1
|
Xing R, Yu H, Yu J, Zeng R, Xiang Z, Ma H, Li G, Zhao Y. Identification of key genes affecting ventilator-induced diaphragmatic dysfunction in diabetic mice. Front Genet 2024; 15:1387688. [PMID: 38784031 PMCID: PMC11112022 DOI: 10.3389/fgene.2024.1387688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Background Mechanical ventilation (MV) is often required in critically ill patients. However, prolonged mechanical ventilation can lead to Ventilator-induced diaphragmatic dysfunction (VIDD), resulting in difficulty in extubation after tracheal intubation, prolonged ICU stay, and increased mortality. At present, the incidence of diabetes is high in the world, and the prognosis of diabetic patients with mechanical ventilation is generally poor. Therefore, the role of diabetes in the development of VIDD needs to be discovered. Methods MV modeling was performed on C57 mice and DB mice, and the control group was set up in each group. After 12 h of mechanical ventilation, the muscle strength of the diaphragm was measured, and the muscle fiber immunofluorescence staining was used to verify the successful establishment of the MV model. RNA sequencing (RNA-seq) method was used to detect mRNA expression levels of the diaphragms of each group, and then differential expressed gene analysis, Heatmap analysis, WGCNA analysis, Venn analysis, GO and KEGG enrichment analysis were performed. qRT-PCR was used to verify the expression of the selected mRNAs. Results Our results showed that, compared with C57 control mice, the muscle strength and muscle fiber cross-sectional area of mice after mechanical ventilation decreased, and DB mice showed more obvious in this respect. RNA-seq showed that these differential expressed (DE) mRNAs were mainly related to genes such as extracellular matrix, collagen, elastic fiber and Fbxo32. GO and KEGG enrichment analysis showed that the signaling pathways associated with diabetes were mainly as follows: extracellular matrix (ECM), protein digestion and absorption, PI3K-Akt signaling pathway, calcium signaling pathway, MAPK signaling pathway and AGE-RAGE signaling pathway in diabetic complications, etc. ECM has the closest relationship with VIDD in diabetic mice. The key genes determined by WGCNA and Venn analysis were validated by quantitative real-time polymerase chain reaction (qRT-PCR), which exhibited trends similar to those observed by RNA-seq. Conclusion VIDD can be aggravated in diabetic environment. This study provides new evidence for mRNA changes after mechanical ventilation in diabetic mice, suggesting that ECM and collagen may play an important role in the pathophysiological mechanism and progression of VIDD in diabetic mice, and provides some clues for the research, diagnosis, and treatment of VIDD in diabetic context.
Collapse
Affiliation(s)
- Rongchun Xing
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- The First College of Clinical Medical Science, Three Gorges University, Yichang, China
| | - Haibo Yu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiangtao Yu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rong Zeng
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhijun Xiang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haoli Ma
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Gang Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Quereda C, Pastor À, Martín-Nieto J. Involvement of abnormal dystroglycan expression and matriglycan levels in cancer pathogenesis. Cancer Cell Int 2022; 22:395. [PMID: 36494657 PMCID: PMC9733019 DOI: 10.1186/s12935-022-02812-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Dystroglycan (DG) is a glycoprotein composed of two subunits that remain non-covalently bound at the plasma membrane: α-DG, which is extracellular and heavily O-mannosyl glycosylated, and β-DG, an integral transmembrane polypeptide. α-DG is involved in the maintenance of tissue integrity and function in the adult, providing an O-glycosylation-dependent link for cells to their extracellular matrix. β-DG in turn contacts the cytoskeleton via dystrophin and participates in a variety of pathways transmitting extracellular signals to the nucleus. Increasing evidence exists of a pivotal role of DG in the modulation of normal cellular proliferation. In this context, deficiencies in DG glycosylation levels, in particular those affecting the so-called matriglycan structure, have been found in an ample variety of human tumors and cancer-derived cell lines. This occurs together with an underexpression of the DAG1 mRNA and/or its α-DG (core) polypeptide product or, more frequently, with a downregulation of β-DG protein levels. These changes are in general accompanied in tumor cells by a low expression of genes involved in the last steps of the α-DG O-mannosyl glycosylation pathway, namely POMT1/2, POMGNT2, CRPPA, B4GAT1 and LARGE1/2. On the other hand, a series of other genes acting earlier in this pathway are overexpressed in tumor cells, namely DOLK, DPM1/2/3, POMGNT1, B3GALNT2, POMK and FKTN, hence exerting instead a pro-oncogenic role. Finally, downregulation of β-DG, altered β-DG processing and/or impaired β-DG nuclear levels are increasingly found in human tumors and cell lines. It follows that DG itself, particular genes/proteins involved in its glycosylation and/or their interactors in the cell could be useful as biomarkers of certain types of human cancer, and/or as molecular targets of new therapies addressing these neoplasms.
Collapse
Affiliation(s)
- Cristina Quereda
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain
| | - Àngels Pastor
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain
| | - José Martín-Nieto
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain ,grid.5268.90000 0001 2168 1800Instituto Multidisciplinar para el Estudio del Medio ‘Ramón Margalef’, Universidad de Alicante, 03080 Alicante, Spain
| |
Collapse
|
3
|
Dang K, Jiang S, Gao Y, Qian A. The role of protein glycosylation in muscle diseases. Mol Biol Rep 2022; 49:8037-8049. [DOI: 10.1007/s11033-022-07334-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
|
4
|
Tsukui R, Yamamoto T, Okamura Y, Kato Y, Shibata N. Fukutin regulates tau phosphorylation and synaptic function: Novel properties of fukutin in neurons. Neuropathology 2022; 42:28-39. [PMID: 35026860 PMCID: PMC9305503 DOI: 10.1111/neup.12797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
Fukutin, a product of the causative gene of Fukuyama congenital muscular dystrophy (FCMD), is known to be responsible for basement membrane formation. Patients with FCMD exhibit not only muscular dystrophy but also central nervous system abnormalities, including polymicrogyria and neurofibrillary tangles (NFTs) in the cerebral cortex. The formation of NFTs cannot be explained by basement membrane disorganization. To determine the involvement of fukutin in the NFT formation, we performed molecular pathological investigations using autopsied human brains and cultured neurons of a cell line (SH-SY5Y). In human brains, NFTs, identified with an antibody against phosphorylated tau (p-tau), were observed in FCMD patients but not age-matched control subjects and were localized in cortical neurons lacking somatic immunoreactivity for glutamic acid decarboxylase (GAD), a marker of inhibitory neurons. In FCMD brains, NFTs were mainly distributed in lesions of polymicrogyria. Immunofluorescence staining revealed the colocalization of immunoreactivities for p-tau and phosphorylated glycogen synthase kinase-3β (GSK-3β), a potential tau kinase, in the somatic cytoplasm of SH-SY5Y cells; both the immunoreactivities were increased by fukutin knockdown and reduced by fukutin overexpression. Western blot analysis using SH-SY5Y cells revealed consistent results. Enzyme-linked immunosorbent assay (ELISA) confirmed the binding affinity of fukutin to tau and GSK-3β in SH-SY5Y cells. In the human brains, the density of GAD-immunoreactive neurons in the frontal cortex was significantly higher in the FCMD group than in the control group. GAD immunoreactivity on Western blots of SH-SY5Y cells was significantly increased by fukutin knockdown. On immunofluorescence staining, immunoreactivities for fukutin and GAD were colocalized in the somatic cytoplasm of the human brains and SH-SY5Y cells, whereas those for fukutin and synaptophysin were colocalized in the neuropil of the human brains and the cytoplasm of SH-SY5Y cells. ELISA confirmed the binding affinity of fukutin to GAD and synaptophysin in SH-SY5Y cells. The present results provide in vivo and in vitro evidence for novel properties of fukutin as follows: (i) there is an inverse relationship between fukutin expression and GSK-3β/tau phosphorylation in neurons; (ii) fukutin binds to GSK-3β and tau; (iii) tau phosphorylation occurs in non-GAD-immunoreactive neurons in FCMD brains; (iv) neuronal GAD expression is upregulated in the absence of fukutin; and (v) fukutin binds to GAD and synaptophysin in presynaptic vesicles of neurons.
