1
|
Yang C, Yang Y, Zhao G, Wang H, Dai Y, Huang X. A Low-Cost Microfluidic-Based Detection Device for Rapid Identification and Quantification of Biomarkers-Based on a Smartphone. BIOSENSORS 2023; 13:753. [PMID: 37504151 PMCID: PMC10377552 DOI: 10.3390/bios13070753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
The sensitive and rapid detection of microsamples is crucial for early diagnosis of diseases. The short response times and low sample volume requirements of microfluidic chips have shown great potential in early diagnosis, but there are still shortcomings such as complex preparation processes and high costs. We developed a low-cost smartphone-based fluorescence detection device (Smartphone-BFDD) without precision equipment for rapid identification and quantification of biomarkers on glass capillary. The device combines microfluidic technology with RGB image analysis, effectively reducing the sample volume to 20 μL and detection time to only 30 min. For the sensitivity of the device, we constructed a standard sandwich immunoassay (antibody-antigen-antibody) in a glass capillary using the N-protein of SARS-CoV-2 as a biological model, realizing a low limit of detection (LOD, 40 ng mL-1). This device provides potential applications for different biomarkers and offers wide use for rapid biochemical analysis in biomedical research.
Collapse
Affiliation(s)
- Chonghui Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yujing Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Gaozhen Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Huan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yang Dai
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
2
|
Yang G, Li Y, Tang C, Lin F, Wu T, Bao J. Smartphone-Based Quantitative Analysis of Protein Array Signals for Biomarker Detection in Lupus. CHEMOSENSORS (BASEL, SWITZERLAND) 2022; 10:330. [PMID: 36072130 PMCID: PMC9447405 DOI: 10.3390/chemosensors10080330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorescence-based microarray offers great potential in clinical diagnostics due to its high-throughput capability, multiplex capabilities, and requirement for a minimal volume of precious clinical samples. However, the technique relies on expensive and complex imaging systems for the analysis of signals. In the present study, we developed a smartphone-based application to analyze signals from protein microarrays to quantify disease biomarkers. The application adopted Android Studio open platform for its wide access to smartphones, and Python was used to design a graphical user interface with fast data processing. The application provides multiple user functions such as "Read", "Analyze", "Calculate" and "Report". For rapid and accurate results, we used ImageJ, Otsu thresholding, and local thresholding to quantify the fluorescent intensity of spots on the microarray. To verify the efficacy of the application, three antigens each with over 110 fluorescent spots were tested. Particularly, a positive correlation of over 0.97 was achieved when using this analytical tool compared to a standard test for detecting a potential biomarker in lupus nephritis. Collectively, this smartphone application tool shows promise for cheap, efficient, and portable on-site detection in point-of-care diagnostics.
Collapse
Affiliation(s)
- Guang Yang
- Materials Science & Engineering, University of Houston, Houston, TX 77204, USA
| | - Yaxi Li
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Chenling Tang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Feng Lin
- Department of Electrical and Computer Engineering, Texas Center for Superconductivity (TCSUH), University of Houston, Houston, TX 77204, USA
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Jiming Bao
- Materials Science & Engineering, University of Houston, Houston, TX 77204, USA
- Department of Electrical and Computer Engineering, Texas Center for Superconductivity (TCSUH), University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Li YS, Li QJ, Gao XF. A novel immobilization fluorescence capillary analysis method and its applications. Analyst 2020; 145:1980-1996. [PMID: 31984395 DOI: 10.1039/c9an01821b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescence capillary analysis (FCA) realizes trace-level analysis of micro-volume samples; it is easy to operate, extremely low in analytical cost and can significantly lessen environmental pollution from analytical chemistry waste. FCA has the characteristics of green analytical chemistry and has been applied in clinical, biochemical, pharmaceutical, food safety and other fields. FCA basically involves a micro-volume glass capillary, a capillary holder and an ordinary fluorescence detector. The capillary is not only a container for chemical reaction and detection but also functions as a carrier to immobilize enzymes, gene probes or reagents; it can be used repeatedly or can be disposable. In analysis, the capillary which is modified with functional reagents sucks in a measured liquid for the reaction and is then inserted into the holder within the fluorescent detector for measurement. The immobilized FCA method has been successfully used in the determination of reduced coenzyme I, ethanol in liqueur, lactic acid in dairy products, pyruvic acid and glucose in serum, trace-level sulfated bile acid in urine, the ratio of pyruvic/lactic acid in serum, and pyruvic acid in cells as well as in DNA end-labeling and dyeing methods. Further, FCA can also be extended to capillary arrays to complete multipurpose simultaneous determinations and can be combined with mobile phones as fluorescence detectors for use in mobile health analytical technology. FCA will produce considerable social benefits in medicine, pharmacy, fermentation of food, environmental protection and other fields. Therefore, the relevant contents are presented in this tutorial review.
