1
|
Ngo TH, Menon S, Rivero-Müller A. Nano-immunotherapy: Merging immunotherapy precision with nanomaterial delivery. iScience 2025; 28:112319. [PMID: 40292310 PMCID: PMC12033950 DOI: 10.1016/j.isci.2025.112319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
In current landscape of cancer treatment, nanotherapy and cellular therapy stand out as promising and innovative approaches. Nanotherapy have excelled in delivering functional molecules effectively to target cancer cells, however the targetability is mostly the result of the enhanced permeability and retention effect. Meanwhile, cellular therapies such recently emerging chimeric antigen receptor (CAR)-T therapy are proficient at specifically targeting cancer cells by using engineered receptors on T cells. Yet, cellular therapies preform poor in solid tumors due to immunosuppression and cancer cell resistance to immuno-stimulation, in other words their delivery of deadly cargo is deficient. Therefore, combining nanotherapy and immunotherapy is an emerging trend, with ongoing clinical trials exploring their synergistic effects. This 2-input approach holds promise for enhancing treatment efficacy and overcoming limitations in cancer therapy. In this review, we will discuss two aspects: targetability and delivery for each individual therapy and what the combined nano-immunotherapy strategies have achieved up to now. In the last section, some future perspectives for this combination are suggested.
Collapse
Affiliation(s)
- Thu Ha Ngo
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Soumya Menon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Huang H, Mu Y, Huang Y, Ji B, Wang Y, Chen CY, Chen Y, Luo Z, Li S, Zhang Z, Wang L, Conway JF, Yang D, Wang J, Sun J, Li S. Rational development of gemcitabine-based nanoplatform for targeting SERPINB9/Granzyme B axis to overcome chemo-immune-resistance. Nat Commun 2025; 16:4176. [PMID: 40325025 PMCID: PMC12053578 DOI: 10.1038/s41467-025-59490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
SERPINB9, an endogenous inhibitor of granzyme B (GzmB), has emerged as a critical factor in the resistance to immunotherapy by protecting cancer cells from GzmB-induced cytotoxicity. However, its role in chemosensitivity remains unknown. In this study, we show that gemcitabine (GEM) treatment upregulates SERPINB9 through transcription factor ATF-3. Interestingly, GEM also induces the expression of GzmB and knockout or knockdown of SERPINB9 results in enhanced response of tumor cells to GEM, suggesting a role of GzmB/SERPINB9 axis in regulating chemosensitivity. To facilitate the therapeutic translation of these findings, we engineer POEM nanocarrier (consisting of lipid-derivatized polylysine (PEG-PLL-Oleic acid, PPO), and GEM-conjugated polylysine (PEG-PLL-OA-GEM, PPOGEM), PPO/PPOGEM (POEM)) that is highly effective in codelivery of built-in GEM and loaded SERPINB9 short interfering RNA (siSPB9). GEM conjugation introduces an additional mechanism of carrier/siRNA interaction in addition to charge-mediated interaction and enables efficient i.v. delivery at lower N/P ratios. Here, we show that co-delivery of GEM and siSPB9 significantly improves antitumor efficacy and remodels the tumor immune microenvironment in pancreatic cancer models, supporting a promising therapeutic strategy.
Collapse
Affiliation(s)
- Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yiqing Mu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yifei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chien-Yu Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sihan Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luxuan Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - James F Conway
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Banstola A, Lin ZT, Li Y, Wu MX. PhotoChem Interplays: Lighting the Way for Drug Delivery and Diagnosis. Adv Drug Deliv Rev 2025; 219:115549. [PMID: 39986440 PMCID: PMC11903148 DOI: 10.1016/j.addr.2025.115549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/23/2024] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Light, a non-invasive tool integrated with cutting-edge nanotechnologies, has driven transformative advancements in imaging-based diagnosis and drug delivery for cancer and bacterial treatments. This review discusses recent progress in these areas, beginning with emerging imaging technologies. Unlike traditional photosensors activated by visible light, alternative energy sources such as near-infrared (NIR) light, X-rays, and ultrasound have been extensively investigated to activate various photosensors, achieving high sensitivity, wavelength versatility, and spatial resolution for deep-tissue imaging. Moreover, to address challenges like tissue autofluorescence in real-time fluorescence imaging, afterglow luminescent nanoparticles are being developed by integrating these alternative energy sources for real-time imaging and sensing in deep tissue for precise cancer diagnosis and treatment beyond superficial tissues. In addition to deep tissue imaging, light-responsive nanomedicines are revolutionizing anticancer and antimicrobial phototherapy by enabling spatially and temporally controlled drug release. These smart nanoparticles are engineered to release therapeutic cargo at target sites in response to microenvironmental cues specific to tumors or infections. In anticancer phototherapy, these nanoparticles facilitate controlled drug release via photoisomerization, photothermal, and photodynamic processes. To enhance circulation time and specific targeting, biomimetic nanoparticles, which mimic natural anti-tumor responses by our body, have attracted increasing attention. In antimicrobial phototherapy, research has been focused on the chemical modification of the photosensitizer to enable targeted drug delivery. An intriguing strategy has recently emerged involving the development of "pro-photosensitizers" that are specifically activated within bacterial cells upon light irradiation, offering a high margin of safety. These advancements leverage photochemical reactions and nanotechnology to enhance precision therapy and diagnosis in addressing critical health challenges.