Collapse
Affiliation(s)
- Ryota Tsukui
- Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.,Division of Human Pathology & Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomoko Yamamoto
- Division of Human Pathology & Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan.,Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yukinori Okamura
- Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.,Division of Human Pathology & Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoichiro Kato
- Division of Human Pathology & Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Noriyuki Shibata
- Division of Human Pathology & Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan.,Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
5
|
Rebelo AL, Bizeau J, Russo L, Pandit A. Glycan-Functionalized Collagen Hydrogels Modulate the Glycoenvironment of a Neuronal Primary Culture. Biomacromolecules 2020; 21:2681-2694. [DOI: 10.1021/acs.biomac.0c00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ana Lúcia Rebelo
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland H91 W2TY
| | - Joëlle Bizeau
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland H91 W2TY
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland H91 W2TY
| |
Collapse
|
6
|
Jones TI, Chew GL, Barraza-Flores P, Schreier S, Ramirez M, Wuebbles RD, Burkin DJ, Bradley RK, Jones PL. Transgenic mice expressing tunable levels of DUX4 develop characteristic facioscapulohumeral muscular dystrophy-like pathophysiology ranging in severity. Skelet Muscle 2020; 10:8. [PMID: 32278354 PMCID: PMC7149937 DOI: 10.1186/s13395-020-00227-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND All types of facioscapulohumeral muscular dystrophy (FSHD) are caused by the aberrant activation of the somatically silent DUX4 gene, the expression of which initiates a cascade of cellular events ultimately leading to FSHD pathophysiology. Typically, progressive skeletal muscle weakness becomes noticeable in the second or third decade of life, yet there are many individuals who are genetically FSHD but develop symptoms much later in life or remain relatively asymptomatic throughout their lives. Conversely, FSHD may clinically present prior to 5-10 years of age, ultimately manifesting as a severe early-onset form of the disease. These phenotypic differences are thought to be due to the timing and levels of DUX4 misexpression. METHODS FSHD is a dominant gain-of-function disease that is amenable to modeling by DUX4 overexpression. We have recently created a line of conditional DUX4 transgenic mice, FLExDUX4, that develop a myopathy upon induction of human DUX4-fl expression in skeletal muscle. Here, we use the FLExDUX4 mouse crossed with the skeletal muscle-specific and tamoxifen-inducible line ACTA1-MerCreMer to generate a highly versatile bi-transgenic mouse model with chronic, low-level DUX4-fl expression and cumulative mild FSHD-like pathology that can be reproducibly induced to develop more severe pathology via tamoxifen induction of DUX4-fl in skeletal muscles. RESULTS We identified conditions to generate FSHD-like models exhibiting reproducibly mild, moderate, or severe DUX4-dependent pathophysiology and characterized progression of pathology. We assayed DUX4-fl mRNA and protein levels, fitness, strength, global gene expression, and histopathology, all of which are consistent with an FSHD-like myopathic phenotype. Importantly, we identified sex-specific and muscle-specific differences that should be considered when using these models for preclinical studies. CONCLUSIONS The ACTA1-MCM;FLExDUX4 bi-transgenic mouse model has mild FSHD-like pathology and detectable muscle weakness. The onset and progression of more severe DUX4-dependent pathologies can be controlled via tamoxifen injection to increase the levels of mosaic DUX4-fl expression, providing consistent and readily screenable phenotypes for assessing therapies targeting DUX4-fl mRNA and/or protein and are useful to investigate certain conserved downstream FSHD-like pathophysiology. Overall, this model supports that DUX4 expression levels in skeletal muscle directly correlate with FSHD-like pathology by numerous metrics.
Collapse
Affiliation(s)
- Takako I. Jones
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Guo-Liang Chew
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Current Address: The Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pamela Barraza-Flores
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Spencer Schreier
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Monique Ramirez
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Ryan D. Wuebbles
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Dean J. Burkin
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Peter L. Jones
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| |
Collapse
|
7
|
Accorsi A, Cramer ML, Girgenrath M. Fibrogenesis in LAMA2-Related Muscular Dystrophy Is a Central Tenet of Disease Etiology. Front Mol Neurosci 2020; 13:3. [PMID: 32116541 PMCID: PMC7010923 DOI: 10.3389/fnmol.2020.00003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
LAMA2-related congenital muscular dystrophy, also known as MDC1A, is caused by loss-of-function mutations in the alpha2 chain of Laminin-211. Loss of this protein interrupts the connection between the muscle cell and its extracellular environment and results in an aggressive, congenital-onset muscular dystrophy characterized by severe hypotonia, lack of independent ambulation, and early mortality driven by respiratory complications and/or failure to thrive. Of the pathomechanisms of MDC1A, the earliest and most prominent is widespread and rampant fibrosis. Here, we will discuss some of the key drivers of fibrosis including TGF-beta and renin–angiotensin system signaling and consequences of these pathways including myofibroblast transdifferentiation and matrix remodeling. We will also highlight some of the differences in fibrogenesis in congenital muscular dystrophy (CMD) with that seen in Duchenne muscular dystrophy (DMD). Finally, we will connect the key signaling pathways in the pathogenesis of MDC1A to the current status of the therapeutic approaches that have been tested in the preclinical models of MDC1A to treat fibrosis.
Collapse
Affiliation(s)
| | - Megan L Cramer
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA, United States
| | | |
Collapse
|
8
|
Orsini M, Carolina A, Ferreira ADF, de Assis ACD, Magalhães T, Teixeira S, Bastos VH, Marinho V, Oliveira T, Fiorelli R, Oliveira AB, de Freitas MR. Cognitive impairment in neuromuscular diseases: A systematic review. Neurol Int 2018; 10:7473. [PMID: 30069288 PMCID: PMC6050451 DOI: 10.4081/ni.2018.7473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular diseases are multifactorial pathologies characterized by extensive muscle fiber damage that leads to the activation of satellite cells and to the exhaustion of their pool, with consequent impairment of neurobiological aspects, such as cognition and motor control. To review the knowledge and obtain a broad view of the cognitive impairment on Neuromuscular Diseases. Cognitive impairment in neuromuscular disease was explored; a literature search up to October 2017 was conducted, including experimental studies, case reports and reviews written in English. Keywords included Cognitive Impairment, Neuromuscular Diseases, Motor Neuron Diseases, Dystrophinopathies and Mitochondrial Disorders. Several cognitive evaluation scales, neuroimaging scans, genetic analysis and laboratory applications in neuromuscular diseases, especially when it comes to the Motor Neuron Diseases, Dystrophinopathies and Mitochondrial Disorders. In addition, organisms model using rats in the genetic analysis and laboratory applications to verify the cognitive and neuromuscular impacts. Several studies indicate that congenital molecular alterations in neuromuscular diseases promote cognitive dysfunctions. Understanding these mechanisms may in the future guide the proper management of the patient, evaluation, establishment of prognosis, choice of treatment and development of innovative interventions such as gene therapy.
Collapse
Affiliation(s)
- Marco Orsini
- Master’s Program in Health Applied Sciences, Severino Sombra University, Vasssouras, Rio de Janeiro
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba
| | | | | | - Anna Carolina Damm de Assis
- Department of Neurology, Federal Fluminense University, Rio de Janeiro
- Department of Neurology, Federal University of São Paulo
| | - Thais Magalhães
- Department of Neurology, Federal Fluminense University, Rio de Janeiro
| | - Silmar Teixeira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba
| | - Victor Hugo Bastos
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba
| | - Victor Marinho
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba
| | - Thomaz Oliveira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba
| | - Rossano Fiorelli
- Master’s Program in Health Applied Sciences, Severino Sombra University, Vasssouras, Rio de Janeiro
| | | | | |
Collapse
|
9
|
Jones T, Jones PL. A cre-inducible DUX4 transgenic mouse model for investigating facioscapulohumeral muscular dystrophy. PLoS One 2018; 13:e0192657. [PMID: 29415061 PMCID: PMC5802938 DOI: 10.1371/journal.pone.0192657] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/26/2018] [Indexed: 11/19/2022] Open
Abstract
The Double homeobox 4 (DUX4) gene is an important regulator of early human development and its aberrant expression is causal for facioscapulohumeral muscular dystrophy (FSHD). The DUX4-full length (DUX4-fl) mRNA splice isoform encodes a transcriptional activator; however, DUX4 and its unique DNA binding preferences are specific to old-world primates. Regardless, the somatic cytotoxicity caused by DUX4 expression is conserved when expressed in cells and animals ranging from fly to mouse. Thus, viable animal models based on DUX4-fl expression have been difficult to generate due in large part to overt developmental toxicity of low DUX4-fl expression from leaky transgenes. We have overcome this obstacle and here we report the generation and initial characterization of a line of conditional floxed DUX4-fl transgenic mice, FLExDUX4, that is viable and fertile. In the absence of cre, these mice express a very low level of DUX4-fl mRNA from the transgene, resulting in mild phenotypes. However, when crossed with appropriate cre-driver lines of mice, the double transgenic offspring readily express DUX4-fl mRNA, protein, and target genes with the spatiotemporal pattern of nuclear cre expression dictated by the chosen system. When cre is expressed from the ACTA1 skeletal muscle-specific promoter, the double transgenic animals exhibit a developmental myopathy. When crossed with tamoxifen-inducible cre lines, DUX4-mediated pathology can be induced in adult animals. Thus, the appearance and progression of pathology can be controlled to provide readily screenable phenotypes useful for assessing therapeutic approaches targeting DUX4-fl mRNA and protein. Overall, the FLExDUX4 line of mice is quite versatile and will allow new investigations into mechanisms of DUX4-mediated pathophysiology as well as much-needed pre-clinical testing of DUX4-targeted FSHD interventions in vivo.
