1
|
Hernández-Zulueta J, Bolaños-Chang AJ, Santa Cruz-Pavlovich FJ, Valero Rodríguez AD, Lizárraga Madrigal A, Del Rio-Murillo XI, Navarro-Partida J, Gonzalez-De la Rosa A. Microbial Dynamics in Ophthalmic Health: Exploring the Interplay between Human Microbiota and Glaucoma Pathogenesis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:592. [PMID: 38674238 PMCID: PMC11051970 DOI: 10.3390/medicina60040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The human microbiome has a crucial role in the homeostasis and health of the host. These microorganisms along with their genes are involved in various processes, among these are neurological signaling, the maturation of the immune system, and the inhibition of opportunistic pathogens. In this sense, it has been shown that a healthy ocular microbiota acts as a barrier against the entry of pathogens, contributing to the prevention of infections. In recent years, a relationship has been suggested between microbiota dysbiosis and the development of neurodegenerative diseases. In patients with glaucoma, it has been observed that the microbiota of the ocular surface, intraocular cavity, oral cavity, stomach, and gut differ from those observed in healthy patients, which may suggest a role in pathology development, although the evidence remains limited. The mechanisms involved in the relationship of the human microbiome and this neurodegenerative disease remain largely unknown. For this reason, the present review aims to show a broad overview of the influence of the structure and composition of the human oral and gut microbiota and relate its dysbiosis to neurodegenerative diseases, especially glaucoma.
Collapse
Affiliation(s)
- Joicye Hernández-Zulueta
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Av. Ing. Ramón Padilla Sánchez, Zapopan 45200, Jalisco, Mexico
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
| | | | | | | | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
| | - José Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirúrgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Alejandro Gonzalez-De la Rosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirúrgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| |
Collapse
|
2
|
Maritan E, Gallo M, Srutkova D, Jelinkova A, Benada O, Kofronova O, Silva-Soares NF, Hudcovic T, Gifford I, Barrick JE, Schwarzer M, Martino ME. Gut microbe Lactiplantibacillus plantarum undergoes different evolutionary trajectories between insects and mammals. BMC Biol 2022; 20:290. [PMID: 36575413 PMCID: PMC9795633 DOI: 10.1186/s12915-022-01477-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Animals form complex symbiotic associations with their gut microbes, whose evolution is determined by an intricate network of host and environmental factors. In many insects, such as Drosophila melanogaster, the microbiome is flexible, environmentally determined, and less diverse than in mammals. In contrast, mammals maintain complex multispecies consortia that are able to colonize and persist in the gastrointestinal tract. Understanding the evolutionary and ecological dynamics of gut microbes in different hosts is challenging. This requires disentangling the ecological factors of selection, determining the timescales over which evolution occurs, and elucidating the architecture of such evolutionary patterns. RESULTS We employ experimental evolution to track the pace of the evolution of a common gut commensal, Lactiplantibacillus plantarum, within invertebrate (Drosophila melanogaster) and vertebrate (Mus musculus) hosts and their respective diets. We show that in Drosophila, the nutritional environment dictates microbial evolution, while the host benefits L. plantarum growth only over short ecological timescales. By contrast, in a mammalian animal model, L. plantarum evolution results to be divergent between the host intestine and its diet, both phenotypically (i.e., host-evolved populations show higher adaptation to the host intestinal environment) and genomically. Here, both the emergence of hypermutators and the high persistence of mutated genes within the host's environment strongly differed from the low variation observed in the host's nutritional environment alone. CONCLUSIONS Our results demonstrate that L. plantarum evolution diverges between insects and mammals. While the symbiosis between Drosophila and L. plantarum is mainly determined by the host diet, in mammals, the host and its intrinsic factors play a critical role in selection and influence both the phenotypic and genomic evolution of its gut microbes, as well as the outcome of their symbiosis.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Marialaura Gallo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Anna Jelinkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Kofronova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nuno F Silva-Soares
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Isaac Gifford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy.
| |
Collapse
|
3
|
Hu J, Zeng J, Shi Y, Song S. Are microbes and metabolites influencing the parental consumption of nestlings' feces in gray-backed shrikes? Curr Zool 2022; 68:667-678. [PMID: 36743228 PMCID: PMC9892794 DOI: 10.1093/cz/zoac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
The behavioral video recordings of the gray-backed shrike Lanius tephronotus revealed that parent birds eat the feces produced by their nestlings. "Parental nutrition hypothesis" attributes the origin of this behavior to nutrition-recovery and cost-saving, respectively. However, the presence of usable nutrients in the nestlings' feces is unknown because of traditional technology. In this study, we analyzed all the metabolites and the variations in the diversity and content of microbes in the feces of gray-backed shrike nestlings. We aimed to report the changes in microbes and metabolites with the age of nestlings and point out that the parent birds that eat the feces may gain potential nutrition benefits. The results showed that the relative abundances of Proteobacteria, Firmicutes, and Bacteroidota, changed significantly when the nestlings were 6 days old. The relative abundances of 6 probiotics, which are involved in digestion, metabolism, and immunity-related physiological functions, decreased in the nestlings' feces gradually with age; therefore, these probiotics may be obtained by parent birds upon ingestion of the feces of young nestlings. Among the metabolites that were detected, 20 were lipids and some had a role in anti-parasitic functions and wound healing; however, their relative contents decreased with age. These beneficial substances in the nestlings' feces may stimulate the parents to swallow the feces. Moreover, there were many aromatic metabolites in the newly hatched nestlings' feces, but the content of bitter metabolites increased as they grew up. Therefore, our results are in accordance with the nutritional hypothesis.
Collapse
Affiliation(s)
- Jie Hu
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jingyuan Zeng
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yurou Shi
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Sen Song
- Address correspondence to Sen Song. E-mail:
| |
Collapse
|
4
|
He Y, Maltecca C, Tiezzi F. Potential Use of Gut Microbiota Composition as a Biomarker of Heat Stress in Monogastric Species: A Review. Animals (Basel) 2021; 11:ani11061833. [PMID: 34205322 PMCID: PMC8235026 DOI: 10.3390/ani11061833] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Heat stress is a significant environmental challenge faced by food animal production worldwide because of its adverse effects on animal performance and productivity. Trillions of microorganisms living in the gut are essential for host health by participating in various digestive, immune, and metabolic activities. At the same time, they are known to be sensitive to changes in the surrounding environment. The present review summarizes current research progress of how the gut microbial community responds to elevated ambient heat in monogastric animal species and discusses the use of the gut microbiota composition as a potential indicator for heat stress. Abstract Heat stress is a current challenge for livestock production, and its impact could dramatically increase if global temperatures continue to climb. Exposure of agricultural animals to high ambient temperatures and humidity would lead to substantial economic losses because it compromises animal performance, productivity, health, and welfare. The gut microbiota plays essential roles in nutrient absorption, energy balance, and immune defenses through profound symbiotic interactions with the host. The homeostasis of those diverse gut microorganisms is critical for the host’s overall health and welfare status and also is sensitive to environmental stressors, like heat stress, reflected in altered composition and functionality. This article aims to summarize the research progress on the interactions between heat stress and gut microbiome and discuss the potential use of the gut microbiota composition as a biomarker of heat stress in monogastric animal species. A comprehensive understanding of the gut microbiota’s role in responding to or regulating physiological activities induced by heat stress would contribute to developing mitigation strategies.