Collapse
Affiliation(s)
- Asmita Banstola
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA
| | - Zuan-Tao Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA
| | - Yongli Li
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, MA 02114, USA.
| |
Collapse
|
4
|
Omotoso MO, Est-Witte SE, Shannon SR, Li S, Nair NM, Neshat SY, Kang SS, Tzeng SY, Green JJ, Schneck JP. Alginate-based artificial antigen presenting cells expand functional CD8 + T cells with memory characteristics for adoptive cell therapy. Biomaterials 2025; 313:122773. [PMID: 39217794 PMCID: PMC11423771 DOI: 10.1016/j.biomaterials.2024.122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The development of artificial Antigen Presenting Cells (aAPCs) has led to improvements in adoptive T cell therapy (ACT), an immunotherapy, for cancer treatment. aAPCs help to streamline the consistent production and expansion of T cells, thus reducing the time and costs associated with ACT. However, several issues still exist with ACT, such as insufficient T cell potency, which diminishes the translational potential for ACT. While aAPCs have been used primarily to increase production efficiency of T cells for ACT, the intrinsic properties of a biomaterial-based aAPC may affect T cell phenotype and function. In CD8+ T cells, reactive oxygen species (ROS) and oxidative stress accumulation can activate Forkhead box protein O1 (FOXO1) to transcribe antioxidants which reduce ROS and improve memory formation. Alginate, a biocompatible and antioxidant rich biomaterial, is promising for incorporation into an aAPC formulation to modulate T cell phenotype. To investigate its utility, a novel alginate-based aAPC platform was developed that preferentially expanded CD8+ T cells with memory related features. Alginate-based aAPCs allowed for greater control of CD8+ T cell qualities, including, significantly improved in vivo persistence and augmented in vivo anti-tumor T cell responses.
Collapse
Affiliation(s)
- Mary O Omotoso
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA
| | - Savannah E Est-Witte
- Department of Biomedical Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA
| | - Sydney R Shannon
- Department of Biomedical Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA
| | - Shuyi Li
- Department of Pathology, School of Medicine, USA; Institute for NanoBioTechnology, USA
| | - Nina M Nair
- Department of Biomedical Engineering, Whiting School of Engineering, USA
| | - Sarah Y Neshat
- Department of Biomedical Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA
| | - Si-Sim Kang
- Department of Pathology, School of Medicine, USA
| | - Stephany Y Tzeng
- Translational Tissue Engineering Center, USA; Department of Biomedical Engineering, Whiting School of Engineering, USA; Johns Hopkins Translational ImmunoEngineering Center, USA
| | - Jordan J Green
- Department of Biomedical Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA; Johns Hopkins Translational ImmunoEngineering Center, USA.
| | - Jonathan P Schneck
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Johns Hopkins Translational ImmunoEngineering Center, USA; Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Syed Altaf RR, Mohan A, Palani N, Mendonce KC, Monisha P, Rajadesingu S. A review of innovative design strategies: Artificial antigen presenting cells in cancer immunotherapy. Int J Pharm 2025; 669:125053. [PMID: 39667594 DOI: 10.1016/j.ijpharm.2024.125053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/07/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Developing nanocarriers that can carry medications directly to tumors is an exciting development in cancer nanomedicine. The efficacy of this intriguing therapeutic approach is, however, compromised by intricate and immunosuppressive circumstances that arise concurrently with the onset of cancer. The artificial antigen presenting cell (aAPC), a micro or nanoparticle based device that mimics an antigen presenting cell by providing crucial signal proteins to T lymphocytes to activate them against cancer, is one cutting-edge method for cancer immunotherapy. This review delves into the critical design considerations for aAPCs, particularly focusing on particle size, shape, and the non-uniform distribution of T cell activating proteins on their surfaces. Adequate surface contact between T cells and aAPCs is essential for activation, prompting engineers to develop nano-aAPCs with microscale contact areas through techniques such as shape modification and nanoparticle clustering. Additionally, we explore recommendations for future advancements in this field.
