-receptor α chain and purinergic receptor subtype 2Y11, are also implicated. Interest in narcolepsy has increased since the epidemiological observations that H1N1 infection and vaccination are potential triggering factors, and an increase in the incidence of narcolepsy after the pandemic AS03 adjuvanted H1N1 vaccination in 2010 from Sweden and Finland supports the immune-mediated pathogenesis. Epidemiological observations from studies in China also suggest a role for H1N1 virus infections as a trigger for narcolepsy. Although the pathological mechanisms are unknown, an H1N1 virus-derived antigen might be the trigger.
Collapse
Affiliation(s)
- Markku Partinen
- Helsinki Sleep Clinic, Vitalmed Research Centre, Helsinki, Finland; Department of Clinical Neurosciences, University of Helsinki, Helsinki, Finland.
| | - Birgitte Rahbek Kornum
- Molecular Sleep Laboratory, Department of Diagnostics, Glostrup Hospital, Glostrup, Denmark
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Poul Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, University of Copenhagen, Glostrup Hospital, Glostrup, Denmark
| | - Ilkka Julkunen
- Department of Virology, University of Turku, Turku, Finland; Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland
| | - Outi Vaarala
- Department of Vaccines and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
26
|
Cingoz S, Agilkaya S, Oztura I, Eroglu S, Karadeniz D, Evlice A, Altungoz O, Yilmaz H, Baklan B. Identification of the variations in the CPT1B and CHKB genes along with the HLA-DQB1*06:02 allele in Turkish narcolepsy patients and healthy persons. Genet Test Mol Biomarkers 2014; 18:261-8. [PMID: 24571861 DOI: 10.1089/gtmb.2013.0391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The HLA-DQB1*06:02 allele across all ethnic groups and the rs5770917 variation between CPT1B and CHKB genes in Japanese and Koreans are common genetic susceptibility factors for narcolepsy. This comprehensive genetic study sought to assess variations in CHKB and CPT1B susceptibility genes and HLA-DQB1*06:02 allele status in Turkish patients with narcolepsy and healthy persons. METHODS CHKB/CPT1B genes were sequenced in patients with narcolepsy (n=37) and healthy persons (n=100) to detect variations. The HLA-DQB1*06:02 allele status was determined by sequence specific polymerase chain reaction. RESULTS The HLA-DQB1*06:02 allele was significantly more frequent in narcoleptic patients than in healthy persons (p=2×10(-7)) and in patients with narcolepsy and cataplexy than in those without (p=0.018). The mean of the multiple sleep latency test, sleep-onset rapid eye movement periods, and frequency of sleep paralysis significantly differed in the HLA-DQB1*06:02-positive patients. rs5770917, rs5770911, rs2269381, and rs2269382 were detected together as a haplotype in three patients and 11 healthy persons. In addition to this haplotype, the indel variation (rs144647670) was detected in the 5' upstream region of the human CHKB gene in the patients and healthy persons carrying four variants together. CONCLUSION This study identified a novel haplotype consisting of the indel variation, which had not been detected in previous studies in Japanese and Korean populations, and observed four single-nucleotide polymorphisms in CHKB/CPT1B. The study confirmed the association of the HLA-DQB1*06:02 allele with narcolepsy and cataplexy susceptibility. The findings suggest that the presence of HLA-DQB1*06:02 may be a predictor of cataplexy in narcoleptic patients and could therefore be used as an additional diagnostic marker alongside hypocretin.