Collapse
|
5
|
Gu M, Sun J, Qi C, Cai X, Goulette T, Song M, You X, Sela DA, Xiao H. The gastrointestinal fate of limonin and its effect on gut microbiota in mice. Food Funct 2019; 10:5521-5530. [PMID: 31418448 DOI: 10.1039/c9fo01274e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The gut microbiota plays a critical role in human health. Diets could modulate the gut microbiota, which in turn may contribute to altered health outcomes by way of changing the relative risk of chronic diseases. Limonin, widely found in citrus fruits, has been reported to possess multiple beneficial health effects. However, the gastrointestinal fate of limonin and its effect on gut microbiota remain unknown. Herein, mice were fed a diet containing 0.05% limonin (w/w) for 9 weeks. Liquid chromatography-mass spectrum analysis showed that limonin was concentrated along the gastrointestinal tract and reached 523.14 nmol g-1 in the colon lumen. Compared to control mice, colonic microbiota richness was significantly increased by limonin. Gut microbiota community was also clearly distinct from the control group as shown by Principle Coordinate Analysis. Additionally, the relative abundance of 22 genera (relative abundance >0.1%) was altered significantly. Among these, generally regarded probiotics (Lactobacillus and Bifidobacterium) were reduced, which was not due to direct inhibitory effect of limonin. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, amino acid metabolism, lipid, metabolism and immune system function were predicted to be upregulated, and immune system disease and infectious disease markers were predicted to be suppressed dramatically by limonin based on gut microbiota composition. Within the infectious disease category, bacterial toxin and Staphylococcus aureus infection markers were suppressed significantly with limonin treatment. Collectively, our study provides the first line of evidence that oral intake of limonin could shift gut microbiota composition and its functions, which warrants further investigation to determine its implication in human health.
Collapse
Affiliation(s)
- Min Gu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Jin Sun
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA. and School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ce Qi
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA. and School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaokun Cai
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Timothy Goulette
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Mingyue Song
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA. and Guangdong Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaomeng You
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
6
|
Zhu Z, Ren J, Michail S, Sun F. MicroPro: using metagenomic unmapped reads to provide insights into human microbiota and disease associations. Genome Biol 2019; 20:154. [PMID: 31387630 PMCID: PMC6683435 DOI: 10.1186/s13059-019-1773-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
We develop a metagenomic data analysis pipeline, MicroPro, that takes into account all reads from known and unknown microbial organisms and associates viruses with complex diseases. We utilize MicroPro to analyze four metagenomic datasets relating to colorectal cancer, type 2 diabetes, and liver cirrhosis and show that including reads from unknown organisms significantly increases the prediction accuracy of the disease status for three of the four datasets. We identify new microbial organisms associated with these diseases and show viruses play important prediction roles in colorectal cancer and liver cirrhosis, but not in type 2 diabetes. MicroPro is freely available at https://github.com/zifanzhu/MicroPro .
Collapse
Affiliation(s)
- Zifan Zhu
- Quantitative and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA USA
| | - Jie Ren
- Quantitative and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA USA
| | - Sonia Michail
- Department of Pediatrics, Division of Gastroenterology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Fengzhu Sun
- Quantitative and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
7
|
Protein kinase p38α signaling in dendritic cells regulates colon inflammation and tumorigenesis. Proc Natl Acad Sci U S A 2018; 115:E12313-E12322. [PMID: 30541887 DOI: 10.1073/pnas.1814705115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) play pivotal roles in maintaining intestinal homeostasis, but how the DCs regulate diverse immune networks on homeostasis breakdown remains largely unknown. Here, we report that, in response to epithelial barrier disruption, colonic DCs regulate the differentiation of type 1 regulatory T (Tr1) cells through p38α-dependent IL-27 production to initiate an effective immune response. Deletion of p38α in DCs, but not in T cells, led to increased Tr1 and protected mice from dextran sodium sulfate-induced acute colitis and chronic colitis-associated colorectal cancer. We show that higher levels of IL-27 in p38α-deficient colonic cDC1s, but not cDC2s, were responsible for the increase of Tr1 cells. Moreover, p38α-dependent IL-27 enhanced IL-22 secretion from intestinal group 3 innate lymphoid cells and protected epithelial barrier function. In p38α-deficient DCs, the TAK1-MKK4/7-JNK-c-Jun axis was hyperactivated, leading to high IL-27 levels, and inhibition of the JNK-c-Jun axis suppressed IL-27 expression. ChIP assay revealed direct binding of c-Jun to the promoter of Il27p28, which was further enhanced in p38α-deficient DCs. In summary, here we identify a key role for p38α signaling in DCs in regulating intestinal inflammatory response and tumorigenesis, and our finding may provide targets for the treatment of inflammatory intestinal diseases.
Collapse
|
8
|
Parker A, Lawson MAE, Vaux L, Pin C. Host-microbe interaction in the gastrointestinal tract. Environ Microbiol 2018; 20:2337-2353. [PMID: 28892253 PMCID: PMC6175405 DOI: 10.1111/1462-2920.13926] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
The gastrointestinal tract is a highly complex organ in which multiple dynamic physiological processes are tightly coordinated while interacting with a dense and extremely diverse microbial population. From establishment in early life, through to host-microbe symbiosis in adulthood, the gut microbiota plays a vital role in our development and health. The effect of the microbiota on gut development and physiology is highlighted by anatomical and functional changes in germ-free mice, affecting the gut epithelium, immune system and enteric nervous system. Microbial colonisation promotes competent innate and acquired mucosal immune systems, epithelial renewal, barrier integrity, and mucosal vascularisation and innervation. Interacting or shared signalling pathways across different physiological systems of the gut could explain how all these changes are coordinated during postnatal colonisation, or after the introduction of microbiota into germ-free models. The application of cell-based in-vitro experimental systems and mathematical modelling can shed light on the molecular and signalling pathways which regulate the development and maintenance of homeostasis in the gut and beyond.
Collapse
Affiliation(s)
- Aimée Parker
- Quadram Institute BioscienceNorwich Research ParkNR4 7UAUK
| | | | - Laura Vaux
- Quadram Institute BioscienceNorwich Research ParkNR4 7UAUK
| | - Carmen Pin
- Quadram Institute BioscienceNorwich Research ParkNR4 7UAUK
| |
Collapse
|
9
|
Jacob S, Sallé L, Zinger L, Chaine AS, Ducamp C, Boutault L, Russell AF, Heeb P. Chemical regulation of body feather microbiota in a wild bird. Mol Ecol 2018. [PMID: 29533479 DOI: 10.1111/mec.14551] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The microbiota has a broad range of impacts on host physiology and behaviour, pointing out the need to improve our comprehension of the drivers of host-microbiota composition. Of particular interest is whether the microbiota is acquired passively, or whether and to what extent hosts themselves shape the acquisition and maintenance of their microbiota. In birds, the uropygial gland produces oily secretions used to coat feathers that have been suggested to act as an antimicrobial defence mechanism regulating body feather microbiota. However, our comprehension of this process is still limited. In this study, we for the first time coupled high-throughput sequencing of the microbiota of both body feathers and the direct environment (i.e., the nest) in great tits with chemical analyses of the composition of uropygial gland secretions to examine whether host chemicals have either specific effects on some bacteria or nonspecific broad-spectrum effects on the body feather microbiota. Using a network approach investigating the patterns of co-occurrence or co-exclusions between chemicals and bacteria within the body feather microbiota, we found no evidence for specific promicrobial or antimicrobial effects of uropygial gland chemicals. However, we found that one group of chemicals was negatively correlated to bacterial richness on body feathers, and a higher production of these chemicals was associated with a poorer body feather bacterial richness compared to the nest microbiota. Our study provides evidence that chemicals produced by the host might function as a nonspecific broad-spectrum antimicrobial defence mechanism limiting colonization and/or maintenance of bacteria on body feathers, providing new insight about the drivers of the host's microbiota composition in wild organisms.