Collapse
Affiliation(s)
- Rabiya Riffath Syed Altaf
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Agilandeswari Mohan
- Department of BioChemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Naveen Palani
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Keren Celestina Mendonce
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - P Monisha
- PG & Research Department of Physics, Sri Sarada College for Women, Salem - 636016, Tamil Nadu, India
| | - Suriyaprakash Rajadesingu
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
6
|
Cavdar E, Karaboyun K, Iriagac Y. Nanotechnology in oncology: a mini review. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20241347. [PMID: 39630738 PMCID: PMC11639546 DOI: 10.1590/1806-9282.20241347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Eyyup Cavdar
- Tekirdağ Namık Kemal University, Department of Medical Oncology – Tekirdağ, Turkey
| | - Kubilay Karaboyun
- Agri Ibrahim Cecen University, Training and Research Hospital, Department of Medical Oncology – Ağrı, Turkey
| | - Yakup Iriagac
- Balikesir Ataturk City Hospital, Department of Medical Oncology – Balıkesir, Turkey
| |
Collapse
|
7
|
Wang Y, Liu C, Ren Y, Song J, Fan K, Gao L, Ji X, Chen X, Zhao H. Nanomaterial-Based Strategies for Attenuating T-Cell-Mediated Immunodepression in Stroke Patients: Advancing Research Perspectives. Int J Nanomedicine 2024; 19:5793-5812. [PMID: 38882535 PMCID: PMC11180442 DOI: 10.2147/ijn.s456632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
This review article discusses the potential of nanomaterials in targeted therapy and immunomodulation for stroke-induced immunosuppression. Although nanomaterials have been extensively studied in various biomedical applications, their specific use in studying and addressing immunosuppression after stroke remains limited. Stroke-induced neuroinflammation is characterized by T-cell-mediated immunodepression, which leads to increased morbidity and mortality. Key observations related to immunodepression after stroke, including lymphopenia, T-cell dysfunction, regulatory T-cell imbalance, and cytokine dysregulation, are discussed. Nanomaterials, such as liposomes, micelles, polymeric nanoparticles, and dendrimers, offer advantages in the precise delivery of drugs to T cells, enabling enhanced targeting and controlled release of immunomodulatory agents. These nanomaterials have the potential to modulate T-cell function, promote neuroregeneration, and restore immune responses, providing new avenues for stroke treatment. However, challenges related to biocompatibility, stability, scalability, and clinical translation need to be addressed. Future research efforts should focus on comprehensive studies to validate the efficacy and safety of nanomaterial-based interventions targeting T cells in stroke-induced immunosuppression. Collaborative interdisciplinary approaches are necessary to advance the field and translate these innovative strategies into clinical practice, ultimately improving stroke outcomes and patient care.
Collapse
Grants
- This work was supported by the National Natural Science Foundation of China (Grant number 82001248), National University of Singapore (NUHSRO/2020/133/Startup/08, NUHSRO/2023/008/NUSMed/TCE/LOA, NUHSRO/2021/034/TRP/09/Nanomedicine, NUHSRO/2021/044/Kickstart/09/LOA, 23-0173-A0001), National Medical Research Council (MOH-001388-00, CG21APR1005, OFIRG23jul-0047), Singapore Ministry of Education (MOE-000387-00), and National Research Foundation (NRF-000352-00)
Collapse
Affiliation(s)
- Yan Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, People’s Republic of China
| | - Yanhong Ren
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, People’s Republic of China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Livingston NK, Hickey JW, Sim H, Salathe SF, Choy J, Kong J, Silver AB, Stelzel JL, Omotoso MO, Li S, Chaisawangwong W, Roy S, Ariail EC, Lanis MR, Pradeep P, Bieler JG, Witte SE, Leonard E, Doloff JC, Spangler JB, Mao HQ, Schneck JP. In Vivo Stimulation of Therapeutic Antigen-Specific T Cells in an Artificial Lymph Node Matrix. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310043. [PMID: 38358310 PMCID: PMC11161322 DOI: 10.1002/adma.202310043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/04/2024] [Indexed: 02/16/2024]
Abstract
T cells are critical mediators of antigen-specific immune responses and are common targets for immunotherapy. Biomaterial scaffolds have previously been used to stimulate antigen-presenting cells to elicit antigen-specific immune responses; however, structural and molecular features that directly stimulate and expand naïve, endogenous, tumor-specific T cells in vivo have not been defined. Here, an artificial lymph node (aLN) matrix is created, which consists of an extracellular matrix hydrogel conjugated with peptide-loaded-MHC complex (Signal 1), the co-stimulatory signal anti-CD28 (Signal 2), and a tethered IL-2 (Signal 3), that can bypass challenges faced by other approaches to activate T cells in situ such as vaccines. This dynamic immune-stimulating platform enables direct, in vivo antigen-specific CD8+ T cell stimulation, as well as recruitment and coordination of host immune cells, providing an immuno-stimulatory microenvironment for antigen-specific T cell activation and expansion. Co-injecting the aLN with naïve, wild-type CD8+ T cells results in robust activation and expansion of tumor-targeted T cells that kill target cells and slow tumor growth in several distal tumor models. The aLN platform induces potent in vivo antigen-specific CD8+ T cell stimulation without the need for ex vivo priming or expansion and enables in situ manipulation of antigen-specific responses for immunotherapies.