Collapse
Affiliation(s)
- Sultan Cingoz
- 1 Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylül University , Inciralti, Izmir, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Han F, Faraco J, Dong XS, Ollila HM, Lin L, Li J, An P, Wang S, Jiang KW, Gao ZC, Zhao L, Yan H, Liu YN, Li QH, Zhang XZ, Hu Y, Wang JY, Lu YH, Lu CJ, Zhou W, Hallmayer J, Huang YS, Strohl KP, Pollmächer T, Mignot E. Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLoS Genet 2013; 9:e1003880. [PMID: 24204295 PMCID: PMC3814311 DOI: 10.1371/journal.pgen.1003880] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/29/2013] [Indexed: 11/25/2022] Open
Abstract
Previous studies in narcolepsy, an autoimmune disorder affecting hypocretin (orexin) neurons and recently associated with H1N1 influenza, have demonstrated significant associations with five loci. Using a well-characterized Chinese cohort, we refined known associations in TRA@ and P2RY11-DNMT1 and identified new associations in the TCR beta (TRB@; rs9648789 max P = 3.7×10−9 OR 0.77), ZNF365 (rs10995245 max P = 1.2×10−11 OR 1.23), and IL10RB-IFNAR1 loci (rs2252931 max P = 2.2×10−9 OR 0.75). Variants in the Human Leukocyte Antigen (HLA)- DQ region were associated with age of onset (rs7744020 P = 7.9×10−9 beta −1.9 years) and varied significantly among cases with onset after the 2009 H1N1 influenza pandemic compared to previous years (rs9271117 P = 7.8×10−10 OR 0.57). These reflected an association of DQB1*03:01 with earlier onset and decreased DQB1*06:02 homozygosity following 2009. Our results illustrate how genetic association can change in the presence of new environmental challenges and suggest that the monitoring of genetic architecture over time may help reveal the appearance of novel triggers for autoimmune diseases. Narcolepsy-hypocretin deficiency results from a highly specific autoimmune attack on hypocretin cells. Recent studies have established antigen presentation by specific class II proteins encoded by (HLA DQB1*06:02 and DQA1*01:02) to the cognate T cell receptor as the main disease pathway, with a role for H1N1 influenza in the triggering process. Here, we have used a large and well-characterized cohort of Chinese narcolepsy cases to examine genetic architecture not observed in European samples. We confirmed previously implicated susceptibility genes (T cell receptor alpha, P2RY11), and identify new loci (ZNF365, IL10RB-IFNAR1), most notably, variants at the beta chain of the T cell receptor. We found that one HLA variant, (DQB1*03:01), is associated with dramatically earlier disease onset (nearly 2 years). We also identified differences in HLA haplotype frequencies among cases with onset following the 2009 H1N1 influenza pandemic as compared to before the outbreak, with fewer HLA DQB1*06:02 homozygotes. This may be the first demonstration of such an effect, and suggests that the study of changes in GWAS signals over time could help identify environmental factors in other autoimmune diseases.
Collapse
Affiliation(s)
- Fang Han
- Department of Pulmonary, Critical Care Medicine, Peking University People's Hospital, Beijing, China
- * E-mail: (FH); (EM)
| | - Juliette Faraco
- Stanford University Center for Sleep Sciences, Palo Alto, California, United States
| | - Xiao Song Dong
- Department of Pulmonary, Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Hanna M. Ollila
- Stanford University Center for Sleep Sciences, Palo Alto, California, United States
| | - Ling Lin
- Stanford University Center for Sleep Sciences, Palo Alto, California, United States
| | - Jing Li
- Department of Pulmonary, Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Pei An
- Department of Pulmonary, Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Shan Wang
- Department of Surgery, Peking University People's Hospital, Beijing, China
| | - Ke Wei Jiang
- Department of Surgery, Peking University People's Hospital, Beijing, China
| | - Zhan Cheng Gao
- Department of Pulmonary, Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Long Zhao
- Department of Pulmonary, Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Han Yan
- Department of Pulmonary, Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Ya Nan Liu
- Department of Pulmonary, Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Qing Hua Li
- Department of Pulmonary, Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Xiao Zhe Zhang
- Department of Pulmonary, Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Yan Hu
- Department of Pulmonary, Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Jing Yu Wang
- Department of Pulmonary Medicine, Bin Zhou Medical University, Shandong, China
| | - Yun Hui Lu
- Department of Pulmonary Medicine, Yun Nan Province Hospital, Yun Nan, China
| | - Chang Jun Lu
- Department of Pulmonary Medicine, Bin Zhou Medical University, Shandong, China
| | - Wei Zhou
- Department of Pulmonary, Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Joachim Hallmayer
- Stanford University Center for Sleep Sciences, Palo Alto, California, United States
| | | | - Kingman P. Strohl
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, and Cleveland Louis Stokes VA Medical Center, Cleveland, Ohio, United States
| | - Thomas Pollmächer
- Center of Mental Health, Ingolstadt, Klinikum Ingolstadt, Krumenauerstrasse, Ingolstadt, Germany
| | - Emmanuel Mignot
- Stanford University Center for Sleep Sciences, Palo Alto, California, United States
- * E-mail: (FH); (EM)
| |
Collapse
|
28
|
Freeman AAH, Syed S, Sanyal S. Modeling the genetic basis for human sleep disorders in Drosophila. Commun Integr Biol 2013; 6:e22733. [PMID: 23802043 PMCID: PMC3689575 DOI: 10.4161/cib.22733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 01/04/2023] Open
Abstract
Sleep research in Drosophila is not only here to stay, but is making impressive strides towards helping us understand the biological basis for and the purpose of sleep—perhaps one of the most complex and enigmatic of behaviors. Thanks to over a decade of sleep-related studies in flies, more molecular methods are being applied than ever before towards understanding the genetic basis of sleep disorders. The advent of high-throughput technologies that can rapidly interrogate whole genomes, epigenomes and proteomes, has also revolutionized our ability to detect genetic variants that might be causal for a number of sleep disorders. In the coming years, mutational studies in model organisms such as Drosophila will need to be functionally connected to information being generated from these whole-genome approaches in humans. This will necessitate the development of appropriate methods for interpolating data and increased analytical power to synthesize useful network(s) of sleep regulatory pathways—including appropriate discriminatory and predictive capabilities. Ultimately, such networks will also need to be interpreted in the context of fundamental neurobiological substrates for sleep in any given species. In this review, we highlight some emerging approaches, such as network analysis and mathematical modeling of sleep distributions, which can be applied to contemporary sleep research as a first step to achieving these aims. These methodologies should favorably impact not only a mechanistic understanding of sleep, but also future pharmacological intervention strategies to manage and treat sleep disorders in humans.
