1
|
Peacock DJSJ, Ferreira CR, Horvath G, Hoffmann GF, Blau N, Ebrahimi-Fakhari D. Clinical and biochemical footprints of inherited metabolic diseases: Ia. Movement disorders, updated. Mol Genet Metab 2025; 145:109084. [PMID: 40132382 DOI: 10.1016/j.ymgme.2025.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
Movement disorders are a common manifestation of inherited metabolic diseases (IMDs), categorized into hyperkinetic movement disorders, hypokinetic-rigid syndromes, ataxia, and spasticity. We reviewed and updated the list of known metabolic disorders associated with movement disorders, identifying a total of 559 IMDs. We outlined the more common and treatable causes, sorted by the dominant movement disorder phenomenology, and provided a practical clinical approach for suspected IMDs presenting with movement disorders. This work represents an updated catalog in a series of articles aimed at creating and maintaining a comprehensive list of clinical and metabolic differential diagnoses based on system involvement.
Collapse
Affiliation(s)
- Dakota J S J Peacock
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada
| | - Carlos R Ferreira
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Gabriella Horvath
- Division of Biochemical Genetics, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada
| | - Georg F Hoffmann
- University Children's Hospital, University Clinic Heidelberg, Germany
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| | - Darius Ebrahimi-Fakhari
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Sen K, Harrar D, Pariseau N, Tucker K, Keenan J, Zhang A, Gropman A. Seizure Characteristics and EEG Features in Intoxication Type and Energy Deficiency Neurometabolic Disorders in the Pediatric Intensive Care Unit: Single-Center Experience Over 10 Years. Neurocrit Care 2025; 42:562-572. [PMID: 39138714 DOI: 10.1007/s12028-024-02073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Acute metabolic crises in inborn errors of metabolism (such as urea cycle disorders, organic acidemia, maple syrup urine disease, and mitochondrial disorders) are neurological emergencies requiring management in the pediatric intensive care unit (PICU). There is a paucity of data pertaining to electroencephalograms (EEG) characteristics in this cohort. We hypothesized that the incidence of background abnormalities and seizures in this cohort would be high. Neuromonitoring data from our center's PICU over 10 years are presented in this article. METHODS Data were collected by retrospective chart review for patients with the aforementioned disorders who were admitted to the PICU at our institution because of metabolic/neurologic symptoms from 2008 to 2018. Descriptive statistics (χ2 test or Fisher's exact test) were used to study the association between EEG parameters and outcomes. RESULTS Our cohort included 40 unique patients (8 with urea cycle disorder, 7 with organic acidemia, 3 with maple syrup urine disease, and 22 with mitochondrial disease) with 153 admissions. Presenting symptoms included altered mentation (36%), seizures (41%), focal weakness (5%), and emesis (28%). Continuous EEG was ordered in 34% (n = 52) of admissions. Twenty-three admissions were complicated by seizures, including eight manifesting as status epilepticus (seven nonconvulsive and one convulsive). Asymmetry and focal slowing on EEG were associated with seizures. Moderate background slowing or worse was noted in 75% of EEGs. Among those patients monitored on EEG, 4 (8%) died, 3 (6%) experienced a worsening of their Pediatric Cerebral Performance Category (PCPC) score as compared to admission, and 44 (86%) had no change (or improvement) in their PCPC score during admission. CONCLUSIONS This study shows a high incidence of clinical and subclinical seizures during metabolic crisis in patients with inborn errors of metabolism. EEG background features were associated with risk of seizures as well as discharge outcomes. This is the largest study to date to investigate EEG features and risk of seizures in patients with neurometabolic disorders admitted to the PICU. These data may be used to inform neuromonitoring protocols to improve mortality and morbidity in inborn errors of metabolism.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Center for Neuroscience and Behavioral Medicine, GWU School of Medicine and Health Sciences, Children's National Hospital, 111 Michigan Ave, NW, Washington, DC, 20010, USA.