Collapse
Affiliation(s)
- Natalie K. Livingston
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - John W. Hickey
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Hajin Sim
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sebastian F. Salathe
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Choy
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jiayuan Kong
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Aliyah B. Silver
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Center for Translational ImmunoEngineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica L. Stelzel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Mary O. Omotoso
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Shuyi Li
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Worarat Chaisawangwong
- Graduate Program in Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sayantika Roy
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Emily C. Ariail
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Mara R. Lanis
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pratibha Pradeep
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Joan Glick Bieler
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Savannah Est Witte
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Elissa Leonard
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua C. Doloff
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B. Spangler
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Graduate Program in Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Center for Translational ImmunoEngineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Hai-Quan Mao
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Center for Translational ImmunoEngineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jonathan P. Schneck
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Center for Translational ImmunoEngineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Aljabali AAA, Obeid MA, Gammoh O, El-Tanani M, Mishra V, Mishra Y, Kapre S, Srivatsa Palakurthi S, Hassan SS, Nawn D, Lundstrom K, Hromić-Jahjefendić A, Serrano-Aroca Á, Redwan EM, Uversky VN, Tambuwala MM. Nanomaterial-Driven Precision Immunomodulation: A New Paradigm in Therapeutic Interventions. Cancers (Basel) 2024; 16:2030. [PMID: 38893150 PMCID: PMC11171400 DOI: 10.3390/cancers16112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Immunotherapy is a rapidly advancing field of research in the treatment of conditions such as cancer and autoimmunity. Nanomaterials can be designed for immune system manipulation, with precise targeted delivery and improved immunomodulatory efficacy. Here, we elaborate on various strategies using nanomaterials, including liposomes, polymers, and inorganic NPs, and discuss their detailed design intricacies, mechanisms, and applications, including the current regulatory issues. This type of nanomaterial design for targeting specific immune cells or tissues and controlling release kinetics could push current technological frontiers and provide new and innovative solutions for immune-related disorders and diseases without off-target effects. These materials enable targeted interactions with immune cells, thereby enhancing the effectiveness of checkpoint inhibitors, cancer vaccines, and adoptive cell therapies. Moreover, they allow for fine-tuning of immune responses while minimizing side effects. At the intersection of nanotechnology and immunology, nanomaterial-based platforms have immense potential to revolutionize patient-centered immunotherapy and reshape disease management. By prioritizing safety, customization, and compliance with regulatory standards, these systems can make significant contributions to precision medicine, thereby significantly impacting the healthcare landscape.
Collapse
Affiliation(s)
- Alaa A. A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan; (A.A.A.A.); (M.A.O.)
| | - Mohammad A. Obeid
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan; (A.A.A.A.); (M.A.O.)