Collapse
Affiliation(s)
- Amanda A H Freeman
- Departments of Cell Biology and Neurology; Emory University School of Medicine; Atlanta, GA USA
| | | | | |
Collapse
|
29
|
Mahlios J, De la Herrán-Arita AK, Mignot E. The autoimmune basis of narcolepsy. Curr Opin Neurobiol 2013; 23:767-73. [PMID: 23725858 DOI: 10.1016/j.conb.2013.04.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 01/04/2023]
Abstract
Narcolepsy is a neurological disorder characterized by excessive daytime sleepiness, cataplexy, hypnagonic hallucinations, sleep paralysis, and disturbed nocturnal sleep patterns. Narcolepsy is caused by the loss of hypocretin (orexin)-producing neurons in the lateral hypothalamus. Evidence, such as a strong association with HLA DQB1*06:02, strongly suggests an autoimmune basis targeting hypocretin neurons. Genome-wide association studies have strengthened the association between narcolepsy and immune system gene polymorphisms, including the identification of polymorphisms in the T cell receptor alpha locus, TNFSF4 (also called OX40L), Cathepsin H (CTSH) the purinergic receptor P2RY11, and the DNA methyltransferase DNMT1. Recently, attention has been raised regarding a spike in cases of childhood narcolepsy in 2010 following the 2009 H1N1 pandemic (pH1N1) in China and vaccination with Pandemrix, an adjuvanted H1N1 vaccine that was used in Europe. How the immune system may be involved in disease initiation and/or progression remains a challenge to researchers. Potential immunological pathways that could lead to the specific elimination of hypocretin producing neurons include molecular mimicry or bystander activation, and are likely a combination of genetic and environmental factors, such as upper airway infections.
Collapse
Affiliation(s)
- Josh Mahlios
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, 1050 A, Arastradero Road, Palo Alto, CA 94034, USA
| | | | | |
Collapse
|
30
|
Dong XS, Ma SF, Cao CW, Li J, An P, Zhao L, Liu NY, Yan H, Hu QT, Mignot E, Strohl KP, Gao ZC, Zeng C, Han F. Hypocretin (orexin) neuropeptide precursor gene, HCRT, polymorphisms in early-onset narcolepsy with cataplexy. Sleep Med 2013; 14:482-7. [PMID: 23643651 DOI: 10.1016/j.sleep.2013.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/18/2013] [Accepted: 01/25/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND To test if the hypocretin (orexin) neuropeptide precursor (HCRT) gene, HCRT, mutations are implicated in the development of narcolepsy with cataplexy deficiency in young children. METHODS The entire HCRT gene and ~2000 bp promoter region was first sequenced in 181 patients and 153 controls, and rare polymorphisms including three nonsynonymous amino acid changes were identified. Next the 557 bp region of exon 2 harboring the three nonsynonymous changes was sequenced in an additional 298 early-onset subjects and in 148 control samples. RESULTS A previously known common polymorphism (rs760282) and nine rare novel polymorphisms were identified in subjects and controls without significant differences. Two nonsynonymous exon 2 substitutions (+977 H54A, +979 G55R) were detected in two subjects with early onset at 7 and 6 years, respectively, but were not found in any controls. These substitutions are not likely to vastly change peptide binding to hypocretin receptors. One additional exon 2 substitution (+1019, K68R) was found in two patients and one control. Additional sequencing that focused on exon 2 showed additional subjects and controls with the +1019 K68R polymorphism and without significant differences between the subjects and the control. Segregation of two of these three nonsynonymous single nucleotide polymorphisms (SNPs) were observed from unaffected parents to offspring. CONCLUSIONS Sequencing of a large number of early-onset narcolepsy subjects revealed three novel nonsynonymous substitutions within the preprohypocretin protein, two of which were only found in patients with early-onset narcolepsy but are not likely to be functionally significant, especially in heterozygote subjects.