Collapse
Affiliation(s)
- Takako Jones
- Department of Pharmacology, Center for Molecular Medicine, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Peter L. Jones
- Department of Pharmacology, Center for Molecular Medicine, University of Nevada, Reno School of Medicine, Reno, Nevada, United States of America
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
10
|
Nichols C, Jain MS, Meilleur KG, Wu T, Collins J, Waite MR, Dastgir J, Salman A, Donkervoort S, Duong T, Keller K, Leach ME, Lott DJ, McGuire MN, Nelson L, Rutkowski A, Vuillerot C, Bönnemann CG, Lehky TJ. Electrical impedance myography in individuals with collagen 6 and laminin α-2 congenital muscular dystrophy: a cross-sectional and 2-year analysis. Muscle Nerve 2017; 57:54-60. [PMID: 28224647 DOI: 10.1002/mus.25629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 02/10/2017] [Accepted: 02/19/2017] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Electrical impedance myography (EIM) is a noninvasive electrophysiological technique that characterizes muscle properties through bioimpedance. We compared EIM measurements to function, strength, and disease severity in a population with congenital muscular dystrophy (CMD). METHODS Forty-one patients with CMD, either collagen 6 related disorders (COL6-RD; n = 21) or laminin α-2-related disorders (LAMA2-RD; n = 20), and 21 healthy pediatric controls underwent 2 yearly EIM exams. In the CMD cohorts, EIM was compared with functional and strength measurements. RESULTS Both CMD cohorts exhibited change over time and had correlation with disease severity. The 50-kHZ phase correlated well with function and strength in the COL6-RD cohort but not in the LAMA2-RD cohort. DISCUSSION EIM is a potentially useful measure in clinical studies with CMD because of its sensitivity to change over a 1-year period and correlation with disease severity. For COL6-RD, there were also functional and strength correlations. Muscle Nerve 57: 54-60, 2018.
Collapse
Affiliation(s)
- Carmel Nichols
- Mark O. Hatfield Clinical Research Center, National Institutes of Health, Bethesda, Maryland, USA.,University of Chicago School of Medicine, Chicago, Illinois, USA
| | - Minal S Jain
- Mark O. Hatfield Clinical Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine G Meilleur
- Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Tianxia Wu
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - James Collins
- Mercy Clinic Pediatric Neurology, Springfield, Missouri, USA
| | - Melissa R Waite
- Mark O. Hatfield Clinical Research Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Anam Salman
- EMG Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10/Room 7-5680, Bethesda, Maryland, 20892-1404, USA.,Mercy Hospital, Baltimore, Maryland, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Tina Duong
- Stanford Children's Health, Palo Alto, California, USA
| | | | - Meganne E Leach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Leslie Nelson
- University of Texas Southwestern Medical Center, Dallas Texas, USA
| | - Anne Rutkowski
- Kaiser Permanente SCPMG Cure CMD, Los Angeles, California, USA
| | - Carole Vuillerot
- Hospices Civils de Lyon, Hôpital femme Mère enfant, Bron, France.,Université de Lyon, Lyon, France
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Tanya J Lehky
- EMG Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10/Room 7-5680, Bethesda, Maryland, 20892-1404, USA
| |
Collapse
|
11
|
Subramanian A, Schilling TF. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development 2016; 142:4191-204. [PMID: 26672092 DOI: 10.1242/dev.114777] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tendons and ligaments are extracellular matrix (ECM)-rich structures that interconnect muscles and bones. Recent work has shown how tendon fibroblasts (tenocytes) interact with muscles via the ECM to establish connectivity and strengthen attachments under tension. Similarly, ECM-dependent interactions between tenocytes and cartilage/bone ensure that tendon-bone attachments form with the appropriate strength for the force required. Recent studies have also established a close lineal relationship between tenocytes and skeletal progenitors, highlighting the fact that defects in signals modulated by the ECM can alter the balance between these fates, as occurs in calcifying tendinopathies associated with aging. The dynamic fine-tuning of tendon ECM composition and assembly thus gives rise to the remarkable characteristics of this unique tissue type. Here, we provide an overview of the functions of the ECM in tendon formation and maturation that attempts to integrate findings from developmental genetics with those of matrix biology.
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| |
Collapse
|
12
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
13
|
Mohamed JS, Hajira A, Lopez MA, Boriek AM. Genome-wide Mechanosensitive MicroRNA (MechanomiR) Screen Uncovers Dysregulation of Their Regulatory Networks in the mdm Mouse Model of Muscular Dystrophy. J Biol Chem 2015; 290:24986-5011. [PMID: 26272747 DOI: 10.1074/jbc.m115.659375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 11/06/2022] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of genetic and neuromuscular disorders, which result in severe loss of motor ability and skeletal muscle mass and function. Aberrant mechanotransduction and dysregulated-microRNA pathways are often associated with the progression of MD. Here, we hypothesized that dysregulation of mechanosensitive microRNAs (mechanomiRs) in dystrophic skeletal muscle plays a major role in the progression of MD. To test our hypothesis, we performed a genome-wide expression profile of anisotropically regulated mechanomiRs and bioinformatically analyzed their target gene networks. We assessed their functional roles in the advancement of MD using diaphragm muscles from mdm (MD with myositis) mice, an animal model of human tibial MD (titinopathy), and their wild-type littermates. We were able to show that ex vivo anisotropic mechanical stretch significantly alters the miRNA expression profile in diaphragm muscles from WT and mdm mice; as a result, some of the genes associated with MDs are dysregulated in mdm mice due to differential regulation of a distinct set of mechanomiRs. Interestingly, we found a contrasting expression pattern of the highly expressed let-7 family mechanomiRs, let-7e-5p and miR-98-5p, and their target genes associated with the extracellular matrix and TGF-β pathways, respectively, between WT and mdm mice. Gain- and loss-of-function analysis of let-7e-5p in myocytes isolated from the diaphragms of WT and mdm mice confirmed Col1a1, Col1a2, Col3a1, Col24a1, Col27a1, Itga1, Itga4, Scd1, and Thbs1 as target genes of let-7e-5p. Furthermore, we found that miR-98 negatively regulates myoblast differentiation. Our study therefore introduces additional biological players in the regulation of skeletal muscle structure and myogenesis that may contribute to unexplained disorders of MD.