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Sumedha Kapre
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.K.); (S.S.P.)
| | - Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.K.); (S.S.P.)
| | - Sk. Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India;
| | - Debaleena Nawn
- Indian Research Institute for Integrated Medicine (IRIIM), Unsani, Howrah 711302, West Bengal, India;
| | | | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Elrashdy M. Redwan
- Department of Biological Science, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Murtaza M. Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| |
Collapse
|
10
|
Li F, Ouyang J, Chen Z, Zhou Z, Milon Essola J, Ali B, Wu X, Zhu M, Guo W, Liang XJ. Nanomedicine for T-Cell Mediated Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301770. [PMID: 36964936 DOI: 10.1002/adma.202301770] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Indexed: 06/18/2023]
Abstract
T-cell immunotherapy offers outstanding advantages in the treatment of various diseases, and with the selection of appropriate targets, efficient disease treatment can be achieved. T-cell immunotherapy has made great progress, but clinical results show that only a small proportion of patients can benefit from T-cell immunotherapy. The extensive mechanistic work outlines a blueprint for using T cells as a new option for immunotherapy, but also presents new challenges, including the balance between different fractions of T cells, the inherent T-cell suppression patterns in the disease microenvironment, the acquired loss of targets, and the decline of T-cell viability. The diversity, flexibility, and intelligence of nanomedicines give them great potential for enhancing T-cell immunotherapy. Here, how T-cell immunotherapy strategies can be adapted with different nanomaterials to enhance therapeutic efficacy is discussed. For two different pathological states, immunosuppression and immune activation, recent advances in nanomedicines for T-cell immunotherapy in diseases such as cancers, rheumatoid arthritis, systemic lupus erythematosus, ulcerative colitis, and diabetes are summarized. With a focus on T-cell immunotherapy, this review highlights the outstanding advantages of nanomedicines in disease treatment, and helps advance one's understanding of the use of nanotechnology to enhance T-cell immunotherapy.
Collapse
Affiliation(s)
- Fangzhou Li
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Jiang Ouyang
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Zuqin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Ziran Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Julien Milon Essola
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Barkat Ali
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- Food Sciences Research Institute, Pakistan Agricultural Research Council, 44000, Islamabad, Pakistan
| | - Xinyue Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengliang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Xing-Jie Liang
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Yu L, Zhou A, Jia J, Wang J, Ji X, Deng Y, Lin X, Wang F. Immunoactivity of a hybrid membrane biosurface on nanoparticles: enhancing interactions with dendritic cells to augment anti-tumor immune responses. Biomater Sci 2024; 12:1016-1030. [PMID: 38206081 DOI: 10.1039/d3bm01628e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Nano-biointerfaces play a pivotal role in determining the functionality of engineered therapeutic nanoparticles, particularly in the context of designing nanovaccines to effectively activate immune cells for cancer immunotherapy. Unlike involving chemical reactions by conventional surface decorating strategies, cell membrane-coating technology offers a straightforward approach to endow nanoparticles with natural biosurfaces, enabling them to mimic and integrate into the intricate biosystems of the body to interact with specific cells under physiological conditions. In this study, cell membranes, in a hybrid formulation, derived from cancer and activated macrophage cells were found to enhance the interaction of nanoparticles (HMP) with dendritic cells (DCs) and T cells among the mixed immune cells from lymph nodes (LNs), which could be leveraged in the development of nanovaccines for anti-tumor therapy. After loading with an adjuvant (R837), the nanoparticles coated with a hybrid membrane (HMPR) demonstrated effectiveness in priming DCs both in vitro and in vivo, resulting in amplified anti-tumor immune responses compared to those of nanoparticles coated with a single type of membrane or those lacking a membrane coating. The elevated immunoactivity of nanoparticles achieved by incorporating a hybrid membrane biosurface provides us a more profound comprehension of the nano-immune interaction, which may significantly benefit the development of bioactive nanomaterials for advanced therapy.
Collapse
Affiliation(s)
- Luying Yu
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Ao Zhou
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jingyan Jia
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Jieting Wang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Xueyang Ji
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu Deng
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Xinhua Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Fang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
12
|
Omotoso MO, Lanis MR, Schneck JP. Artificial Antigen-Presenting Cell Fabrication for Murine T Cell Expansion. Curr Protoc 2024; 4:e976. [PMID: 38400601 PMCID: PMC11062398 DOI: 10.1002/cpz1.976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Antigen-presenting cells (APCs), such as dendritic cells and macrophages, have a unique ability to survey the body and present information to T cells via peptide-loaded major histocompatibility complexes (signal 1). This presentation, along with a co-stimulatory signal (signal 2), leads to activation and subsequent expansion of T cells. This process can be harnessed and utilized for therapeutic applications, but the use of patient-derived APCs can be complex and inefficient. Alternatively, artificial APCs (aAPCs) provide a simplified method to achieve T cell activation by presenting the two necessary stimulatory signals. This protocol describes the utilization of magnetic nanoparticles and stimulatory proteins to create aAPCs that can be employed for activating and expanding antigen-specific T cells for both basic and translational immunology and immunotherapy studies. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Protein and particle modification for aAPC fabrication Basic Protocol 2: aAPC validation by immunolabeling of conjugated protein Support Protocol 1: Quantification of aAPC stock concentration Basic Protocol 3: Determination of aAPC usage for murine CD8+ T cell activation Support Protocol 2: Isolation of murine CD8+ T cells.