Collapse
Affiliation(s)
- Staffan Jacob
- EDB (Laboratoire Evolution et Diversité Biologique), CNRS-Université Paul Sabatier-ENSFA UMR 5174, Toulouse, France.,Station d'Ecologie Théorique et Expérimentale du CNRS, UMR5321, Moulis, France.,Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Louis Sallé
- Station d'Ecologie Théorique et Expérimentale du CNRS, UMR5321, Moulis, France
| | - Lucie Zinger
- EDB (Laboratoire Evolution et Diversité Biologique), CNRS-Université Paul Sabatier-ENSFA UMR 5174, Toulouse, France.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Alexis S Chaine
- Station d'Ecologie Théorique et Expérimentale du CNRS, UMR5321, Moulis, France.,Toulouse School of Economics, Institute for Advanced Studies in Toulouse, Toulouse, France
| | - Christine Ducamp
- EDB (Laboratoire Evolution et Diversité Biologique), CNRS-Université Paul Sabatier-ENSFA UMR 5174, Toulouse, France
| | - Léa Boutault
- EDB (Laboratoire Evolution et Diversité Biologique), CNRS-Université Paul Sabatier-ENSFA UMR 5174, Toulouse, France.,Station d'Ecologie Théorique et Expérimentale du CNRS, UMR5321, Moulis, France
| | - Andrew F Russell
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Philipp Heeb
- EDB (Laboratoire Evolution et Diversité Biologique), CNRS-Université Paul Sabatier-ENSFA UMR 5174, Toulouse, France
| |
Collapse
|
10
|
Heitlinger E, Ferreira SCM, Thierer D, Hofer H, East ML. The Intestinal Eukaryotic and Bacterial Biome of Spotted Hyenas: The Impact of Social Status and Age on Diversity and Composition. Front Cell Infect Microbiol 2017; 7:262. [PMID: 28670573 PMCID: PMC5472691 DOI: 10.3389/fcimb.2017.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/02/2017] [Indexed: 01/24/2023] Open
Abstract
In mammals, two factors likely to affect the diversity and composition of intestinal bacteria (bacterial microbiome) and eukaryotes (eukaryome) are social status and age. In species in which social status determines access to resources, socially dominant animals maintain better immune processes and health status than subordinates. As high species diversity is an index of ecosystem health, the intestinal biome of healthier, socially dominant animals should be more diverse than those of subordinates. Gradual colonization of the juvenile intestine after birth predicts lower intestinal biome diversity in juveniles than adults. We tested these predictions on the effect of: (1) age (juvenile/adult) and (2) social status (low/high) on bacterial microbiome and eukaryome diversity and composition in the spotted hyena (Crocuta crocuta), a highly social, female-dominated carnivore in which social status determines access to resources. We comprehensively screened feces from 35 individually known adult females and 7 juveniles in the Serengeti ecosystem for bacteria and eukaryotes, using a set of 48 different amplicons (4 for bacterial 16S, 44 for eukaryote 18S) in a multi-amplicon sequencing approach. We compared sequence abundances to classical coprological egg or oocyst counts. For all parasite taxa detected in more than six samples, the number of sequence reads significantly predicted the number of eggs or oocysts counted, underscoring the value of an amplicon sequencing approach for quantitative measurements of parasite load. In line with our predictions, our results revealed a significantly less diverse microbiome in juveniles than adults and a significantly higher diversity of eukaryotes in high-ranking than low-ranking animals. We propose that free-ranging wildlife can provide an intriguing model system to assess the adaptive value of intestinal biome diversity for both bacteria and eukaryotes.
Collapse
Affiliation(s)
- Emanuel Heitlinger
- Research Group Ecology and Evolution of Molecular Parasite Host Interactions, Leibniz Institute for Zoo and Wildlife ResearchBerlin, Germany.,Institute for Biology, Molecular Parasitology, Humboldt UniversityBerlin, Germany
| | - Susana C M Ferreira
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife ResearchBerlin, Germany
| | - Dagmar Thierer
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife ResearchBerlin, Germany
| | - Heribert Hofer
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife ResearchBerlin, Germany
| | - Marion L East
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife ResearchBerlin, Germany
| |
Collapse
|
11
|
Exercise Modifies the Gut Microbiota with Positive Health Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3831972. [PMID: 28357027 PMCID: PMC5357536 DOI: 10.1155/2017/3831972] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/18/2016] [Accepted: 01/05/2017] [Indexed: 12/26/2022]
Abstract
The human gastrointestinal tract (GIT) is inhabited by a wide cluster of microorganisms that play protective, structural, and metabolic functions for the intestinal mucosa. Gut microbiota is involved in the barrier functions and in the maintenance of its homeostasis. It provides nutrients, participates in the signaling network, regulates the epithelial development, and affects the immune system. Considering the microbiota ability to respond to homeostatic and physiological changes, some researchers proposed that it can be seen as an endocrine organ. Evidence suggests that different factors can determine changes in the gut microbiota. These changes can be both quantitative and qualitative resulting in variations of the composition and metabolic activity of the gut microbiota which, in turn, can affect health and different disease processes. Recent studies suggest that exercise can enhance the number of beneficial microbial species, enrich the microflora diversity, and improve the development of commensal bacteria. All these effects are beneficial for the host, improving its health status. In this paper, we intend to shed some light over the recent knowledge of the role played by exercise as an environmental factor in determining changes in microbial composition and how these effects could provide benefits to health and disease prevention.
Collapse
|
12
|
Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res 2016; 61. [PMID: 27500859 DOI: 10.1002/mnfr.201600240] [Citation(s) in RCA: 621] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/29/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract of mammals hosts a high and diverse number of different microorganisms, known as intestinal microbiota. Many probiotics were originally isolated from the gastrointestinal tract, and they were defined by the Food and Agriculture Organization of the United Nations (FAO)/WHO as "live microorganisms which when administered in adequate amounts confer a health benefit on the host." Probiotics exert their beneficial effects on the host through four main mechanisms: interference with potential pathogens, improvement of barrier function, immunomodulation and production of neurotransmitters, and their host targets vary from the resident microbiota to cellular components of the gut-brain axis. However, in spite of the wide array of beneficial mechanisms deployed by probiotic bacteria, relatively few effects have been supported by clinical data. In this regard, different probiotic strains have been effective in antibiotic-associated diarrhea or inflammatory bowel disease for instance. The aim of this review was to compile the molecular mechanisms underlying the beneficial effects of probiotics, mainly through their interaction with the intestinal microbiota and with the intestinal mucosa. The specific benefits discussed in this paper include among others those elicited directly through dietary modulation of the human gut microbiota.
Collapse
Affiliation(s)
- Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Asturias, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Asturias, Spain
| | - Aitor Blanco-Míguez
- ESEI - Department of Computer Science, University of Vigo, Edificio Politécnico, Campus Universitario As Lagoas s/n 32004, Ourense, Spain
| | - Anália Lourenço
- ESEI - Department of Computer Science, University of Vigo, Edificio Politécnico, Campus Universitario As Lagoas s/n 32004, Ourense, Spain.,CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Asturias, Spain
| |
Collapse
|
13
|
Morel FB, Oozeer R, Piloquet H, Moyon T, Pagniez A, Knol J, Darmaun D, Michel C. Preweaning modulation of intestinal microbiota by oligosaccharides or amoxicillin can contribute to programming of adult microbiota in rats. Nutrition 2015; 31:515-22. [DOI: 10.1016/j.nut.2014.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 12/17/2022]
|
14
|
Abstract
Epidemiological studies have shown an association between the consumption of raw farm milk and reduced incidence of allergy. In the present study, we fed untreated raw milk, gamma-sterilised milk, heat-treated milk or water to mice and compared their responses to allergen exposure and challenge treatment in a mouse model of gastrointestinal allergy. From weaning (3 weeks old), groups of BALB/c female mice (n 8) received raw milk, gamma-sterilised milk, heated milk or water via drink bottles, with the control group receiving water. All mice were fed a standard (dairy protein-free) rodent diet. At 6 and 8 weeks, groups were given intra-peritoneal injections with ovalbumin (OVA)/alum to sensitise them to the antigen. Controls were sham immunised. At week 10, mice were fasted and challenged four times on alternate days by intra-gastric administration with 50 mg OVA or saline. Levels of bacteria and milk proteins were assessed in milk samples. Mouse serum levels of specific IgE, IgG1 and IgG2a antibodies and mouse mast cell protease-1 (MMCP-1) were determined. Cytokine responses to 48 h activation with OVA were measured in cultured splenocytes from mice. Sterilised and heated milks contained no viable bacteria and reduced detectable levels of many milk proteins, in contrast to raw milk. Mice drinking raw milk had highest serum MMCP-1 and specific-OVA IgE responses. Cultured splenocytes from OVA-primed mice produced similar levels of IL-4 in response to the antigen; however, IL-10 levels were highest from mice drinking raw milk. Overall, the present study adds to the evidence that consuming different types of milk can affect allergic responses to a non-related dietary antigen.