Collapse
Affiliation(s)
- Junaith S Mohamed
- From the Pulmonary and Critical Care Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Ameena Hajira
- From the Pulmonary and Critical Care Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Michael A Lopez
- From the Pulmonary and Critical Care Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Aladin M Boriek
- From the Pulmonary and Critical Care Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
14
|
Dwyer CA, Katoh T, Tiemeyer M, Matthews RT. Neurons and glia modify receptor protein-tyrosine phosphatase ζ (RPTPζ)/phosphacan with cell-specific O-mannosyl glycans in the developing brain. J Biol Chem 2015; 290:10256-73. [PMID: 25737452 DOI: 10.1074/jbc.m114.614099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 01/06/2023] Open
Abstract
Protein O-mannosylation is a glycan modification that is required for normal nervous system development and function. Mutations in genes involved in protein O-mannosyl glycosylation give rise to a group of neurodevelopmental disorders known as congenital muscular dystrophies (CMDs) with associated CNS abnormalities. Our previous work demonstrated that receptor protein-tyrosine phosphatase ζ (RPTPζ)/phosphacan is hypoglycosylated in a mouse model of one of these CMDs, known as muscle-eye-brain disease, a disorder that is caused by loss of an enzyme (protein O-mannose β-1,2-N-acetylglucosaminyltransferase 1) that modifies O-mannosyl glycans. In addition, monoclonal antibodies Cat-315 and 3F8 were demonstrated to detect O-mannosyl glycan modifications on RPTPζ/phosphacan. Here, we show that O-mannosyl glycan epitopes recognized by these antibodies define biochemically distinct glycoforms of RPTPζ/phosphacan and that these glycoforms differentially decorate the surface of distinct populations of neural cells. To provide a further structural basis for immunochemically based glycoform differences, we characterized the O-linked glycan heterogeneity of RPTPζ/phosphacan in the early postnatal mouse brain by multidimensional mass spectrometry. Structural characterization of the O-linked glycans released from purified RPTPζ/phosphacan demonstrated that this protein is a significant substrate for protein O-mannosylation and led to the identification of several novel O-mannose-linked glycan structures, including sulfo-N-acetyllactosamine containing modifications. Taken together, our results suggest that specific glycan modifications may tailor the function of this protein to the unique needs of specific cells. Furthermore, their absence in CMDs suggests that hypoglycosylation of RPTPζ/phosphacan may have different functional consequences in neurons and glia.
Collapse
Affiliation(s)
- Chrissa A Dwyer
- From the Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| | - Toshihiko Katoh
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Michael Tiemeyer
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Russell T Matthews
- From the Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| |
Collapse
|
15
|
Kharraz Y, Guerra J, Pessina P, Serrano AL, Muñoz-Cánoves P. Understanding the process of fibrosis in Duchenne muscular dystrophy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:965631. [PMID: 24877152 PMCID: PMC4024417 DOI: 10.1155/2014/965631] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Fibrosis is the aberrant deposition of extracellular matrix (ECM) components during tissue healing leading to loss of its architecture and function. Fibrotic diseases are often associated with chronic pathologies and occur in a large variety of vital organs and tissues, including skeletal muscle. In human muscle, fibrosis is most readily associated with the severe muscle wasting disorder Duchenne muscular dystrophy (DMD), caused by loss of dystrophin gene function. In DMD, skeletal muscle degenerates and is infiltrated by inflammatory cells and the functions of the muscle stem cells (satellite cells) become impeded and fibrogenic cells hyperproliferate and are overactivated, leading to the substitution of skeletal muscle with nonfunctional fibrotic tissue. Here, we review new developments in our understanding of the mechanisms leading to fibrosis in DMD and several recent advances towards reverting it, as potential treatments to attenuate disease progression.
Collapse
Affiliation(s)
- Yacine Kharraz
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Institució Catalana de Recerca i Estudis Avançats (ICREA), Doctor Aiguader 83, 08003 Barcelona, Spain
| | - Joana Guerra
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Institució Catalana de Recerca i Estudis Avançats (ICREA), Doctor Aiguader 83, 08003 Barcelona, Spain
| | - Patrizia Pessina
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Institució Catalana de Recerca i Estudis Avançats (ICREA), Doctor Aiguader 83, 08003 Barcelona, Spain
| | - Antonio L. Serrano
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Institució Catalana de Recerca i Estudis Avançats (ICREA), Doctor Aiguader 83, 08003 Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Institució Catalana de Recerca i Estudis Avançats (ICREA), Doctor Aiguader 83, 08003 Barcelona, Spain
| |
Collapse
|
16
|
Zhang YZ, Zhao DH, Yang HP, Liu AJ, Chang XZ, Hong DJ, Bonnemann C, Yuan Y, Wu XR, Xiong H. Novel collagen VI mutations identified in Chinese patients with Ullrich congenital muscular dystrophy. World J Pediatr 2014; 10:126-32. [PMID: 24801232 DOI: 10.1007/s12519-014-0481-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND We determined the clinical and molecular genetic characteristics of 8 Chinese patients with Ullrich congenital muscular dystrophy (UCMD). METHODS Clinical data of probands were collected and muscle biopsies of patients were analyzed. Exons of COL6A1, COL6A2 and COL6A3 were analyzed by direct sequencing. Mutations in COL6A1, COL6A2 and COL6A3 were identified in 8 patients. RESULTS Among these mutations, 5 were novel [three in the triple helical domain (THD) and 2 in the second C-terminal (C2) domain]. We also identified five known missense or in-frame deletion mutations in THD and C domains. Immunohistochemical studies on muscle biopsies from patients showed reduced level of collagen VI at the muscle basement membrane and mis-localization of the protein in interstitial and perivascular regions. CONCLUSIONS The novel mutations we identified underscore the importance of THD and C2 domains in the assembly and function of collagen VI, thereby providing useful information for the genetic counseling of UCMD patients.
Collapse
Affiliation(s)
- Yan-Zhi Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bernardi P, Bonaldo P. Mitochondrial dysfunction and defective autophagy in the pathogenesis of collagen VI muscular dystrophies. Cold Spring Harb Perspect Biol 2013; 5:a011387. [PMID: 23580791 DOI: 10.1101/cshperspect.a011387] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ullrich Congenital Muscular Dystrophy (UCMD), Bethlem Myopathy (BM), and Congenital Myosclerosis are diseases caused by mutations in the genes encoding the extracellular matrix protein collagen VI. A dystrophic mouse model, where collagen VI synthesis was prevented by targeted inactivation of the Col6a1 gene, allowed the investigation of pathogenesis, which revealed the existence of a Ca(2+)-mediated dysfunction of mitochondria and sarcoplasmic reticulum, and of defective autophagy. Key events are dysregulation of the mitochondrial permeability transition pore, an inner membrane high-conductance channel that for prolonged open times causes mitochondrial dysfunction, and inadequate removal of defective mitochondria, which amplifies the damage. Consistently, the Col6a1(-/-) myopathic mice could be cured through inhibition of cyclophilin D, a matrix protein that sensitizes the pore to opening, and through stimulation of autophagy. Similar defects contribute to disease pathogenesis in patients irrespective of the genetic lesion causing the collagen VI defect. These studies indicate that permeability transition pore opening and defective autophagy represent key elements for skeletal muscle fiber death, and provide a rationale for the use of cyclosporin A and its nonimmunosuppressive derivatives in patients affected by collagen VI myopathies, a strategy that holds great promise for treatment.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, I-35121 Padova, Italy.
| | | |
Collapse
|
18
|
Comprehensive mutation analysis for congenital muscular dystrophy: a clinical PCR-based enrichment and next-generation sequencing panel. PLoS One 2013; 8:e53083. [PMID: 23326386 PMCID: PMC3543442 DOI: 10.1371/journal.pone.0053083] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/23/2012] [Indexed: 11/19/2022] Open
Abstract
The congenital muscular dystrophies (CMDs) comprise a heterogeneous group of heritable muscle disorders with often difficult to interpret muscle pathology, making them challenging to diagnose. Serial Sanger sequencing of suspected CMD genes, while the current molecular diagnostic method of choice, can be slow and expensive. A comprehensive panel test for simultaneous screening of mutations in all known CMD-associated genes would be a more effective diagnostic strategy. Thus, the CMDs are a model disorder group for development and validation of next-generation sequencing (NGS) strategies for diagnostic and clinical care applications. Using a highly multiplexed PCR-based target enrichment method (RainDance) in conjunction with NGS, we performed mutation detection in all CMD genes of 26 samples and compared the results with Sanger sequencing. The RainDance NGS panel showed great consistency in coverage depth, on-target efficiency, versatility of mutation detection, and genotype concordance with Sanger sequencing, demonstrating the test's appropriateness for clinical use. Compared to single tests, a higher diagnostic yield was observed by panel implementation. The panel's limitation is the amplification failure of select gene-specific exons which require Sanger sequencing for test completion. Successful validation and application of the CMD NGS panel to improve the diagnostic yield in a clinical laboratory was shown.