Collapse
Affiliation(s)
- Xiao Song Dong
- Department of Pulmonary Medicine, Beijing University People's Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Fang Han
- Department of Respiratory Medicine, The Peking University People's Hospital, Beijing, China.
| |
Collapse
|
32
|
Han F, Lin L, Li J, Dong SX, An P, Zhao L, Liu NY, Li QY, Yan H, Gao ZC, Faraco J, Strohl KP, Liu X, Miyadera H, Mignot E. HLA-DQ association and allele competition in Chinese narcolepsy. ACTA ACUST UNITED AC 2012; 80:328-35. [PMID: 22862152 DOI: 10.1111/j.1399-0039.2012.01948.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/09/2012] [Accepted: 07/16/2012] [Indexed: 12/17/2022]
Abstract
In Japanese, Koreans and Caucasians, narcolepsy/hypocretin deficiency is tightly associated with the DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype. Studies in African-Americans suggest a primary effect of DQB1*06:02, but this observation has been difficult to confirm in other populations because of high linkage disequilibrium between DRB1*15:01/3 and DQB1*06:02 in most populations. In this study, we studied human leucocyte antigen (HLA) class II in 202 Chinese narcolepsy patients (11% from South China) and found all patients to be DQB1*06:02 positive. Comparing cases with 103 unselected controls, and 110 and 79 controls selected for the presence of DQB1*06:02 and DRB1*15:01, we found that the presence of DQB1*06:02 and not DRB1*15:01 was associated with narcolepsy. In particular, Southern Chinese haplotypes such as the DRB1*15:01-DQA1*01:02-DQB1*06:01 and DRB1*15:01-DQA1*01:02-DQB1*05 were not associated with narcolepsy. As reported in Japanese, Koreans, African-Americans and Caucasians, additional protective effects of DQA1*01 (non-DQA1*01:02) and susceptibility effects of DQB1*03:01 were observed. These results illustrate the extraordinary conservation of HLA class II effects in narcolepsy across populations and show that DRB1*15:01 has no effect on narcolepsy susceptibility in the absence of DQB1*06:02. The results are also in line with a previously proposed 'HLA-DQ allelic competition model' that involves competition between non-DQA1*01:02, non-DQB1*06:02 'competent' (able to dimerize together) DQ1 alleles and the major DQα*01:02/ DQβ*06:02 narcolepsy heterodimer to reduce susceptibility.
Collapse
Affiliation(s)
- F Han
- Department of Pulmonary Medicine, Beijing University People's Hospital, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Partinen M, Saarenpää-Heikkilä O, Ilveskoski I, Hublin C, Linna M, Olsén P, Nokelainen P, Alén R, Wallden T, Espo M, Rusanen H, Olme J, Sätilä H, Arikka H, Kaipainen P, Julkunen I, Kirjavainen T. Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS One 2012; 7:e33723. [PMID: 22470463 PMCID: PMC3314680 DOI: 10.1371/journal.pone.0033723] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/15/2012] [Indexed: 11/19/2022] Open
Abstract
Background Narcolepsy is a rare neurological sleep disorder especially in children who are younger than 10 years. In the beginning of 2010, an exceptionally large number of Finnish children suffered from an abrupt onset of excessive daytime sleepiness (EDS) and cataplexy. Therefore, we carried out a systematic analysis of the incidence of narcolepsy in Finland between the years 2002–2010. Methods All Finnish hospitals and sleep clinics were contacted to find out the incidence of narcolepsy in 2010. The national hospital discharge register from 2002 to 2009 was used as a reference. Findings Altogether 335 cases (all ages) of narcolepsy were diagnosed in Finland during 2002–2009 giving an annual incidence of 0.79 per 100 000 inhabitants (95% confidence interval 0.62–0.96). The average annual incidence among subjects under 17 years of age was 0.31 (0.12–0.51) per 100 000 inhabitants. In 2010, 54 children under age 17 were diagnosed with narcolepsy (5.3/100 000; 17-fold increase). Among adults ≥20 years of age the incidence rate in 2010 was 0.87/100 000, which equals that in 2002–2009. Thirty-four of the 54 children were HLA-typed, and they were all positive for narcolepsy risk allele DQB1*0602/DRB1*15. 50/54 children had received Pandemrix vaccination 0 to 242 days (median 42) before onset. All 50 had EDS with abnormal multiple sleep latency test (sleep latency <8 min and ≥2 sleep onset REM periods). The symptoms started abruptly. Forty-seven (94%) had cataplexy, which started at the same time or soon after the onset of EDS. Psychiatric symptoms were common. Otherwise the clinical picture was similar to that described in childhood narcolepsy. Interpretation A sudden increase in the incidence of abrupt childhood narcolepsy was observed in Finland in 2010. We consider it likely that Pandemrix vaccination contributed, perhaps together with other environmental factors, to this increase in genetically susceptible children.
Collapse
Affiliation(s)
- Markku Partinen
- Helsinki Sleep Clinic, Vitalmed Research Centre, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|