Collapse
|
15
|
Petreska Ivanovska T, Jurhar Pavlova M, Mladenovska K, Petrushevska-Tozi L. Probiotics, prebiotics, synbiotics in prevention and treatment of inflammatory bowel diseases. MAKEDONSKO FARMACEVTSKI BILTEN 2014. [DOI: 10.33320/maced.pharm.bull.2014.60.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Probiotics, prebiotics, and synbiotics are functional components able to exert positive effects on human health. Numerous medical conditions lack effective and safe approaches for prevention or treatment, thus usage of probiotics, prebiotics, and synbiotics is an alternative. Further, the benefit related to the consumption of these compounds is associated with lower morbidity of chronic diseases and reduced health-care costs. Various types of mediums to deliver probiotics/synbiotics to the human GIT are used. Although capsules and tablets are frequently applied as delivery systems for probiotics, the major challenge of the commercial sector is to market new functional
foods containing probiotics and/or prebiotics. Discovering of new probiotic/synbiotic functional foods is connected to the interest of the food industry to revitalize continuously through introduction of products with improved nutritional value and pleasant taste, but also with health benefit for the consumers. The review provides insights and new perspectives in respect to usage of functional components and foods
in prevention and treatment of inflammatory bowel diseases (IBD) that are highly correlated with the modern lifestyle. The therapeutic and safety properties of probiotics and prebiotics, their role in pathogenesis of IBD, potential to prevent and treat these diseases as well as postulated mechanisms of action will be discussed, highlighting the main areas in which further research is an emergence.
Collapse
|
16
|
Huang YJ, Haist V, Baumgärtner W, Föhse L, Prinz I, Suerbaum S, Floess S, Huehn J. Induced and thymus-derived Foxp3⁺ regulatory T cells share a common niche. Eur J Immunol 2013; 44:460-8. [PMID: 24170313 DOI: 10.1002/eji.201343463] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 09/02/2013] [Accepted: 10/01/2013] [Indexed: 11/08/2022]
Abstract
Foxp3⁺ regulatory T (Treg) cells, which play a central role for the maintenance of immune homeostasis and self-tolerance, are known to be both generated in the thymus (thymus-derived, tTreg cells) and in the periphery, where they are converted from conventional CD4⁺ T cells (induced Treg (iTreg) cells). Recent data suggest a division of labor between these two Treg-cell subsets since their combined action was shown to be essential for protection in inflammatory disease models. Here, using the transfer colitis model, we examined whether tTreg cells and iTreg cells fill different niches within the CD4⁺ T-cell compartment. When naive T cells were co-transferred with either pure tTreg cells or with a mixture of tTreg cells and iTreg cells, induction of Foxp3⁺ Treg cells from naive T cells was not hampered by preoccupation of the Treg-cell niche. Using neuropilin-1 (Nrp1) as a surface marker to separate tTreg cells and iTreg cells, we demonstrate that tTreg cells and iTreg cells alone can completely fill the Treg-cell niche and display comparable TCR repertoires. However, when transferred together Nrp1⁺ tTreg cells outcompeted Nrp1⁻ iTreg cells and dominated the Treg-cell compartment. Taken together, our data suggest that tTreg cells and iTreg cells share a common peripheral niche.
Collapse
Affiliation(s)
- Yi-Ju Huang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Harrison OJ, Powrie FM. Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb Perspect Biol 2013; 5:5/7/a018341. [PMID: 23818502 DOI: 10.1101/cshperspect.a018341] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A fundamental role of the mammalian immune system is to eradicate pathogens while minimizing immunopathology. Instigating and maintaining immunological tolerance within the intestine represents a unique challenge to the mucosal immune system. Regulatory T cells are critical for continued immune tolerance in the intestine through active control of innate and adaptive immune responses. Dynamic adaptation of regulatory T-cell populations to the intestinal tissue microenvironment is key in this process. Here, we discuss specialization of regulatory T-cell responses in the intestine, and how a breakdown in these processes can lead to chronic intestinal inflammation.
Collapse
Affiliation(s)
- Oliver J Harrison
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
18
|
Cahenzli J, Balmer ML, McCoy KD. Microbial-immune cross-talk and regulation of the immune system. Immunology 2013; 138:12-22. [PMID: 22804726 DOI: 10.1111/j.1365-2567.2012.03624.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/14/2012] [Accepted: 07/10/2012] [Indexed: 12/13/2022] Open
Abstract
We are all born germ-free. Following birth we enter into a lifelong relationship with microbes residing on our body's surfaces. The lower intestine is home to the highest microbial density in our body, which is also the highest microbial density known on Earth (up to 10(12) /g of luminal contents). With our indigenous microbial cells outnumbering our human cells by an order of magnitude our body is more microbial than human. Numerous immune adaptations confine these microbes within the mucosa, enabling most of us to live in peaceful homeostasis with our intestinal symbionts. Intestinal epithelial cells not only form a physical barrier between the bacteria-laden lumen and the rest of the body but also function as multi-tasking immune cells that sense the prevailing microbial (apical) and immune (basolateral) milieus, instruct the underlying immune cells, and adapt functionally. In the constant effort to ensure intestinal homeostasis, the immune system becomes educated to respond appropriately and in turn immune status can shape the microbial consortia. Here we review how the dynamic immune-microbial dialogue underlies maturation and regulation of the immune system and discuss recent findings on the impact of diet on both microbial ecology and immune function.
Collapse
Affiliation(s)
- Julia Cahenzli
- Department of Clinical Research, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
19
|
Cording S, Fleissner D, Heimesaat MM, Bereswill S, Loddenkemper C, Uematsu S, Akira S, Hamann A, Huehn J. Commensal microbiota drive proliferation of conventional and Foxp3(+) regulatory CD4(+) T cells in mesenteric lymph nodes and Peyer's patches. Eur J Microbiol Immunol (Bp) 2013; 3:1-10. [PMID: 24265914 DOI: 10.1556/eujmi.3.2013.1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/02/2013] [Indexed: 12/17/2022] Open
Abstract
Compelling evidence demonstrates that intestinal commensal microbiota modulate conventional and regulatory T cell (Treg) responses that are required for effective host defence against pathogens and avoidance of autoimmunity and other immunopathologic conditions. Here, we investigated the contribution of the commensal microbiota and Toll-like receptor (TLR) signaling to homeostasis of Foxp3(-) conventional CD4(+) T cells and Foxp3(+) Tregs. Upon long-term antibiotics treatment, we observed a significant reduction of conventional CD4(+) T cell proliferation in a systemic manner, whereas Foxp3(+) Treg proliferation was locally impaired in gut-draining mesenteric lymph nodes and Peyer's patches. The proliferative response to microbial components was not mediated by TLRs as MyD88- and various TLR-deficient mice displayed normal or even increased conventional T cell and Foxp3(+) Treg proliferation. Thus, commensal microbiota-derived stimuli support cycling of both conventional CD4(+) T cells and Foxp3(+) Tregs with TLR-mediated recognition of bacterial components not being the major mechanism controlling microbiota-driven T cell homeostasis.
Collapse
|
20
|
Gong J, Yang C. Advances in the methods for studying gut microbiota and their relevance to the research of dietary fiber functions. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.12.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Kolling G, Wu M, Guerrant RL. Enteric pathogens through life stages. Front Cell Infect Microbiol 2012; 2:114. [PMID: 22937528 PMCID: PMC3427492 DOI: 10.3389/fcimb.2012.00114] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/08/2012] [Indexed: 01/30/2023] Open
Abstract
Enteric infections and diarrheal diseases constitute pervasive health burdens throughout the world, with rates being highest at the two ends of life. During the first 2–3 years of life, much of the disease burden may be attributed to infection with enteric pathogens including Salmonella, rotavirus, and many other bacterial, viral, and protozoan organisms; however, infections due to Clostridium difficile exhibit steady increases with age. Still others, like Campylobacter infections in industrialized settings are high in early life (<2 years old) and increase again in early adulthood (called the “second weaning” by some). The reasons for these differences undoubtedly reside in part in pathogen differences; however, host factors including the commensal intestinal microbial communities, immune responses (innate and acquired), and age-dependant shifts likely play important roles. Interplay of these factors is illustrated by studies examining changes in human gut microbiota with inflammatory bowel disease and irritable bowel syndrome. Recent gut microbial surveys have indicated dramatic shifts in gut microbial population structure from infants to young adults to the elders. An understanding of the evolution of these factors and their interactions (e.g., how does gut microbiota modulate the “inflamm-aging” process or vice versa) through the human life “cycle” will be important in better addressing and controlling these enteric infections and their consequences for both quality and quantity of life (often assessed as disability adjusted life-years or “DALYs”).