Collapse
|
19
|
Sabatelli P, Palma E, Angelin A, Squarzoni S, Urciuolo A, Pellegrini C, Tiepolo T, Bonaldo P, Gualandi F, Merlini L, Bernardi P, Maraldi NM. Critical evaluation of the use of cell cultures for inclusion in clinical trials of patients affected by collagen VI myopathies. J Cell Physiol 2012; 227:2927-35. [PMID: 21953374 PMCID: PMC3415679 DOI: 10.1002/jcp.23039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Collagen VI myopathies (Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM), and myosclerosis myopathy) share a common pathogenesis, that is, mitochondrial dysfunction due to deregulation of the permeability transition pore (PTP). This effect was first identified in the Col6a1(-/-) mouse model and then in muscle cell cultures from UCMD and BM patients; the normalizing effect of cyclosporin A (CsA) confirmed the pathogenic role of PTP opening. In order to determine whether mitochondrial performance can be used as a criterion for inclusion in clinical trials and as an outcome measure of the patient response to therapy, it is mandatory to establish whether mitochondrial dysfunction is conserved in primary cell cultures from UCMD and BM patients. In this study we report evidence that mitochondrial dysfunction and the consequent increase of apoptotic rate can be detected not only, as previously reported, in muscle, but also in fibroblast cell cultures established from muscle biopsies of collagen VI-related myopathic patients. However, the mitochondrial phenotype is no longer maintained after nine passages in culture. These data demonstrate that the dire consequences of mitochondrial dysfunction are not limited to myogenic cells, and that this parameter can be used as a suitable diagnostic criterion, provided that the cell culture conditions are carefully established.
Collapse
Affiliation(s)
- P Sabatelli
- CNR-National Research Council of Italy, Institute of Molecular Genetics c/o IOR, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
S1P lyase in skeletal muscle regeneration and satellite cell activation: exposing the hidden lyase. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:167-75. [PMID: 22750505 DOI: 10.1016/j.bbalip.2012.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 01/12/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid whose actions are essential for many physiological processes including angiogenesis, lymphocyte trafficking and development. In addition, S1P serves as a muscle trophic factor that enables efficient muscle regeneration. This is due in part to S1P's ability to activate quiescent muscle stem cells called satellite cells (SCs) that are needed for muscle repair. However, the molecular mechanism by which S1P activates SCs has not been well understood. Further, strategies for harnessing S1P signaling to recruit SCs for therapeutic benefit have been lacking. S1P is irreversibly catabolized by S1P lyase (SPL), a highly conserved enzyme that catalyzes the cleavage of S1P at carbon bond C(2-3), resulting in formation of hexadecenal and ethanolamine-phosphate. SPL enhances apoptosis through substrate- and product-dependent events, thereby regulating cellular responses to chemotherapy, radiation and ischemia. SPL is undetectable in resting murine skeletal muscle. However, we recently found that SPL is dynamically upregulated in skeletal muscle after injury. SPL upregulation occurred in the context of a tightly orchestrated genetic program that resulted in a transient S1P signal in response to muscle injury. S1P activated quiescent SCs via a sphingosine-1-phosphate receptor 2 (S1P2)/signal transducer and activator of transcription 3 (STAT3)-dependent pathway, thereby facilitating skeletal muscle regeneration. Mdx mice, which serve as a model for muscular dystrophy (MD), exhibited skeletal muscle SPL upregulation and S1P deficiency. Pharmacological SPL inhibition raised skeletal muscle S1P levels, enhanced SC recruitment and improved mdx skeletal muscle regeneration. These findings reveal how S1P can activate SCs and indicate that SPL suppression may provide a therapeutic strategy for myopathies. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
21
|
Dwyer CA, Baker E, Hu H, Matthews RT. RPTPζ/phosphacan is abnormally glycosylated in a model of muscle-eye-brain disease lacking functional POMGnT1. Neuroscience 2012; 220:47-61. [PMID: 22728091 DOI: 10.1016/j.neuroscience.2012.06.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/09/2012] [Accepted: 06/11/2012] [Indexed: 01/06/2023]
Abstract
Congenital muscular dystrophies (CMDs) with associated brain abnormalities are a group of disorders characterized by muscular dystrophy and brain and eye abnormalities that are frequently caused by mutations in known or putative glycotransferases involved in protein O-mannosyl glycosylation. Previous work identified α-dystroglycan as the major substrate for O-mannosylation and its altered glycosylation the major cause of these disorders. However, work from several labs indicated that other proteins in the brain are also O-mannosylated and therefore could contribute to CMD pathology in patients with mutations in the protein O-mannosylation pathway, however few of these proteins have been identified and fully characterized in CMDs. In this study we identify receptor protein tyrosine phosphatase ζ (RPTPζ) and its secreted variant, phosphacan, as another potentially important substrate for protein O-mannosylation in the brain. Using a mouse model of muscle-eye-brain disease lacking functional protein O-mannose β-1,2-N-acetylglucosaminyltransferase (POMGnT1), we show that RPTPζ/phosphacan is shifted to a lower molecular weight and distinct carbohydrate epitopes normally detected on the protein are either absent or substantially reduced, including Human Natural Killer-1 (HNK-1) reactivity. The spatial and temporal expression patterns of these O-mannosylated forms of RPTPζ/phosphacan and its hypoglycosylation and loss of HNK-1 glycan epitopes in POMGnT1 knockouts are suggestive of a role in the neural phenotypes observed in patients and animal models of CMDs.
Collapse
Affiliation(s)
- C A Dwyer
- The Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | | | |
Collapse
|
22
|
Yamamoto T, Kato Y, Hiroi A, Shibata N, Osawa M, Kobayashi M. Post-transcriptional regulation of fukutin in an astrocytoma cell line. Int J Exp Pathol 2012; 93:46-55. [PMID: 22264285 DOI: 10.1111/j.1365-2613.2011.00799.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fukutin is the gene responsible for Fukuyama-type congenital muscular dystrophy (FCMD), an autosomal recessive disease associated with central nervous system (CNS) and eye anomalies. Fukutin is involved in basement membrane formation via the glycosylation of α-dystroglycan (α-DG), and hypoglycosylation of α-DG provokes the muscular, CNS and eye lesions of FCMD. Astrocytes play an important role in the pathogenesis of the CNS lesions, but the post-transcriptional regulation of fukutin mRNA has not been elucidated. In this study, we investigated the characteristics of fukutin mRNA using an astrocytoma cell line that expresses fukutin and glycosylated α-DG. The glycosylation of α-DG was considered to be increased by over-expression of fukutin and decreased by knockdown of fukutin. Knockdown of Musashi-1, one of the RNA-binding proteins involved in the regulation of neuronal differentiation, induced a decrease in fukutin mRNA. Immunoprecipitation and ELISA-based RNA-binding assay demonstrated possible binding between fukutin mRNA and Musashi-1 protein. A relationship between fukutin mRNA and vimentin protein was also proposed. In situ hybridization for fukutin mRNA showed a positive cytoplasmic reaction including cytoplasmic processes. From these results, fukutin mRNA is suggested to be a localized mRNA up-regulated by Musashi-1 and to be a component of a mRNA-protein complex which includes Musashi-1 and (presumably) vimentin proteins.
Collapse
Affiliation(s)
- Tomoko Yamamoto
- Department of Pathology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Valencia CA, Rhodenizer D, Bhide S, Chin E, Littlejohn MR, Keong LM, Rutkowski A, Bonnemann C, Hegde M. Assessment of target enrichment platforms using massively parallel sequencing for the mutation detection for congenital muscular dystrophy. J Mol Diagn 2012; 14:233-46. [PMID: 22426012 DOI: 10.1016/j.jmoldx.2012.01.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 01/02/2012] [Accepted: 01/18/2012] [Indexed: 11/30/2022] Open
Abstract
Sequencing individual genes by Sanger sequencing is a time-consuming and costly approach to resolve clinically heterogeneous genetic disorders. Panel testing offers the ability to efficiently and cost-effectively screen all of the genes for a particular genetic disorder. We assessed the analytical sensitivity and specificity of two different enrichment technologies, solution-based hybridization and microdroplet-based PCR target enrichment, in conjunction with next-generation sequencing (NGS), to identify mutations in 321 exons representing 12 different genes involved with congenital muscular dystrophies. Congenital muscular dystrophies present diagnostic challenges due to phenotypic variability, lack of standard access to and inherent difficulties with muscle immunohistochemical stains, and a general lack of clinician awareness. NGS results were analyzed across several parameters, including sequencing metrics and genotype concordance with Sanger sequencing. Genotyping data showed that both enrichment technologies produced suitable calls for use in clinical laboratories. However, microdroplet-based PCR target enrichment is more appropriate for a clinical laboratory, due to excellent sequence specificity and uniformity, reproducibility, high coverage of the target exons, and the ability to distinguish the active gene versus known pseudogenes. Regardless of the method, exons with highly repetitive and high GC regions are not well enriched and require Sanger sequencing for completeness. Our study demonstrates the successful application of targeted sequencing in conjunction with NGS to screen for mutations in hundreds of exons in a genetically heterogeneous human disorder.