Collapse
Affiliation(s)
- Yong-Sheng Li
- School of Chemical Engineering, Sichuan University, Chengdu 6100651, China.
| | | | | |
Collapse
|
4
|
Hernández-Neuta I, Neumann F, Brightmeyer J, Ba Tis T, Madaboosi N, Wei Q, Ozcan A, Nilsson M. Smartphone-based clinical diagnostics: towards democratization of evidence-based health care. J Intern Med 2019; 285:19-39. [PMID: 30079527 PMCID: PMC6334517 DOI: 10.1111/joim.12820] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advancements in bioanalytical techniques have led to the development of novel and robust diagnostic approaches that hold promise for providing optimal patient treatment, guiding prevention programs and widening the scope of personalized medicine. However, these advanced diagnostic techniques are still complex, expensive and limited to centralized healthcare facilities or research laboratories. This significantly hinders the use of evidence-based diagnostics for resource-limited settings and the primary care, thus creating a gap between healthcare providers and patients, leaving these populations without access to precision and quality medicine. Smartphone-based imaging and sensing platforms are emerging as promising alternatives for bridging this gap and decentralizing diagnostic tests offering practical features such as portability, cost-effectiveness and connectivity. Moreover, towards simplifying and automating bioanalytical techniques, biosensors and lab-on-a-chip technologies have become essential to interface and integrate these assays, bringing together the high precision and sensitivity of diagnostic techniques with the connectivity and computational power of smartphones. Here, we provide an overview of the emerging field of clinical smartphone diagnostics and its contributing technologies, as well as their wide range of areas of application, which span from haematology to digital pathology and rapid infectious disease diagnostics.
Collapse
Affiliation(s)
- I Hernández-Neuta
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| | - F Neumann
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| | - J Brightmeyer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - T Ba Tis
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - N Madaboosi
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| | - Q Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - A Ozcan
- Electrical and Computer Engineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - M Nilsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| |
Collapse
|
5
|
Song X, Nie R, Liu X, Chen Y, Yang L. Multiplex immunoassays using surface modification-mediated porous layer open tubular capillary. Anal Chim Acta 2018; 1043:1-10. [PMID: 30392656 DOI: 10.1016/j.aca.2018.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/01/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Abstract
We proposed an innovative surface modification-mediated porous layer open tubular (PLOT) capillary, which was modified via an in situ biphasic reaction. This capillary comprised three-dimensional homogeneous and porous structures, which could increase the surface-area-to-volume ratio for antibody immobilization. The PLOT capillary was shown as an ideal immunoreaction base to enhance the sensitivity of immunoassays and shorten analysis time. By connecting two separate PLOT capillaries using a suitable sleeve tube, we can perform multiplex targets detection in the same sample. We developed a sensitive, rapid, and multiplex PLOT capillary-mediated immunosensor for the simultaneous identification of alpha fetoprotein (AFP) and carcinoembryonic antigen (CEA) in clinical serum samples with good accuracy. The detection sensitivity of the PLOT immunosensor improved by 10-fold compared with that of bare-capillary sensor, and the whole analysis could be completed within 1 h. This work suggest that suitable surface modification strategy is an effective tool to improve the analytical performance of conventional immunoassay and our study provided a feasible, sensitive, and multi-target assay for the detection of cancer biomarkers, which would be of valuable application in clinical diagnosis.