Collapse
Affiliation(s)
- Mary O. Omotoso
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD
- Departments of Pathology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mara R. Lanis
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD
- Departments of Pathology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan P. Schneck
- Departments of Pathology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
13
|
Xia X, Li Y, Xiao X, Zhang Z, Mao C, Li T, Wan M. Chemotactic Micro/Nanomotors for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306191. [PMID: 37775935 DOI: 10.1002/smll.202306191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Indexed: 10/01/2023]
Abstract
In nature, many organisms respond chemotactically to external chemical stimuli in order to extract nutrients or avoid danger. Inspired by this natural chemotaxis, micro/nanomotors with chemotactic properties have been developed and applied to study a variety of disease models. This chemotactic strategy has shown promising results and has attracted the attention of an increasing number of researchers. This paper mainly reviews the construction methods of different types of chemotactic micro/nanomotors, the mechanism of chemotaxis, and the potential applications in biomedicine. First, based on the classification of materials, the construction methods and therapeutic effects of chemotactic micro/nanomotors based on natural cells and synthetic materials in cellular and animal experiments will be elaborated in detail. Second, the mechanism of chemotaxis of micro/nanomotors is elaborated in detail: chemical reaction induced chemotaxis and physical process driven chemotaxis. In particular, the main differences and significant advantages between chemotactic micro/nanomotors and magnetic, electrical and optical micro/nanomotors are described. The applications of chemotactic micro/nanomotors in the biomedical fields in recent years are then summarized, focusing on the mechanism of action and therapeutic effects in cancer and cardiovascular disease. Finally, the authors are looking forward to the future development of chemotactic micro/nanomotors in the biomedical fields.
Collapse
Affiliation(s)
- Xue Xia
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiangyu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
14
|
Mahata D, Mukherjee D, Biswas D, Basak S, Basak AJ, Jamir I, Pandey N, Khatoon H, Samanta D, Basak A, Mukherjee G. Activation and differentiation of cognate T cells by a dextran-based antigen-presenting system for cancer immunotherapy. Eur J Immunol 2023; 53:e2350528. [PMID: 37698527 DOI: 10.1002/eji.202350528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Immunotherapeutic modulation of antigen-specific T-cell responses instead of the whole repertoire helps avoid immune-related adverse events. We have developed an artificial antigen-presenting system (aAPS) where multiple copies of a multimeric peptide-MHC class I complex presenting a murine class I MHC restricted ovalbumin-derived peptide (signal 1), along with a costimulatory ligand (signal 2) are chemically conjugated to a dextran backbone. Cognate naive CD8+ T cells, when treated with this aAPS underwent significant expansion and showed an activated phenotype. Furthermore, elevated expression of effector cytokines led to the differentiation of these cells to cytotoxic T lymphocytes which resulted in target cell lysis, indicative of the functional efficacy of the aAPS. CD8+ T cells with decreased proliferative potential due to repeated antigenic stimulation could also be re-expanded by the developed aAPS. Thus, the developed aAPS warrants further engineering for future application as a rapidly customizable personalized immunotherapeutic agent, incorporating patient-specific MHC-restricted tumor antigens and different costimulatory signals to modulate both naive and antigen-experienced but exhausted tumor-specific T cells in cancer.
Collapse
Affiliation(s)
- Dhrubajyoti Mahata
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Debangshu Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Debarati Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Shyam Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Aditya Jyoti Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Imlilong Jamir
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Nidhi Pandey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Huma Khatoon
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Amit Basak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Gayatri Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
15
|
Davis MA, Cho E, Teplensky MH. Harnessing biomaterial architecture to drive anticancer innate immunity. J Mater Chem B 2023; 11:10982-11005. [PMID: 37955201 DOI: 10.1039/d3tb01677c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Immunomodulation is a powerful therapeutic approach that harnesses the body's own immune system and reprograms it to treat diseases, such as cancer. Innate immunity is key in mobilizing the rest of the immune system to respond to disease and is thus an attractive target for immunomodulation. Biomaterials have widely been employed as vehicles to deliver immunomodulatory therapeutic cargo to immune cells and raise robust antitumor immunity. However, it is key to consider the design of biomaterial chemical and physical structure, as it has direct impacts on innate immune activation and antigen presentation to stimulate downstream adaptive immunity. Herein, we highlight the widespread importance of structure-driven biomaterial design for the delivery of immunomodulatory cargo to innate immune cells. The incorporation of precise structural elements can be harnessed to improve delivery kinetics, uptake, and the targeting of biomaterials into innate immune cells, and enhance immune activation against cancer through temporal and spatial processing of cargo to overcome the immunosuppressive tumor microenvironment. Structural design of immunomodulatory biomaterials will profoundly improve the efficacy of current cancer immunotherapies by maximizing the impact of the innate immune system and thus has far-reaching translational potential against other diseases.