Collapse
Affiliation(s)
- Glynis Kolling
- Department of Internal Medicine, Division of Infectious Diseases and International Health, Center for Global Health, University of Virginia Charlottesville, VA, USA
| | | | | |
Collapse
|
22
|
Determination of protein and amino acid digestibility in foods including implications of gut microbial amino acid synthesis. Br J Nutr 2012; 108 Suppl 2:S238-46. [DOI: 10.1017/s0007114512002279] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To meet the protein and amino acid requirements of individuals and of populations requires information not only about their requirements but also about the capacity of available foods to meet those requirements. Most of our current knowledge of the digestibility of food proteins and the methods to estimate it has been derived from work with animals. Because the microbiota of the large intestine alter the amino acid composition of the digesta, and because only trivial quantities of amino acids are absorbed intact from the large intestine, the current method of choice for assessing amino acid digestibility is ileal digestibility corrected for basal endogenous losses, that is, standardized ileal digestibility. For protein as a whole, however, because nitrogen absorbed in forms other than as amino acids can contribute to the nitrogen economy, the absorption of nitrogen over the whole digestive tract is the more appropriate measure. Most of the methods developed for estimating ileal amino acid outflow in animals are not directly applicable to man: the exception is the use of volunteers with an ileostomy. The flow and composition of ileal digesta in human subjects can also be measured by the infusion of a marker and withdrawal of samples through a naso-intestinal tube. However, this method is too demanding for routine use and is likely to be restricted to validating the application to humans of digestibility data obtained either from animals, of which the pig seems most suitable, orin vitromethods. Microbial activity in the gastrointestinal (GI) tract is not confined to the large intestine: the numbers and metabolic activity of the upper GI microbiota lead to substantial amounts of microbial protein leaving the ileum. It appears however that a large proportion of the amino acids used by the upper GI microbiota are preformed - from the diet or from endogenous materials - rather than fromde novosynthesis. Although there are still uncertainties about the impact of microbial activity in the upper GI tract, the amino acid composition of ileal digesta provides the best available basis for estimating the proportion of dietary amino acids available for metabolism.
Collapse
|
23
|
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI. Human gut microbiome viewed across age and geography. Nature 2012; 486:222-7. [PMID: 22699611 PMCID: PMC3376388 DOI: 10.1038/nature11053] [Citation(s) in RCA: 5366] [Impact Index Per Article: 412.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/20/2012] [Indexed: 02/07/2023]
Abstract
Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ among human populations, here we characterize bacterial species in fecal samples from 531 individuals, plus the gene content of 110 of them. The cohort encompassed healthy children and adults from the Amazonas of Venezuela, rural Malawi and US metropolitan areas and included mono- and dizygotic twins. Shared features of the functional maturation of the gut microbiome were identified during the first three years of life in all three populations, including age-associated changes in the genes involved in vitamin biosynthesis and metabolism. Pronounced differences in bacterial assemblages and functional gene repertoires were noted between US residents and those in the other two countries. These distinctive features are evident in early infancy as well as adulthood. Our findings underscore the need to consider the microbiome when evaluating human development, nutritional needs, physiological variations and the impact of westernization.
Collapse
Affiliation(s)
- Tanya Yatsunenko
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Samanta AK, Torok VA, Percy NJ, Abimosleh SM, Howarth GS. Microbial fingerprinting detects unique bacterial communities in the faecal microbiota of rats with experimentally-induced colitis. J Microbiol 2012; 50:218-225. [PMID: 22538649 DOI: 10.1007/s12275-012-1362-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/19/2011] [Indexed: 01/15/2023]
Abstract
An abnormal composition of the gut microbiota is believed to be associated with the pathogenesis of inflammatory bowel disease (IBD). We utilized terminal restriction fragment length polymorphism (T-RFLP) analysis to quantify faecal bacterial communities from rats with experimental colitis. Male Sprague Dawley rats (n=10/group) ingested 2% dextran sulfate sodium (DSS) or water for up to 7 days. Rats were killed and colonic tissues collected for histological analysis. Damage severity score in the distal colon was significantly greater (P<0.001) following DSS consumption compared to controls. T-RFLP faecal bacterial profiles generated with either MspI or CfoI revealed a significant difference (P<0.001) in community composition between healthy and colitic rats, with bacterial composition in healthy rats more variable than in rats with colitis. Operational taxonomic units (OTU: taxonomically related groups of bacteria) associated with either the healthy or colitic state were identified. OTU (116, 226, 360, and 948; CfoI) and (118 and 188; MspI) were strongly associated with untreated healthy rats, while OTU (94, 98, 174, and 384; CfoI) and (94 and 914; MspI) were predominantly associated with DSS-treated colitic rats. Phylogenetic OTU assignment suggested that Bacteroidales and Lactobacillus sp. were predominantly associated with the colitic and healthy rats, respectively. These results show that faecal bacterial profiling is a rapid, sensitive and non-invasive tool for detecting and identifying changes in gut microbiota associated with colitis. Restoring microbial homeostasis by targeting colitis-associated OTU through specific microbiological interventions could form the basis of novel therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Ashis K Samanta
- National Institute of Animal Nutrition and Physiology, Bangalore, Karnataka, 560030, India
| | | | | | | | | |
Collapse
|
25
|
Mulder IE, Schmidt B, Lewis M, Delday M, Stokes CR, Bailey M, Aminov RI, Gill BP, Pluske JR, Mayer CD, Kelly D. Restricting microbial exposure in early life negates the immune benefits associated with gut colonization in environments of high microbial diversity. PLoS One 2011; 6:e28279. [PMID: 22216092 PMCID: PMC3245219 DOI: 10.1371/journal.pone.0028279] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/04/2011] [Indexed: 12/12/2022] Open
Abstract
Background Acquisition of the intestinal microbiota in early life corresponds with the development of the mucosal immune system. Recent work on caesarean-delivered infants revealed that early microbial composition is influenced by birthing method and environment. Furthermore, we have confirmed that early-life environment strongly influences both the adult gut microbiota and development of the gut immune system. Here, we address the impact of limiting microbial exposure after initial colonization on the development of adult gut immunity. Methodology/Principal Findings Piglets were born in indoor or outdoor rearing units, allowing natural colonization in the immediate period after birth, prior to transfer to high-health status isolators. Strikingly, gut closure and morphological development were strongly affected by isolator-rearing, independent of indoor or outdoor origins of piglets. Isolator-reared animals showed extensive vacuolation and disorganization of the gut epithelium, inferring that normal gut closure requires maturation factors present in maternal milk. Although morphological maturation and gut closure were delayed in isolator-reared animals, these hard-wired events occurred later in development. Type I IFN, IL-22, IL-23 and Th17 pathways were increased in indoor-isolator compared to outdoor-isolator animals during early life, indicating greater immune activation in pigs originating from indoor environments reflecting differences in the early microbiota. This difference was less apparent later in development due to enhanced immune activation and convergence of the microbiota in all isolator-reared animals. This correlated with elevation of Type I IFN pathways in both groups, although T cell pathways were still more affected in indoor-reared animals. Conclusions/Significance Environmental factors, in particular microbial exposure, influence expression of a large number of immune-related genes. However, the homeostatic effects of microbial colonization in outdoor environments require sustained microbial exposure throughout development. Gut development in high-hygiene environments negatively impacts on normal succession of the gut microbiota and promotes innate immune activation which may impair immune homeostasis.