Collapse
Affiliation(s)
- Xingda Song
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Rongbin Nie
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Xiaoxia Liu
- College of Arts and Sciences, Shanxi Agricultural University, Jinzhong, Shanxi Province, 030801, China
| | - Yiping Chen
- Beijing Engineering Research Center for BioNanotechnology & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
6
|
Streak Imaging Flow Cytometer for Rare Cell Analysis. Methods Mol Biol 2017. [PMID: 28281262 DOI: 10.1007/978-1-4939-6848-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
There is a need for simple and affordable techniques for cytology for clinical applications, especially for point-of-care (POC) medical diagnostics in resource-poor settings. However, this often requires adapting expensive and complex laboratory-based techniques that often require significant power and are too massive to transport easily. One such technique is flow cytometry, which has great potential for modification due to the simplicity of the principle of optical tracking of cells. However, it is limited in that regard due to the flow focusing technique used to isolate cells for optical detection. This technique inherently reduces the flow rate and is therefore unsuitable for rapid detection of rare cells which require large volume for analysis.To address these limitations, we developed a low-cost, mobile flow cytometer based on streak imaging. In our new configuration we utilize a simple webcam for optical detection over a large area associated with a wide-field flow cell. The new flow cell is capable of larger volume and higher throughput fluorescence detection of rare cells than the flow cells with hydrodynamic focusing used in conventional flow cytometry. The webcam is an inexpensive, commercially available system, and for fluorescence analysis we use a 1 W 450 nm blue laser to excite Syto-9 stained cells with emission at 535 nm. We were able to detect low concentrations of stained cells at high flow rates of 10 mL/min, which is suitable for rapidly analyzing larger specimen volumes to detect rare cells at appropriate concentration levels. The new rapid detection capabilities, combined with the simplicity and low cost of this device, suggest a potential for clinical POC flow cytometry in resource-poor settings associated with global health.
Collapse
|
7
|
Molina Recio G, García-Hernández L, Molina Luque R, Salas-Morera L. The role of interdisciplinary research team in the impact of health apps in health and computer science publications: a systematic review. Biomed Eng Online 2016; 15 Suppl 1:77. [PMID: 27454164 PMCID: PMC4959385 DOI: 10.1186/s12938-016-0185-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Several studies have estimated the potential economic and social impact of the mHealth development. Considering the latest study by Institute for Healthcare Informatics, more than 165.000 apps of health and medicine are offered including all the stores from different platforms. Thus, the global mHealth market was an estimated $10.5 billion in 2014 and is expected to grow 33.5 percent annually between 2015 and 2020s. In fact, apps of Health have become the third-fastest growing category, only after games and utilities. METHODS This study aims to identify, study and evaluate the role of interdisciplinary research teams in the development of articles and applications in the field of mHealth. It also aims to evaluate the impact that the development of mHealth has had on the health and computer science field, through the study of publications in specific databases for each area which have been published until nowadays. RESULTS Interdisciplinary nature is strongly connected to the scientific quality of the journal in which the work is published. This way, there are significant differences in those works that are made up by an interdisciplinary research team because of they achieve to publish in journals with higher quartiles. There are already studies that warn of methodological deficits in some studies in mHealth, low accuracy and no reproducibility. Studies of low precision and poor reproducibility, coupled with the low evidence, provide low degrees of recommendation of the interventions targeted and therefore low applicability. CONCLUSIONS From the evidence of this study, working in interdisciplinary groups from different areas greatly enhances the quality of research work as well as the quality of the publications derived from its results.
Collapse
|
8
|
Rasooly R, Bruck HA, Balsam J, Prickril B, Ossandon M, Rasooly A. Improving the Sensitivity and Functionality of Mobile Webcam-Based Fluorescence Detectors for Point-of-Care Diagnostics in Global Health. Diagnostics (Basel) 2016; 6:E19. [PMID: 27196933 PMCID: PMC4931414 DOI: 10.3390/diagnostics6020019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/19/2016] [Accepted: 05/06/2016] [Indexed: 12/20/2022] Open
Abstract
Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings.
Collapse
Affiliation(s)
- Reuven Rasooly
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94706, USA.
| | - Hugh Alan Bruck
- Department of Mechanical Engineering, University of Maryland College Park (UMCP), College Park, MD 20742, USA.
| | - Joshua Balsam
- Division of Chemistry and Toxicology Devices, Office of In Vitro Diagnostics and Radiological Health, FDA, Silver Spring, MD 20993, USA.
| | - Ben Prickril
- National Cancer Institute, Rockville, MD 208503, USA.
| | | | | |
Collapse
|
9
|
Taitt CR, Anderson GP, Ligler FS. Evanescent wave fluorescence biosensors: Advances of the last decade. Biosens Bioelectron 2016; 76:103-12. [PMID: 26232145 PMCID: PMC5012222 DOI: 10.1016/j.bios.2015.07.040] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 07/18/2015] [Indexed: 12/12/2022]
Abstract
Biosensor development has been a highly dynamic field of research and has progressed rapidly over the past two decades. The advances have accompanied the breakthroughs in molecular biology, nanomaterial sciences, and most importantly computers and electronics. The subfield of evanescent wave fluorescence biosensors has also matured dramatically during this time. Fundamentally, this review builds on our earlier 2005 review. While a brief mention of seminal early work will be included, this current review will focus on new technological developments as well as technology commercialized in just the last decade. Evanescent wave biosensors have found a wide array applications ranging from clinical diagnostics to biodefense to food testing; advances in those applications and more are described herein.