Collapse
Affiliation(s)
- Meredith A Davis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Ezra Cho
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Michelle H Teplensky
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Department of Materials Science and Engineering, Boston University, Boston, Massachusetts, 02215, USA
| |
Collapse
|
16
|
Scotland BL, Cottingham AL, Lasola JJM, Hoag SW, Pearson RM. Development of protein-polymer conjugate nanoparticles for modulation of dendritic cell phenotype and antigen-specific CD4 T cell responses. ACS APPLIED POLYMER MATERIALS 2023; 5:8794-8807. [PMID: 38911349 PMCID: PMC11192461 DOI: 10.1021/acsapm.3c00548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Polymeric nanoparticles (NPs) comprised of poly(lactic-co-glycolic acid) (PLGA) have found success in modulating antigen (Ag)-specific T cell responses for the treatment multiple immunological diseases. Common methods by which Ags are associated with NPs are through encapsulation and surface conjugation; however, these methods suffer from several limitations, including uncontrolled Ag loading, burst release, and potential immune recognition. To overcome these limitations and study the relationship between NP design parameters and modulation of innate and Ag-specific adaptive immune cell responses, we developed ovalbumin (OVA) protein-PLGA bioconjugate NPs (acNP-OVA). OVA was first modified by conjugation with multiple PLGA polymers to synthesize OVA-PLGA conjugates, followed by precise combination with unmodified PLGA to form acNP-OVA with well-defined Ag loadings, reduced burst release, and reduced antibody recognition. Expression of MHC II, CD80, and CD86 on bone marrow-derived dendritic cells (BMDCs) increased as a function of acNP-OVA Ag loading. NanoString studies using BMDCs showed that PLGA NPs generally induced anti-inflammatory gene expression profiles independent of the Ag delivery method, where S100a9, Sell, and Ppbp were most significantly reduced. Co-culture studies using acNP-OVA-treated BMDCs and OT-II CD4+ T cells revealed that Ag-specific T cell activation, expansion, and differentiation were dependent on Ag loading and formulation parameters. CD25 expression was induced using acNP-OVA with the lowest Ag loading; however, the induction of robust CD4+ T cell proliferative and cytokine responses required acNP-OVA formulations with higher Ag loading, which was supported using a regulatory T cell (Treg) induction assay. The distinct differences in Ag loading required to achieve various T cell responses supported the concept of an Ag loading threshold for Ag-specific immunotherapy. We anticipate this work will help guide NP designs and aid in the future development of NP-based immunotherapies for Ag-specific immunomodulation.