Collapse
Affiliation(s)
- Imke E. Mulder
- Gut Immunology Group, University of Aberdeen, Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Bettina Schmidt
- Gut Immunology Group, University of Aberdeen, Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Marie Lewis
- Veterinary Pathology, Infection & Immunity, School of Clinical Veterinary Science, University of Bristol, Bristol, United Kingdom
| | - Margaret Delday
- Gut Immunology Group, University of Aberdeen, Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Christopher R. Stokes
- Veterinary Pathology, Infection & Immunity, School of Clinical Veterinary Science, University of Bristol, Bristol, United Kingdom
| | - Mick Bailey
- Veterinary Pathology, Infection & Immunity, School of Clinical Veterinary Science, University of Bristol, Bristol, United Kingdom
| | - Rustam I. Aminov
- Gut Immunology Group, University of Aberdeen, Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Bhupinder P. Gill
- Agricultural and Horticultural Development Board, Milton Keynes, United Kingdom
| | - John R. Pluske
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Claus-Dieter Mayer
- Biomathematics & Statistics Scotland, University of Aberdeen, Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Denise Kelly
- Gut Immunology Group, University of Aberdeen, Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Abstract
Obesity has reached epidemic proportions and is recognised as a significant global health problem. Increased food intake and decreased physical activity are traditionally to blame for the development of obesity; however, many variables such as behaviour, diet, environment, social structures and genetics also contribute to this multifactorial disease. Complex interactions among these variables (for example, gene-environment, gene-diet and gene-gene) contribute not only to individual differences in the development of obesity, but also in treatment response. Mouse models have historically played valuable roles in understanding the genetics of traits related to energy balance and obesity. In the present review, we survey past use and examine new advances in mouse models designed to uncover the genetic architecture of obesity and its component traits. We discuss traditional models such as inbred strains and selectively bred lines and their contributions and shortcomings. We consider the evolution of mouse models into more informative resources such as outbred crosses and the Hybrid Mouse Diversity Panel, as well as novel next-generation approaches such as the Collaborative Cross. Moreover, the genetic architecture of voluntary exercise and the interactive relationship between host genetics and the gut microbiome are presented as novel phenotypes that augment studies using body weight and body fat percentage as endpoints. Understanding the intricate network of phenotypic, genotypic and environmental variables that predispose individuals to obesity will elucidate biological networks involved in the development of obesity. Knowledge obtained from advances in mouse models will inform human health and provide insight into inter-individual variability in the aetiology of obesity-related diseases.
Collapse
|
27
|
Parasites or cohabitants: cruel omnipresent usurpers or creative "éminences grises"? J Parasitol Res 2011; 2011:214174. [PMID: 21785696 PMCID: PMC3140032 DOI: 10.1155/2011/214174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022] Open
Abstract
This paper presents many types of interplays between parasites and the host, showing the history of parasites, the effects of parasites on the outcome of wars, invasions, migrations, and on the development of numerous regions of the globe, and the impact of parasitic diseases on the society and on the course of human evolution. It also emphasizes the pressing need to change the look at the parasitism phenomenon, proposing that the term “cohabitant” is more accurate than parasite, because every living being, from bacteria to mammals, is a consortium of living beings in the pangenome. Even the term parasitology should be replaced by cohabitology because there is no parasite alone and host alone: both together compose a new adaptive system: the parasitized-host or the cohabitant-cohabited being. It also suggests switching the old paradigm based on attrition and destruction, to a new one founded on adaptation and living together.
Collapse
|
28
|
Flannigan KL, McCoy KD, Wallace JL. Eukaryotic and prokaryotic contributions to colonic hydrogen sulfide synthesis. Am J Physiol Gastrointest Liver Physiol 2011; 301:G188-93. [PMID: 21474649 DOI: 10.1152/ajpgi.00105.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hydrogen sulfide (H(2)S) is an important modulator of many aspects of digestive function, both in health and disease. Colonic tissue H(2)S synthesis increases markedly during injury and inflammation and appears to contribute to resolution. Some of the bacteria residing in the colon can also produce H(2)S. The extent to which bacterial H(2)S synthesis contributes to what is measured as colonic H(2)S synthesis is not clear. Using conventional and germ-free mice, we have delineated the eukaryotic vs. prokaryotic contributions to colonic H(2)S synthesis, both in healthy and colitic mice. Colonic tissue H(2)S production is entirely dependent on the presence of the cofactor pyridoxal 5'-phosphate (vitamin B(6)), while bacterial H(2)S synthesis appears to occur independent of this cofactor. As expected, approximately one-half of the H(2)S produced by feces is derived from eukaryotic cells. While colonic H(2)S synthesis is markedly increased when the tissue is inflamed, and, in proportion to the extent of inflammation, fecal H(2)S synthesis does not change and tissue granulocytes do not appear to be the source of the elevated H(2)S production. Rats fed a B vitamin-deficient diet for 6 wk exhibited significantly diminished colonic H(2)S synthesis, but fecal H(2)S synthesis was not different from that of rats on the control diet. Our results demonstrate that H(2)S production by colonic bacteria does not contribute significantly to what is measured as colonic tissue H(2)S production, using the acetate trapping assay system employed in this study.
Collapse
Affiliation(s)
- Kyle L Flannigan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
29
|
Geuking MB, Cahenzli J, Lawson MAE, Ng DCK, Slack E, Hapfelmeier S, McCoy KD, Macpherson AJ. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011; 34:794-806. [PMID: 21596591 DOI: 10.1016/j.immuni.2011.03.021] [Citation(s) in RCA: 651] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/12/2011] [Accepted: 03/08/2011] [Indexed: 02/07/2023]
Abstract
Mammals harbor a dense commensal microbiota in the colon. Regulatory T (Treg) cells are known to limit microbe-triggered intestinal inflammation and the CD4+ T cell compartment is shaped by the presence of particular microbes or bacterial compounds. It is, however, difficult to distinguish whether these effects reflect true mutualistic immune adaptation to intestinal colonization or rather idiosyncratic immune responses. To investigate truly mutualistic CD4+ T cell adaptation, we used the altered Schaedler flora (ASF). Intestinal colonization resulted in activation and de novo generation of colonic Treg cells. Failure to activate Treg cells resulted in the induction of T helper 17 (Th17) and Th1 cell responses, which was reversed by wild-type Treg cells. Efficient Treg cell induction was also required to maintain intestinal homeostasis upon dextran sulfate sodium-mediated damage in the colon. Thus, microbiota colonization-induced Treg cell responses are a fundamental intrinsic mechanism to induce and maintain host-intestinal microbial T cell mutualism.
Collapse
Affiliation(s)
- Markus B Geuking
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, Murtenstrasse 35, University of Bern, Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 2010; 107:18933-8. [PMID: 20937875 DOI: 10.1073/pnas.1007028107] [Citation(s) in RCA: 910] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In vertebrates, including humans, individuals harbor gut microbial communities whose species composition and relative proportions of dominant microbial groups are tremendously varied. Although external and stochastic factors clearly contribute to the individuality of the microbiota, the fundamental principles dictating how environmental factors and host genetic factors combine to shape this complex ecosystem are largely unknown and require systematic study. Here we examined factors that affect microbiota composition in a large (n = 645) mouse advanced intercross line originating from a cross between C57BL/6J and an ICR-derived outbred line (HR). Quantitative pyrosequencing of the microbiota defined a core measurable microbiota (CMM) of 64 conserved taxonomic groups that varied quantitatively across most animals in the population. Although some of this variation can be explained by litter and cohort effects, individual host genotype had a measurable contribution. Testing of the CMM abundances for cosegregation with 530 fully informative SNP markers identified 18 host quantitative trait loci (QTL) that show significant or suggestive genome-wide linkage with relative abundances of specific microbial taxa. These QTL affect microbiota composition in three ways; some loci control individual microbial species, some control groups of related taxa, and some have putative pleiotropic effects on groups of distantly related organisms. These data provide clear evidence for the importance of host genetic control in shaping individual microbiome diversity in mammals, a key step toward understanding the factors that govern the assemblages of gut microbiota associated with complex diseases.