Collapse
Affiliation(s)
- Chris Rowe Taitt
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5348, USA
| | - George P Anderson
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5348, USA
| | - Frances S Ligler
- UNC-Chapel Hill and NC State University Department of Biomedical Engineering, 911 Oval Drive, Raleigh, NC 27695-7115, USA.
| |
Collapse
|
10
|
|
11
|
Petryayeva E, Algar WR. A job for quantum dots: use of a smartphone and 3D-printed accessory for all-in-one excitation and imaging of photoluminescence. Anal Bioanal Chem 2016; 408:2913-25. [DOI: 10.1007/s00216-015-9300-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
|
12
|
Balsam J, Bruck HA, Rasooly A. Two-layer Lab-on-a-chip (LOC) with passive capillary valves for mHealth medical diagnostics. Methods Mol Biol 2015; 1256:247-58. [PMID: 25626544 DOI: 10.1007/978-1-4939-2172-0_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
There is a new potential to address needs for medical diagnostics in Point-of-Care (PoC) applications using mHealth (Mobile computing, medical sensors, and communications technologies for health care), a mHealth based lab test will require a LOC to perform clinical analysis. In this work, we describe the design of a simple Lab-on-a-chip (LOC) platform for mHealth medical diagnostics. The LOC utilizes a passive capillary valve with no moving parts for fluid control using channels with very low aspect ratios cross sections (i.e., channel width ≫ height) achieved through transitions in the channel geometry via that arrest capillary flow. Using a CO2 laser in raster engraving mode, we have designed and fabricated an eight-channel LOC for fluorescence signal detection fabricated by engraving and combining just two polymer layers. Each of the LOC channels is capable of mixing two reagents (e.g., enzyme and substrate) for various assays. For mHealth detection, we used a mobile CCD detector equipped with LED multispectral illumination in the red, green, blue, and white range. This technology enables the development of low-cost LOC platforms for mHealth whose fabrication is compatible with standard industrial plastic fabrication processes to enable mass production of mHealth diagnostic devices, which may broaden the use of LOCs in PoC applications, especially in global health settings.
Collapse
Affiliation(s)
- Joshua Balsam
- Division of Biology, Office of Science and Engineering, FDA, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | | | | |
Collapse
|
13
|
Balsam J, Bruck HA, Rasooly A. Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput. Analyst 2015; 139:4322-9. [PMID: 24995370 DOI: 10.1039/c4an00669k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Here we describe a novel low-cost flow cytometer based on a webcam capable of low cell number detection in a large volume which may overcome the limitations of current flow cytometry. Several key elements have been combined to yield both high throughput and high sensitivity. The first element is a commercially available webcam capable of 187 frames per second video capture at a resolution of 320 × 240 pixels. The second element in this design is a 1 W 450 nm laser module for area-excitation, which combined with the webcam allows for rapid interrogation of a flow field. The final element is a 2D flow-cell which overcomes the flow limitation of hydrodynamic focusing and allows for higher sample throughput in a wider flow field. This cell allows for the linear velocity of target cells to be lower than in a conventional "1D" hydrodynamic focusing flow-cells typically used in cytometry at similar volumetric flow rates. It also allows cells to be imaged at the full frame rate of the webcam. Using this webcam-based flow cytometer with wide-field imaging, it was confirmed that the detection of fluorescently tagged 5 μm polystyrene beads in "1D" hydrodynamic focusing flow-cells was not practical for low cell number detection due to streaking from the motion of the beads, which did not occur with the 2D flow-cell design. The sensitivity and throughput of this webcam-based flow cytometer was then investigated using THP-1 human monocytes stained with SYTO-9 florescent dye in the 2D flow-cell. The flow cytometer was found to be capable of detecting fluorescently tagged cells at concentrations as low as 1 cell per mL at flow rates of 500 μL min(-1) in buffer and in blood. The effectiveness of detection was concentration dependent: at 100 cells per mL 84% of the cells were detected compared to microscopy, 10 cells per mL 79% detected and 1 cell per mL 59% of the cells were detected. With the blood samples spiked to 100 cells per mL, the average concentration for all samples was 91.4 cells per mL, with a 95% confidence interval of 86-97 cells per mL. These low cell concentrations and the large volume capabilities of the system may overcome the limitations of current cytometry, and are applicable to rare cell (such as circulating tumor cell) detection The simplicity and low cost of this device suggests that it may have a potential use in developing point-of-care clinical flow cytometry for resource-poor settings associated with global health.