Collapse
Affiliation(s)
- C Alexander Valencia
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ng R, Banks GB, Hall JK, Muir LA, Ramos JN, Wicki J, Odom GL, Konieczny P, Seto J, Chamberlain JR, Chamberlain JS. Animal models of muscular dystrophy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:83-111. [PMID: 22137430 DOI: 10.1016/b978-0-12-394596-9.00004-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The muscular dystrophies (MDs) represent a diverse collection of inherited human disorders, which affect to varying degrees skeletal, cardiac, and sometimes smooth muscle (Emery, 2002). To date, more than 50 different genes have been implicated as causing one or more types of MD (Bansal et al., 2003). In many cases, invaluable insights into disease mechanisms, structure and function of gene products, and approaches for therapeutic interventions have benefited from the study of animal models of the different MDs (Arnett et al., 2009). The large number of genes that are associated with MD and the tremendous number of animal models that have been developed preclude a complete discussion of each in the context of this review. However, we summarize here a number of the more commonly used models together with a mixture of different types of gene and MD, which serves to give a general overview of the value of animal models of MD for research and therapeutic development.
Collapse
Affiliation(s)
- Rainer Ng
- Division of Medical Genetics, Department of Neurology, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nevo Y, Aga-Mizrachi S, Elmakayes E, Yanay N, Ettinger K, Elbaz M, Brunschwig Z, Dadush O, Elad-Sfadia G, Haklai R, Kloog Y, Chapman J, Reif S. The Ras antagonist, farnesylthiosalicylic acid (FTS), decreases fibrosis and improves muscle strength in dy/dy mouse model of muscular dystrophy. PLoS One 2011; 6:e18049. [PMID: 21445359 PMCID: PMC3062565 DOI: 10.1371/journal.pone.0018049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 02/23/2011] [Indexed: 12/01/2022] Open
Abstract
The Ras superfamily of guanosine-triphosphate (GTP)-binding proteins regulates a diverse spectrum of intracellular processes involved in inflammation and fibrosis. Farnesythiosalicylic acid (FTS) is a unique and potent Ras inhibitor which decreased inflammation and fibrosis in experimentally induced liver cirrhosis and ameliorated inflammatory processes in systemic lupus erythematosus, neuritis and nephritis animal models. FTS effect on Ras expression and activity, muscle strength and fibrosis was evaluated in the dy2J/dy2J mouse model of merosin deficient congenital muscular dystrophy. The dy2J/dy2J mice had significantly increased RAS expression and activity compared with the wild type mice. FTS treatment significantly decreased RAS expression and activity. In addition, phosphorylation of ERK, a Ras downstream protein, was significantly decreased following FTS treatment in the dy2J/dy2J mice. Clinically, FTS treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter. Significant reduction of fibrosis was demonstrated in the treated group by quantitative Sirius Red staining and lower muscle collagen content. FTS effect was associated with significantly inhibition of both MMP-2 and MMP-9 activities. We conclude that active RAS inhibition by FTS was associated with attenuated fibrosis and improved muscle strength in the dy2J/dy2J mouse model of congenital muscular dystrophy.
Collapse
Affiliation(s)
- Yoram Nevo
- Pediatric Neuromuscular Laboratory and the Neuropediatric Unit, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Genetics of extracellular matrix remodeling during organ growth using the Caenorhabditis elegans pharynx model. Genetics 2010; 186:969-82. [PMID: 20805556 DOI: 10.1534/genetics.110.120519] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The organs of animal embryos are typically covered with an extracellular matrix (ECM) that must be carefully remodeled as these organs enlarge during post-embryonic growth; otherwise, their shape and functions may be compromised. We previously described the twisting of the Caenorhabditis elegans pharynx (here called the Twp phenotype) as a quantitative mutant phenotype that worsens as that organ enlarges during growth. Mutations previously known to cause pharyngeal twist affect membrane proteins with large extracellular domains (DIG-1 and SAX-7), as well as a C. elegans septin (UNC-61). Here we show that two novel alleles of the C. elegans papilin gene, mig-6(et4) and mig-6(sa580), can also cause the Twp phenotype. We also show that overexpression of the ADAMTS protease gene mig-17 can suppress the pharyngeal twist in mig-6 mutants and identify several alleles of other ECM-related genes that can cause or influence the Twp phenotype, including alleles of fibulin (fbl-1), perlecan (unc-52), collagens (cle-1, dpy-7), laminins (lam-1, lam-3), one ADAM protease (sup-17), and one ADAMTS protease (adt-1). The Twp phenotype in C. elegans is easily monitored using light microscopy, is quantitative via measurements of the torsion angle, and reveals that ECM components, metalloproteinases, and ECM attachment molecules are important for this organ to retain its correct shape during post-embryonic growth. The Twp phenotype is therefore a promising experimental system to study ECM remodeling and diseases.
Collapse
|
27
|
Nevo Y, Halevy O, Genin O, Moshe I, Turgeman T, Harel M, Biton E, Reif S, Pines M. Fibrosis inhibition and muscle histopathology improvement in laminin-alpha2-deficient mice. Muscle Nerve 2010; 42:218-29. [PMID: 20589893 DOI: 10.1002/mus.21706] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In muscular dystrophies (MD) the loss of muscle and its ability to function are associated with fibrosis. We evaluated the efficacy of halofuginone in reducing fibrosis in the dy(2J)/dy(2J) mouse model of congenital MD. Mice were injected intraperitoneally with 5 microg of halofuginone 3 times a week for 5 or 15 weeks, starting at the age of 3 weeks. Halofuginone caused a reduction in collagen synthesis in hindlimb muscles. This was associated with reductions in the degenerated area, in cell proliferation, in the number of myofibers with central nuclei, with increased myofiber diameter, and with enhanced motor coordination and balance. Halofuginone caused a reduction in infiltrating fibroblasts that were located close to centrally nucleated myofibers. Our results suggest that halofuginone reduced the deleterious effects of fibrosis, thus improving muscle integrity. Halofuginone meets the criteria for a novel antifibrotic therapy for MD patients.
Collapse
Affiliation(s)
- Yoram Nevo
- Neuropediatric Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Goody MF, Kelly MW, Lessard KN, Khalil A, Henry CA. Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo: Nrk2b and NAD+ in muscle morphogenesis. Dev Biol 2010; 344:809-26. [PMID: 20566368 PMCID: PMC2917104 DOI: 10.1016/j.ydbio.2010.05.513] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/22/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not beta-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn plays roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis.
Collapse
Affiliation(s)
- Michelle F Goody
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | | | | | | | | |
Collapse
|
29
|
Reed UC. Congenital muscular dystrophy. Part II: a review of pathogenesis and therapeutic perspectives. ARQUIVOS DE NEURO-PSIQUIATRIA 2010; 67:343-62. [PMID: 19547838 DOI: 10.1590/s0004-282x2009000200035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 03/14/2009] [Indexed: 11/22/2022]
Abstract
The congenital muscular dystrophies (CMDs) are a group of genetically and clinically heterogeneous hereditary myopathies with preferentially autosomal recessive inheritance, that are characterized by congenital hypotonia, delayed motor development and early onset of progressive muscle weakness associated with dystrophic pattern on muscle biopsy. The clinical course is broadly variable and can comprise the involvement of the brain and eyes. From 1994, a great development in the knowledge of the molecular basis has occurred and the classification of CMDs has to be continuously up dated. In the last number of this journal, we presented the main clinical and diagnostic data concerning the different subtypes of CMD. In this second part of the review, we analyse the main reports from the literature concerning the pathogenesis and the therapeutic perspectives of the most common subtypes of CMD: MDC1A with merosin deficiency, collagen VI related CMDs (Ullrich and Bethlem), CMDs with abnormal glycosylation of alpha-dystroglycan (Fukuyama CMD, Muscle-eye-brain disease, Walker Warburg syndrome, MDC1C, MDC1D), and rigid spine syndrome, another much rare subtype of CMDs not related with the dystrophin/glycoproteins/extracellular matrix complex.