Collapse
|
31
|
Rougé C, Goldenberg O, Ferraris L, Berger B, Rochat F, Legrand A, Göbel UB, Vodovar M, Voyer M, Rozé JC, Darmaun D, Piloquet H, Butel MJ, de La Cochetière MF. Investigation of the intestinal microbiota in preterm infants using different methods. Anaerobe 2010; 16:362-70. [DOI: 10.1016/j.anaerobe.2010.06.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 05/28/2010] [Accepted: 06/03/2010] [Indexed: 12/26/2022]
|
32
|
de La Cochetière MF, Montassier E, Hardouin JB, Carton T, Le Vacon F, Durand T, Lalande V, Petit JC, Potel G, Beaugerie L. Human intestinal microbiota gene risk factors for antibiotic-associated diarrhea: perspectives for prevention. Risk factors for antibiotic-associated diarrhea. MICROBIAL ECOLOGY 2010; 59:830-837. [PMID: 20186408 PMCID: PMC3348119 DOI: 10.1007/s00248-010-9637-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/23/2010] [Indexed: 05/28/2023]
Abstract
Antibiotic-associated diarrhea (AAD) is associated with altered intestinal microflora and other symptoms that may lead to possibly death. In critically ill patients, diarrhea increases rates of morbimortality. Assessing diarrhea risks is thus important for clinicians. For this reason, we conducted a hypothesis-generating study focused on AAD to provide insight into methods of prevention. We evaluated the hypothesis of predisposing factors within the resident intestinal microbiota in a cohort of outpatients receiving antibiotherapy. Among the pool of tested variables, only those related to bacterial 16S rRNA genes were found to be relevant. Complex statistical analyses provided further information: amid the bacteria 16S rRNA genes, eight were determined to be essential for diarrhea predisposition and characterized from the most important to the least. Using these markers, AAD risk could be estimated with an error of 2%. This molecular analysis offers new perspectives for clinical applications at the level of prevention.
Collapse
Affiliation(s)
- Marie-France de La Cochetière
- Thérapeutiques Cliniques et Expérimentales des Infections, EA3826, Université de Nantes - INSERM, UFR Médecine, 1 rue Gaston Veil, Nantes, 44000, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vannucci L, Stepankova R, Grobarova V, Kozakova H, Rossmann P, Klimesova K, Benson V, Sima P, Fiserova A, Tlaskalova-Hogenova H. Colorectal carcinoma: Importance of colonic environment for anti-cancer response and systemic immunity. J Immunotoxicol 2010; 6:217-26. [PMID: 19908940 DOI: 10.3109/15476910903334343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The intestinal environment is considered to play an important role both in colorectal tumor development and in the evolution and modulation of mucosal immunity. Studies in animals reared in germ-free (GF, without any intestinal microflora) versus conventional (CV, with regular microflora in bowel) conditions can aid in clarifying the influence of bacteria on carcinogenesis and anti-cancer immune responses in situ. The lower incidence of colon cancers and better immunological parameters in GF animals versus CV ones after chemically-induced carcinogenesis raises questions about specific characteristics of the immunological networks in each respective condition. Different levels of tolerance/regulatory mechanisms in the GF versus CV animals may influence the development of immune responses not only at the level of mucosal, but also at the systemic, immunity. We hypothesize that GF animals can better recognize and respond to evolving neoplasias in the bowel as a consequence of their less-tolerogenic immunity (i.e., due to their more limited exposure to antigens to become tolerated against at the intestinal level). In this paper, we review the role of bacteria in modulating gut environment and mucosal immunity, their importance in cancer development, and aspects of immune regulation (both at local and systemic level) that can be modified by bacterial microflora. Lastly, the use of GF animals in comparison with conventionally-raised animals is proposed as a suitable and potent model for understanding the inflammatory network and its effect on cancer immunity especially during colorectal cancer development.
Collapse
Affiliation(s)
- Luca Vannucci
- Laboratory of Natural Cell Immunity, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The small and large intestine contain the largest number of macrophages in the body and these cells are strategically located directly underneath the epithelial layer, enabling them to sample the lumen. Such intestinal macrophages have a different phenotype from other tissue macrophages in that they ingest and may kill microbes but they do not mediate strong pro-inflammatory responses upon microbial recognition. These properties are essential for maintaining a healthy intestine. It is generally accepted that tolerance to the intestinal flora is lost in inflammatory bowel diseases, and genes involved in microbial recognition, killing and macrophage activation have already been associated with these diseases. In this review, we shed light on the intestinal macrophage and how it influences intestinal immunity.
Collapse
|
35
|
Vaarala O, Atkinson MA, Neu J. The "perfect storm" for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 2008; 57:2555-62. [PMID: 18820210 PMCID: PMC2551660 DOI: 10.2337/db08-0331] [Citation(s) in RCA: 362] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 07/11/2008] [Indexed: 12/28/2022]
Abstract
It is often stated that type 1 diabetes results from a complex interplay between varying degrees of genetic susceptibility and environmental factors. While agreeing with this principal, our desire is that this Perspectives article will highlight another complex interplay potentially associated with this disease involving facets related to the gut, one where individual factors that, upon their interaction with each another, form a "perfect storm" critical to the development of type 1 diabetes. This trio of factors includes an aberrant intestinal microbiota, a "leaky" intestinal mucosal barrier, and altered intestinal immune responsiveness. Studies examining the microecology of the gastrointestinal tract have identified specific microorganisms whose presence appears related (either quantitatively or qualitatively) to disease; in type 1 diabetes, a role for microflora in the pathogenesis of disease has recently been suggested. Increased intestinal permeability has also been observed in animal models of type 1 diabetes as well as in humans with or at increased-risk for the disease. Finally, an altered mucosal immune system has been associated with the disease and is likely a major contributor to the failure to form tolerance, resulting in the autoimmunity that underlies type 1 diabetes. Herein, we discuss the complex interplay between these factors and raise testable hypotheses that form a fertile area for future investigations as to the role of the gut in the pathogenesis and prevention of type 1 diabetes.
Collapse
Affiliation(s)
- Outi Vaarala
- Laboratory for Immunobiology, Department of Viral Diseases and Immunology, National Public Health Institute, Helsinki, Finland.
| | | | | |
Collapse
|
36
|
Tannock GW. The search for disease-associated compositional shifts in bowel bacterial communities of humans. Trends Microbiol 2008; 16:488-95. [PMID: 18783952 DOI: 10.1016/j.tim.2008.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 07/25/2008] [Accepted: 07/30/2008] [Indexed: 12/13/2022]
Abstract
The bowels of humans contain resident bacterial communities, the members of which are numerous and biodiverse. Changes in the composition of bowel communities is accepted to occur in relation to antibiotic-associated colitis of the elderly, but compositional alterations could also be relevant to allergic diseases in children and inflammatory bowel diseases (i.e. Crohn's disease and ulcerative colitis). It is timely, therefore, to reflect on current knowledge of the bacterial community of the human bowel in relation to disease. Modern analytical methods provide tools by which compositional shifts in bacterial communities can be detected, but inadequate bowel-sampling procedures and poorly designed studies hamper progress. Moreover, demonstration that population shifts cause the disease and are not just reflections of a diseased state is necessary. Therefore, important challenges remain for bacteriologists in investigations of the bowel bacterial community in relation to disease.
Collapse
Affiliation(s)
- Gerald W Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
37
|
Roediger WEW. Review article: nitric oxide from dysbiotic bacterial respiration of nitrate in the pathogenesis and as a target for therapy of ulcerative colitis. Aliment Pharmacol Ther 2008; 27:531-41. [PMID: 18194497 DOI: 10.1111/j.1365-2036.2008.03612.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Factors initiating human ulcerative colitis (UC) are unknown. Dysbiosis of bacteria has been hypothesized to initiate UC but, to date, neither the nature of the dysbiosis nor mucosal breakdown has been explained. AIM To assess whether a dysbiosis of anaerobic nitrate respiration could explain the microscopic, biochemical and functional changes observed in colonocytes of UC. METHODS Published results in the gastroenterological, biochemical and microbiological literature were reviewed concerning colonocytes, nitrate respiration and nitric oxide in the colon in health and UC. A best-fit explanation of results was made regarding the pathogenesis and new treatments of UC. RESULTS Anaerobic nitrate respiration yields nitrite, nitric oxide (NO) and nitrous oxide. Colonic bacteria produce NO and UC in remission has a higher lumenal NO level than control cases. NO with sulphide, but not NO alone, impairs beta-oxidation, lipid and protein synthesis explaining the membrane, tight junctional and ion channel changes observed in colonocytes of UC. The observations complement therapeutic mechanisms of those probiotics, prebiotics and antibiotics useful in treating UC. CONCLUSIONS The prolonged production of bacterial NO with sulphide can explain the initiation and barrier breakdown, which is central to the pathogenesis of UC. Therapies to alter bacterial nitrate respiration and NO production need to evolve. The production of NO by colonic bacteria and that of the mucosa need to be separated to pinpoint the sequential nature of NO damage in UC.