Collapse
Affiliation(s)
- Brianna L. Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | - Andrea L. Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | - Jackline Joy M. Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Stephen W. Hoag
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | - Ryan M. Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
17
|
Hu X, Zhu H, He X, Chen J, Xiong L, Shen Y, Li J, Xu Y, Chen W, Liu X, Cao D, Xu X. The application of nanoparticles in immunotherapy for hepatocellular carcinoma. J Control Release 2023; 355:85-108. [PMID: 36708880 DOI: 10.1016/j.jconrel.2023.01.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related deaths worldwide, however, current clinical diagnostic and treatment approaches remain relatively limited, creating an urgent need for the development of effective technologies. Immunotherapy has emerged as a powerful treatment strategy for advanced cancer. The number of clinically approved drugs for HCC immunotherapy has been increasing. However, it remains challenging to improve their transport and therapeutic efficiency, control their targeting and release, and mitigate their adverse effects. Nanotechnology has recently gained attention for improving the effectiveness of precision therapy for HCC. We summarize the key features of HCC associated with nanoparticle (NPs) targeting, release, and uptake, the roles and limitations of several major immunotherapies in HCC, the use of NPs in immunotherapy, the properties of NPs that influence their design and application, and current clinical trials of NPs in HCC, with the aim of informing the design of delivery platforms that have the potential to improve the safety and efficacy of HCC immunotherapy,and thus, ultimately improve the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xinyao Hu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoqin He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lin Xiong
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayi Li
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dedong Cao
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
18
|
Haist M, Mailänder V, Bros M. Nanodrugs Targeting T Cells in Tumor Therapy. Front Immunol 2022; 13:912594. [PMID: 35693776 PMCID: PMC9174908 DOI: 10.3389/fimmu.2022.912594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
In contrast to conventional anti-tumor agents, nano-carriers allow co-delivery of distinct drugs in a cell type-specific manner. So far, many nanodrug-based immunotherapeutic approaches aim to target and kill tumor cells directly or to address antigen presenting cells (APC) like dendritic cells (DC) in order to elicit tumor antigen-specific T cell responses. Regulatory T cells (Treg) constitute a major obstacle in tumor therapy by inducing a pro-tolerogenic state in APC and inhibiting T cell activation and T effector cell activity. This review aims to summarize nanodrug-based strategies that aim to address and reprogram Treg to overcome their immunomodulatory activity and to revert the exhaustive state of T effector cells. Further, we will also discuss nano-carrier-based approaches to introduce tumor antigen-specific chimeric antigen receptors (CAR) into T cells for CAR-T cell therapy which constitutes a complementary approach to DC-focused vaccination.
Collapse
Affiliation(s)
| | | | - Matthias Bros
- University Medical Center Mainz, Department of Dermatology, Mainz, Germany
| |
Collapse
|
19
|
Punz B, Johnson L, Geppert M, Dang HH, Horejs-Hoeck J, Duschl A, Himly M. Surface Functionalization of Silica Nanoparticles: Strategies to Optimize the Immune-Activating Profile of Carrier Platforms. Pharmaceutics 2022; 14:pharmaceutics14051103. [PMID: 35631689 PMCID: PMC9146724 DOI: 10.3390/pharmaceutics14051103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Silica nanoparticles (SiNPs) are generally regarded as safe and may represent an attractive carrier platform for nanomedical applications when loaded with biopharmaceuticals. Surface functionalization by different chemistries may help to optimize protein loading and may further impact uptake into the targeted tissues or cells, however, it may also alter the immunologic profile of the carrier system. In order to circumvent side effects, novel carrier candidates need to be tested thoroughly, early in their development stage within the pharmaceutical innovation pipeline, for their potential to activate or modify the immune response. Previous studies have identified surface functionalization by different chemistries as providing a plethora of modifications for optimizing efficacy of biopharmaceutical (nano)carrier platforms while maintaining an acceptable safety profile. In this study, we synthesized SiNPs and chemically functionalized them to obtain different surface characteristics to allow their application as a carrier system for allergen-specific immunotherapy. In the present study, crude natural allergen extracts are used in combination with alum instead of well-defined active pharmaceutical ingredients (APIs), such as recombinant allergen, loaded onto (nano)carrier systems with immunologically inert and stable properties in suspension. This study was motivated by the hypothesis that comparing different charge states could allow tailoring of the binding capacity of the particulate carrier system, and hence the optimization of biopharmaceutical uptake while maintaining an acceptable safety profile, which was investigated by determining the maturation of human antigen-presenting cells (APCs). The functionalized nanoparticles were characterized for primary and hydrodynamic size, polydispersity index, zeta potential, endotoxin contamination. As potential candidates for allergen-specific immunotherapy, the differently functionalized SiNPs were non-covalently coupled with a highly purified, endotoxin-free recombinant preparation of the major birch pollen allergen Bet v 1 that functioned for further immunological testing. Binding efficiencies of allergen to SiNPs was controlled to determine uptake of API. For efficacy and safety assessment, we employed human monocyte-derived dendritic cells as model for APCs to detect possible differences in the particles’ APC maturation potential. Functionalization of SiNP did not affect the viability of APCs, however, the amount of API physisorbed onto the nanocarrier system, which induced enhanced uptake, mainly by macropinocytosis. We found slight differences in the maturation state of APCs for the differently functionalized SiNP–API conjugates qualifying surface functionalization as an effective instrument for optimizing the immune response towards SiNPs. This study further suggests that surface-functionalized SiNPs could be a suitable, immunologically inert vehicle for the efficient delivery of biopharmaceutical products, as evidenced here for allergen-specific immunotherapy.
Collapse
|