Collapse
Affiliation(s)
- Joshua Balsam
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD 20993, USA
| | | | | |
Collapse
|
14
|
Abstract
Options for biomedical analysis continue to evolve from many fields of study, employing diverse detection and quantification methods. New technologies in this arena focus on improving the sensitivity of analysis and the speed of testing, as well as producing systems at low cost which can be used on site as a point-of-care device for telemedicine applications. In this article, the most important original experimental platforms as well as current commercial approaches to biomedical analysis are critically chosen and reviewed, covering January 2010 to January 2014. While literature is quite broad and numerous, there is clear emphasis on biological recognition and imaging for the most impactful works. The analytical approaches are discussed in terms of their utility in diagnostics and biomedical testing.
Collapse
Affiliation(s)
- Christine F Woolley
- Chemistry and Biochemistry, Arizona State University, Physical Sciences Building, Room D-102, PO Box 871604, Tempe, Arizona 85287-1604, USA.
| | | |
Collapse
|
15
|
Abstract
We describe here a compact smartphone-based fluorescence detector for mHealth. A key element to achieving high sensitivity using low sensitivity phone cameras is a capillary array, which increases sensitivity by 100×. The capillary array was combined with a white LED illumination system to enable wide spectra fluorescent excitation in the range of 450-740 nm. The detector utilizes an orthographic projection system to form parallel light projection images from the capillaries at a close distance via an object-space telecentric lens configuration that reduces the total lens-to-object distance while maintaining uniformity in measurement between capillaries. To further increase the limit of detection (LOD), a computational image processing approach was employed to decrease the level of noise. This enables an additional 5-10× decrease in LOD. This smartphone-based detector was used to measure serial dilutions of fluorescein with a LOD of 1 nM with image stacking and 10 nM without image stacking, similar to the LOD obtained with a commercial plate reader. Moreover, the capillary array required a sample volume of less than 10 μl, which is an order of magnitude less than the 100 μl required for the plate reader.As fluorescence detection is widely used in sensitive biomedical assays, the approach described here has the potential to increase mHealth clinical utility, especially for telemedicine and for resource-poor settings in global health applications.
Collapse
Affiliation(s)
- Joshua Balsam
- Division of Biology, Office of Science and Engineering, FDA, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | | | | |
Collapse
|
16
|
Abstract
Flow cytometry is used for cell counting and analysis in numerous clinical and environmental applications. However flow cytometry is not used in mHealth mainly because current flow cytometers are large, expensive, power-intensive devices designed to operate in a laboratory. Their design results in a lack of portability and makes them unsuitable for mHealth applications. Another limitation of current technology is the low volumetric throughput rates that are not suitable for rapid detection of rare cells.To address these limitations, we describe here a novel, low-cost, mobile flow cytometer based on wide-field imaging with a webcam for large volume and high throughput fluorescence detection of rare cells as a simulation for circulating tumor cells (CTCs) detection. The mobile flow cytometer uses a commercially available webcam capable of 187 frames per second video capture at a resolution of 320 × 240 pixels. For fluorescence detection, a 1 W 450 nm blue laser is used for excitation of Syto-9 fluorescently stained cells detected at 535 nm. A wide-field flow cell was developed for large volume analysis that allows for the linear velocity of target cells to be lower than in conventional hydrodynamic focusing flow cells typically used in cytometry. The mobile flow cytometer was found to be capable of detecting low concentrations at flow rates of 500 μL/min, suitable for rare cell detection in large volumes. The simplicity and low cost of this device suggests that it may have a potential clinical use for mHealth flow cytometry for resource-poor settings associated with global health.
Collapse
Affiliation(s)
- Joshua Balsam
- Division of Biology, Office of Science and Engineering, FDA, Silver Spring, MD, 20993, USA
| | | | | |
Collapse
|