Collapse
Affiliation(s)
- W E W Roediger
- University of Adelaide Department of Surgery, The Queen Elizabeth Hospital, Woodville, SA, Australia.
| |
Collapse
|
38
|
Damaskos D, Kolios G. Probiotics and prebiotics in inflammatory bowel disease: microflora 'on the scope'. Br J Clin Pharmacol 2008; 65:453-67. [PMID: 18279467 DOI: 10.1111/j.1365-2125.2008.03096.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The intestinal microflora is a large bacterial community that colonizes the gut, with a metabolic activity equal to an organ and various functions that affect the physiology and pathology of the host's mucosal immune system. Intestinal bacteria are useful in promotion of human health, but certain components of microflora, in genetically susceptible individuals, contribute to various pathological disorders, including inflammatory bowel disease. Clinical and experimental observations indicate an imbalance in protective and harmful microflora components in these disorders. Manipulation of gut flora to enhance its protective and beneficial role represents a promising field of new therapeutic strategies of inflammatory bowel disease. In this review, we discuss the implication of gut flora in the intestinal inflammation that justifies the role of probiotics and prebiotics in the prevention and treatment of inflammatory bowel disease and we address the evidence for therapeutic benefits from their use in experimental models of colitis and clinical trials.
Collapse
Affiliation(s)
- Dimitrios Damaskos
- Second Department of Surgery, General Hospital of Nikea, Piraeus, Greece [corrected]
| | | |
Collapse
|
39
|
Rautava S, Walker WA. Commensal bacteria and epithelial cross talk in the developing intestine. Curr Gastroenterol Rep 2008; 9:385-92. [PMID: 17991339 DOI: 10.1007/s11894-007-0047-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Indigenous intestinal microbes have co-evolved with the intestinal immune system to form a symbiotic ecosystem. In the postnatal period, intestinal microbes provide the developing gut with stimuli that are necessary for healthy maturation of the intestinal immune system. Cross talk between the host and commensal microbes is an essential component of gut homeostasis mechanisms also in later life. During recent years, innovative research has shed light on the molecular mechanisms of these interactions.
Collapse
Affiliation(s)
- Samuli Rautava
- Mucosal Immunology Laboratory, Massachusetts General Hospital, 114 16th Street (114-3503), Charlestown, MA 02129-4404, USA.
| | | |
Collapse
|
40
|
Bousvaros A, Morley-Fletcher A, Pensabene L, Cucchiara S. Research and clinical challenges in paediatric inflammatory bowel disease. Dig Liver Dis 2008; 40:32-8. [PMID: 17996504 DOI: 10.1016/j.dld.2007.07.168] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/26/2007] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease in childhood has become the subject of intense scientific debate during the last two decades, when there has been a significant rise in its incidence. There is a commonly agreed view that the disorder in children has peculiarities both in terms of underlying mechanisms and clinical management. This review highlights the emerging pathophysiologic concepts and clinical issues in paediatric inflammatory bowel disease and their effects on the management of children with this disorder are discussed. Particular emphasis is given to the link between the improvement of the research in the pathogenetic mechanisms and the development of novel therapeutic strategies able to promote a change in the natural course of the disorder.
Collapse
Affiliation(s)
- A Bousvaros
- Inflammatory Bowel Disease Center, Children's Hospital Boston, Harvard Medical School, MA 02115, United States.
| | | | | | | |
Collapse
|
41
|
Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian S, Ito S, Glickman JN, Glimcher LH. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 2007; 131:33-45. [PMID: 17923086 PMCID: PMC2169385 DOI: 10.1016/j.cell.2007.08.017] [Citation(s) in RCA: 733] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 07/09/2007] [Accepted: 08/13/2007] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) has been attributed to overexuberant host immunity or the emergence of harmful intestinal flora. The transcription factor T-bet orchestrates inflammatory genetic programs in both adaptive and innate immunity. We describe a profound and unexpected function for T-bet in influencing the behavior of host inflammatory activity and commensal bacteria. T-bet deficiency in the innate immune system results in spontaneous and communicable ulcerative colitis in the absence of adaptive immunity and increased susceptibility to colitis in immunologically intact hosts. T-bet controls the response of the mucosal immune system to commensal bacteria by regulating TNF-alpha production in colonic dendritic cells, critical for colonic epithelial barrier maintenance. Loss of T-bet influences bacterial populations to become colitogenic, and this colitis is communicable to genetically intact hosts. These findings reveal a novel function for T-bet as a peacekeeper of host-commensal relationships and provide new perspectives on the pathophysiology of IBD.
Collapse
Affiliation(s)
- Wendy S. Garrett
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Graham M. Lord
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA
- Department of Nephrology and Transplantation, King’s College, London, SE1 9RT, UK
- NIHR Biomedical Research Centre at Guy’s & St Thomas’ NHS Foundation Trust and King’s College London, UK
| | - Shivesh Punit
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA
| | | | - Sarkis Mazmanian
- Division of Biology, California Institute of Technology, Pasadena, CA
| | - Susumu Ito
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Jonathan N. Glickman
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Laurie H. Glimcher
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
42
|
Macpherson AJ, Hapfelmeier S, McCoy KD. The armed truce between the intestinal microflora and host mucosal immunity. Semin Immunol 2007; 19:57-8. [PMID: 17499514 DOI: 10.1016/j.smim.2007.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Salzman NH, Underwood MA, Bevins CL. Paneth cells, defensins, and the commensal microbiota: A hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol 2007; 19:70-83. [PMID: 17485224 DOI: 10.1016/j.smim.2007.04.002] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Accepted: 04/16/2007] [Indexed: 02/06/2023]
Abstract
Mucosal surfaces are colonized by a diverse and dynamic microbiota. Much investigation has focused on bacterial colonization of the intestine, home to the vast majority of this microbiota. Experimental evidence has highlighted that these colonizing microbes are essential to host development and homeostasis, but less is known about host factors that may regulate the composition of this ecosystem. While evidence shows that IgA has a role in shaping this microbiota, it is likely that effector molecules of the innate immune system are also involved. One hypothesis is that gene-encoded antimicrobial peptides, key elements of innate immunity throughout nature, have an essential role in this regulation. These effector molecules characteristically have activity against a broad spectrum of bacteria and other microbes. At mucosal surfaces, antimicrobial peptides may affect the numbers and/or composition of the colonizing microbiota. In humans and other mammals, defensins are a predominant class of antimicrobial peptides. In the small intestine, Paneth cells (specialized secretory epithelial cells) produce high quantities of defensins and several other antibiotic peptides and proteins. Data from murine models indicate that Paneth cell defensins play a pivotal role in defense from food and water-borne pathogens in the intestinal lumen. Recent studies in humans provide evidence that reduced Paneth cell defensin expression may be a key pathogenic factor in ileal Crohn's disease, a subgroup of inflammatory bowel disease (IBD), and changes in the colonizing microbiota may mediate this pathogenic mechanism. It is also possible that low levels of Paneth cell defensins, characteristic of normal intestinal development, may predispose premature neonates to necrotizing enterocolitis (NEC) through similar close links with the composition of the intestinal microbiota. Future studies to further define mechanisms by which defensins and other host factors regulate the composition of the intestinal microbiota will likely provide new insights into intestinal homeostasis and new therapeutic strategies for inflammatory and infectious diseases of the bowel.
Collapse
Affiliation(s)
- Nita H Salzman
- Department of Pediatrics, Division of Gastroenterology, The Medical College of Wisconsin, 8701 Watertown Plank Rd. Milwaukee, WI 53226, USA
| | | | | |
Collapse
|