Collapse
|
30
|
Telfer WR, Busta AS, Bonnemann CG, Feldman EL, Dowling JJ. Zebrafish models of collagen VI-related myopathies. Hum Mol Genet 2010; 19:2433-44. [PMID: 20338942 PMCID: PMC2876888 DOI: 10.1093/hmg/ddq126] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Collagen VI is an integral part of the skeletal muscle extracellular matrix, providing mechanical stability and facilitating matrix-dependent cell signaling. Mutations in collagen VI result in either Ullrich congenital muscular dystrophy (UCMD) or Bethlem myopathy (BM), with UCMD being clinically more severe. Recent studies demonstrating increased apoptosis and abnormal mitochondrial function in Col6a1 knockout mice and in human myoblasts have provided the first mechanistic insights into the pathophysiology of these diseases. However, how loss of collagen VI causes mitochondrial dysfunction remains to be understood. Progress is hindered in part by the lack of an adequate animal model for UCMD, as knockout mice have a mild motor phenotype. To further the understanding of these disorders, we have generated zebrafish models of the collagen VI myopathies. Morpholinos designed to exon 9 of col6a1 produced a severe muscle disease reminiscent of UCMD, while ones to exon 13 produced a milder phenotype similar to BM. UCMD-like zebrafish have increased cell death and abnormal mitochondria, which can be attenuated by treatment with the proton pump modifier cyclosporin A (CsA). CsA improved the motor deficits in UCMD-like zebrafish, but failed to reverse the sarcolemmal membrane damage. In all, we have successfully generated the first vertebrate model matching the clinical severity of UCMD and demonstrated that CsA provides phenotypic improvement, thus corroborating data from knockout mice supporting the use of mitochondrial permeability transition pore modifiers as therapeutics in patients, and providing proof of principle for the utility of the zebrafish as a powerful preclinical model.
Collapse
Affiliation(s)
- W R Telfer
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
31
|
Improved muscle strength and mobility in the dy(2J)/dy(2J) mouse with merosin deficient congenital muscular dystrophy treated with Glatiramer acetate. Neuromuscul Disord 2010; 20:267-72. [PMID: 20304648 DOI: 10.1016/j.nmd.2010.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 01/01/2023]
Abstract
The therapeutic effect of Glatiramer acetate, an immune modulating agent, was evaluated in the dy(2J)/dy(2J) mouse with merosin deficient congenital muscular dystrophy, which is a milder variant of the dy/dy mouse. The treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter and in motor performance quantified by video detection software. Glatiramer acetate treatment was associated with significantly increased expression of regeneration transcription factors MyoD and myogenin, and attenuation of the fibrosis markers vimentin and fibronectin. No effective treatment is currently available in congenital muscular dystrophy and Glatiramer acetate may present a new potential treatment for this disorder.
Collapse
|
32
|
Du H, Cline MS, Osborne RJ, Tuttle DL, Clark TA, Donohue JP, Hall MP, Shiue L, Swanson MS, Thornton CA, Ares M. Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Nat Struct Mol Biol 2010; 17:187-93. [PMID: 20098426 DOI: 10.1038/nsmb.1720] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/14/2009] [Indexed: 01/08/2023]
Abstract
The common form of myotonic dystrophy (DM1) is associated with the expression of expanded CTG DNA repeats as RNA (CUG(exp) RNA). To test whether CUG(exp) RNA creates a global splicing defect, we compared the skeletal muscle of two mouse models of DM1, one expressing a CTG(exp) transgene and another homozygous for a defective muscleblind 1 (Mbnl1) gene. Strong correlation in splicing changes for approximately 100 new Mbnl1-regulated exons indicates that loss of Mbnl1 explains >80% of the splicing pathology due to CUG(exp) RNA. In contrast, only about half of mRNA-level changes can be attributed to loss of Mbnl1, indicating that CUG(exp) RNA has Mbnl1-independent effects, particularly on mRNAs for extracellular matrix proteins. We propose that CUG(exp) RNA causes two separate effects: loss of Mbnl1 function (disrupting splicing) and loss of another function that disrupts extracellular matrix mRNA regulation, possibly mediated by Mbnl2. These findings reveal unanticipated similarities between DM1 and other muscular dystrophies.
Collapse
Affiliation(s)
- Hongqing Du
- RNA Center, Department of Molecular, Cell and Developmental Biology, Sinsheimer Labs, University of California, Santa Cruz, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Guis S, Krahn M, Fernandez C, Mattei JP, Levy N, Bendahan D. Pathologies des muscles striés squelettiques. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s0246-0521(09)48914-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Erb M, Meinen S, Barzaghi P, Sumanovski LT, Courdier-Früh I, Rüegg MA, Meier T. Omigapil ameliorates the pathology of muscle dystrophy caused by laminin-alpha2 deficiency. J Pharmacol Exp Ther 2009; 331:787-95. [PMID: 19759319 DOI: 10.1124/jpet.109.160754] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Laminin alpha2-deficient congenital muscular dystrophy, called MDC1A, is a rare, devastating genetic disease characterized by severe neonatal hypotonia ("floppy infant syndrome"), peripheral neuropathy, inability to stand or walk, respiratory distress, and premature death in early life. Transgenic overexpression of the apoptosis inhibitor protein BCL-2, or deletion of the proapoptotic Bax gene in a mouse model for MDC1A prolongs survival and mitigates pathology, indicating that apoptotic events are involved in the pathology. Here we demonstrate that the proapoptotic glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-Siah1-CBP/p300-p53 pathway is activated in a mouse model for MDC1A. Moreover, we show that omigapil, which inhibits GAPDH-Siah1-mediated apoptosis, ameliorates several pathological hallmarks in the MDC1A mouse model. Specifically, we demonstrate that treatment with omigapil inhibits apoptosis in muscle, reduces body weight loss and skeletal deformation, increases locomotive activity, and protects from early mortality. These data qualify omigapil, which is in late phase of clinical development for human use, as a drug candidate for the treatment of MDC1A.
Collapse
Affiliation(s)
- Michael Erb
- Santhera Pharmaceuticals, Liestal, Switzerland
| | | | | | | | | | | | | |
Collapse
|
35
|
Voermans NC, Bonnemann CG, Hamel BCJ, Jungbluth H, van Engelen BG. Joint hypermobility as a distinctive feature in the differential diagnosis of myopathies. J Neurol 2009; 256:13-27. [PMID: 19221853 DOI: 10.1007/s00415-009-0105-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 09/08/2008] [Indexed: 02/07/2023]
Abstract
Congenital and adult-onset inherited myopathies represent a wide spectrum of syndromes. Classification is based upon clinical features and biochemical and genetic defects. Joint hypermobility is one of the distinctive clinical features that has often been underrecognized so far. We therefore present an overview of myopathies associated with joint hypermobility: Ullrich congenital muscular dystrophy, Bethlem myopathy, congenital muscular dystrophy with joint hyperlaxity, multi-minicore disease, central core disease, and limb girdle muscular dystrophy 2E with joint hyperlaxity and contractures. We shortly discuss a second group of disorders characterised by both muscular features and joint hypermobility: the inherited disorders of connective tissue Ehlers-Danlos syndrome and Marfan syndrome. Furthermore, we will briefly discuss the extent and pattern of joint hypermobility in these myopathies and connective tissue disorders and propose two grading scales commonly used to score the severity of joint hypermobility. We will conclude focusing on the various molecules involved in these disorders and on their role and interactions in muscle and tendon, with a view to further elucidate the pathophysiology of combined hypermobility and myopathy. Hopefully, this review will contribute to enhanced recognition of joint hypermobility and thus be of aid in differential diagnosis.
Collapse
Affiliation(s)
- N C Voermans
- Neuromuscular Centre Nijmegen, Dept. of Neurology, 935, Radboud University Nijmegen Medical Centre, 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Yamamoto T, Kato Y, Shibata N, Sawada T, Osawa M, Kobayashi M. A role of fukutin, a gene responsible for Fukuyama type congenital muscular dystrophy, in cancer cells: a possible role to suppress cell proliferation. Int J Exp Pathol 2008; 89:332-41. [PMID: 18808525 DOI: 10.1111/j.1365-2613.2008.00599.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Fukutin, a gene responsible for Fukuyama type congenital muscular dystrophy (FCMD), is presumably related to the glycosylation of alpha-dystroglycan (alpha-DG), involved in basement membrane formation. Hypoglycosylation of alpha-DG plays a key role for the pathogenesis of FCMD. On the other hand, fukutin and alpha-DG are also expressed in various non-neuromuscular tissues. Recently, a role of alpha-DG as a cancer suppressor has been proposed, because of a decrease of glycosylated alpha-DG in cancers. In this study, function of fukutin was investigated in two cancer cell lines, focusing on whether fukutin is involved in the glycosylation of alpha-DG in cancer cells and has any possible roles related to a cancer suppressor. Localization of fukutin and a result of laminin-binding assay after RNA interference suggest that fukutin may be involved in the glycosylation of alpha-DG in a small portion in these cancer cell lines. In Western blotting and immuno-electron microscopy, localization of fukutin in the nucleus was suggested in addition to the Golgi apparatus and/or endoplasmic reticulum. Immunohistochemically, there were more Ki-67-positive cells and more nuclear staining of phosphorylated c-jun after knockdown of fukutin in two cell lines. Fukutin appears to suppress cell proliferation through a system involving c-jun, although it is unclear this process is related to alpha-DG or not at present. The result may propose a possibility of another function of fukutin in addition to the glycosylation of alpha-DG in cancer cells.
Collapse
Affiliation(s)
- Tomoko Yamamoto
- Department of Pathology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Bernardi P, Bonaldo P. Dysfunction of mitochondria and sarcoplasmic reticulum in the pathogenesis of collagen VI muscular dystrophies. Ann N Y Acad Sci 2008; 1147:303-11. [PMID: 19076452 DOI: 10.1196/annals.1427.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ullrich Congenital Muscular Dystrophy (UCMD) and Bethlem Myopathy (BM) are muscle diseases due to mutations in the genes encoding the extracellular matrix protein collagen VI. Generation of a dystrophic mouse model where collagen VI synthesis was prevented by genetic ablation of the Col6a1 gene allowed an investigation of pathogenesis, which revealed the existence of a Ca(2+)-mediated dysfunction of mitochondria and the sarcoplasmic reticulum. A key event appears to be inappropriate opening of the mitochondrial permeability transition pore, an inner membrane high-conductance channel. Consistently, the Col6a1(-/-) myopathic mice could be cured with cyclosporin A through inhibition of cyclophilin D, a matrix protein that sensitizes the pore to opening. Studies of myoblasts from UCMD and BM patients demonstrated the existence of a latent mitochondrial dysfunction irrespective of the genetic lesion responsible for the lack or the alteration of collagen VI. These studies suggest that PTP opening may represent the final common pathway for skeletal muscle fiber death; and provided a rationale for a pilot clinical trial with cyclosporin A in patients affected by UCMD and BM, a study that holds great promise for the future treatment of collagen VI myopathies.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Viale Guiseppe Colombo, Padova, Italy.
| | | |
Collapse
|
38
|
Voermans N, Bönnemann C, Huijing P, Hamel B, van Kuppevelt T, de Haan A, Schalkwijk J, van Engelen B, Jenniskens G. Clinical and molecular overlap between myopathies and inherited connective tissue diseases. Neuromuscul Disord 2008; 18:843-56. [DOI: 10.1016/j.nmd.2008.05.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 03/05/2008] [Accepted: 05/28/2008] [Indexed: 12/13/2022]
|
39
|
Jørgensen LH, Petersson SJ, Sellathurai J, Andersen DC, Thayssen S, Sant DJ, Jensen CH, Schrøder HD. Secreted protein acidic and rich in cysteine (SPARC) in human skeletal muscle. J Histochem Cytochem 2008; 57:29-39. [PMID: 18796407 DOI: 10.1369/jhc.2008.951954] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is expressed in different tissues during remodeling and repair, suggesting a function in regeneration. Several gene expression studies indicated that SPARC was expressed in response to muscle damage. Studies on myoblasts further indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis, and polymyositis patients to analyze SPARC expression in a selected range of inherited and idiopathic muscle wasting diseases. SPARC-positive cells were observed both in fetal and neonatal muscle, and in addition, fetal myofibers were observed to express SPARC at the age of 15-16 weeks. SPARC protein was detected in the majority of analyzed muscle biopsies (23 of 24), mainly in mononuclear cells of which few were pax7 positive. Myotubes and regenerating myofibers also expressed SPARC. The expression-degree seemed to reflect the severity of the lesion. In accordance with these in vivo findings, primary human-derived satellite cells were found to express SPARC both during proliferation and differentiation in vitro. In conclusion, this study shows SPARC expression both during muscle development and in regenerating muscle. The expression is detected both in satellite cells/myoblasts and in myotubes and muscle fibers, indicating a role for SPARC in the skeletal muscle compartment.
Collapse
|
40
|
Snow CJ, Peterson MT, Khalil A, Henry CA. Muscle development is disrupted in zebrafish embryos deficient for fibronectin. Dev Dyn 2008; 237:2542-53. [PMID: 18729220 PMCID: PMC2572006 DOI: 10.1002/dvdy.21670] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After somitogenesis, skeletal muscle precursors elongate into muscle fibers that anchor to the somite boundary, which becomes the myotome boundary. Fibronectin (Fn) is a major component of the extracellular matrix in both boundaries. Although Fn is required for somitogenesis, effects of Fn disruption on subsequent muscle development are unknown. We show that fn knockdown disrupts myogenesis. Muscle morphogenesis is more disrupted in fn morphants than in a mutant where initial somite boundaries did not form, aei/deltaD. We quantified this disruption using the two-dimensional Wavelet-Transform Modulus Maxima method, which uses the variation of intensity in an image with respect to the direction considered to characterize the structure in a cell lattice. We show that fibers in fn morphants are less organized than in aei/deltaD mutant embryos. Fast- and slow-twitch muscle lengths are also more frequently uncoupled. These data suggest that fn may function to regulate fiber organization and limit fast-twitch muscle fiber length.
Collapse
Affiliation(s)
- Chelsi J Snow
- School of Biology and Ecology, University of Maine, Orono, Maine 04469-5735, USA
| | | | | | | |
Collapse
|
41
|
Williams AG, Folland JP. Similarity of polygenic profiles limits the potential for elite human physical performance. J Physiol 2007; 586:113-21. [PMID: 17901117 PMCID: PMC2375556 DOI: 10.1113/jphysiol.2007.141887] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human physical capability is influenced by many environmental and genetic factors, and it is generally accepted that physical capability phenotypes are highly polygenic. However, the ways in which relevant polymorphisms combine to influence the physical capability of individuals and populations are unknown. Initially, the literature was searched to identify associations between 23 genetic polymorphisms and human endurance phenotypes. Next, typical genotype frequencies of those polymorphisms in the general population were obtained from suitable literature. Using probability calculations, we found only a 0.0005% chance of a single individual in the world having the 'preferable' form of all 23 polymorphisms. As the number of DNA variants shown to be associated with human endurance phenotypes continues to increase, the probability of any single individual possessing the 'preferable' form of each polymorphism will become even lower. However, with population turnover, the chance of such genetically gifted individuals existing increases. To examine the polygenic endurance potential of a human population, a 'total genotype score' (for the 23 polymorphisms) was calculated for each individual within a hypothetical population of 1000 000. There was considerable homogeneity in terms of genetic predisposition to high endurance potential, with 99% of people differing by no more than seven genotypes from the typical profile. Consequently, with population turnover world and Olympic records should improve even without further enhancement of environmental factors, as more 'advantageous' polygenic profiles occasionally, though rarely, emerge. More broadly, human potential appears limited by the similarity of polygenic profiles at both the 'elite sport' and 'chronic disorder' ends of the performance continuum.
Collapse
Affiliation(s)
- Alun G Williams
- Institute for Biophysical and Clinical Research into Human Movement, Manchester Metropolitan University, Hassall Road, Alsager, Cheshire, UK.
| | | |
Collapse
|