| | - Dana Harrar
- Division of Child Neurology, Children's National Hospital, Washington, DC, USA
| | - Nicole Pariseau
- Division of Child Neurology, Children's National Hospital, Washington, DC, USA
- Division of Pediatric Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Karis Tucker
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Center for Neuroscience and Behavioral Medicine, GWU School of Medicine and Health Sciences, Children's National Hospital, 111 Michigan Ave, NW, Washington, DC, 20010, USA
| | - Julia Keenan
- Division of Child Neurology, Children's National Hospital, Washington, DC, USA
| | - Anqing Zhang
- Department of Biostatistics, Children's National Hospital, Washington, DC, USA
| | - Andrea Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Center for Neuroscience and Behavioral Medicine, GWU School of Medicine and Health Sciences, Children's National Hospital, 111 Michigan Ave, NW, Washington, DC, 20010, USA
| |
Collapse
|
3
|
Miguel-Garcés M, Gonçalves R, Quintana R, Álvarez P, Beckmann KM, Alcoverro E, Moioli M, Ives EJ, Madden M, Gomes SA, Galban E, Bentley T, Santifort KM, Vanhaesebrouck A, Briola C, Montoliu P, Ibaseta U, Carrera I. Magnetic resonance imaging pattern recognition of metabolic and neurodegenerative encephalopathies in dogs and cats. Front Vet Sci 2024; 11:1390971. [PMID: 39139602 PMCID: PMC11319130 DOI: 10.3389/fvets.2024.1390971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Metabolic/neurodegenerative encephalopathies encompass a wide list of conditions that share similar clinical and magnetic resonance imaging (MRI) characteristics, challenging the diagnostic process and resulting in numerous tests performed in order to reach a definitive diagnosis. The aims of this multicentric, retrospective and descriptive study are: (I) to describe the MRI features of dogs and cats with metabolic/neurodegenerative encephalopathies; (II) to attempt an MRI recognition pattern classifying these conditions according to the involvement of grey matter, white matter or both; and (III) to correlate the MRI findings with previous literature. A total of 100 cases were recruited, comprising 81 dogs and 19 cats. These included hepatic encephalopathy (20 dogs and three cats), myelinolysis (five dogs), intoxications (seven dogs and one cat), thiamine deficiency (two dogs and seven cats), hypertensive encephalopathy (three dogs and two cats), neuronal ceroid lipofuscinosis (11 dogs and one cat), gangliosidosis (three dogs and two cats), fucosidosis (one dog), L-2-hydroxyglutaric aciduria (13 dogs and one cat), Lafora disease (11 dogs), spongiform leukoencephalomyelopathy (one dog) and cerebellar cortical degeneration (four dogs and two cats). None of the hepatic encephalopathies showed the previously described T1-weighted hyperintensity of the lentiform nuclei. Instead, there was involvement of the cerebellar nuclei (8/23), which is a feature not previously described. Dogs with myelinolysis showed novel involvement of a specific white matter structure, the superior longitudinal fasciculus (5/5). Thiamine deficiency affected numerous deep grey nuclei with novel involvement of the oculomotor nuclei (3/9), thalamic nuclei, subthalamus and cerebellar nuclei (1/9). Cats with hypertensive encephalopathy had a more extensive distribution of the white matter changes when compared to dogs, extending from the parietal and occipital lobes into the frontal lobes with associated mass effect and increased brain volume. Lysosomal storage disease showed white matter involvement only, with neuronal ceroid lipofuscinosis characterised by severe brain atrophy when compared to gangliosidosis and fucosidosis. All patients with L-2-hydroxyglutaric aciduria had a characteristic T2-weighted hyperintense swelling of the cerebral and cerebellar cortical grey matter, resulting in increased brain volume. Lafora disease cases showed either normal brain morphology (5/11) or mild brain atrophy (6/11). Dogs with cerebellar cortical degeneration had more marked cerebellar atrophy when compared to cats. This study shows the important role of MRI in distinguishing different metabolic/neurodegenerative encephalopathies according to specific imaging characteristics.
Collapse
Affiliation(s)
- María Miguel-Garcés
- Diagnostic Imaging Department, Southern Counties Veterinary Specialists, Independent Vetcare (IVC) Evidensia, Ringwood, United Kingdom
| | - Rita Gonçalves
- Department of Small Animal Clinical Science, Small Animal Teaching Hospital, University of Liverpool, Neston, United Kingdom
| | - Rodrigo Quintana
- Small Animal Hospital, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Patricia Álvarez
- Neurology and Neurosurgery Department, Pride Veterinary Referrals, Independent Vetcare (IVC) Ltd., Derby, United Kingdom
| | - Katrin M. Beckmann
- Section of Neurology, Department of Small Animals, Vetsuisse Faculty Zurich, University of Zurich, Zurich, Switzerland
| | - Emili Alcoverro
- ChesterGates Veterinary Specialists, Chester, United Kingdom
| | - Melania Moioli
- Division of Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Edward J. Ives
- Anderson Moores Veterinary Specialists, Linnaeus Veterinary Ltd., Hursley, United Kingdom
| | - Megan Madden
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Sergio A. Gomes
- Dovecote Veterinary Hospital, Castle Donington, United Kingdom
| | - Evelyn Galban
- Neurology and Neurosurgery Department, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - Tim Bentley
- Department of Small Animal Clinical Science, Small Animal Teaching Hospital, University of Liverpool, Neston, United Kingdom
| | - Koen M. Santifort
- IVC Evidensia Small Animal Referral Hospital Arnhem, Neurology, Arnhem, Netherlands
- IVC Evidensia Small Animal Referral Hospital Hart van Brabant, Neurology, Waalwijk, Netherlands
| | - An Vanhaesebrouck
- Queen’s Veterinary School Hospital, Veterinary Department, University of Cambridge, Cambridge, United Kingdom
| | - Chiara Briola
- Diagnostic Imaging Service, The Ralph Veterinary Referral Centre, Marlow, United Kingdom
- VetCT, Cambridge, United Kingdom
| | - Patricia Montoliu
- Anicura Ars Veterinaria Hospital Veterinari, Barcelona, Spain
- Hospital Veterinari Costa Brava, Girona, Spain
| | - Unai Ibaseta
- Neurology and Neurosurgery Department, Hospital Veterinario Menes, Gijón, Asturias, Spain
| | | |
Collapse
|
4
|
Özgedi K DD, Tokgöz Yılmaz S, Gürbüz BB, Si Vri HS, Sennaroğlu G. Does glutaric aciduria type 1 affect hearing function? Metab Brain Dis 2022; 37:2121-2132. [PMID: 35488943 DOI: 10.1007/s11011-022-00987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
This study aimed to evaluate audiological findings among patients with glutaric aciduria type 1 (GA-1). We used a large test battery for the audiological evaluation of 17 individuals with GA-1 (the study group) and 20 healthy individuals (the control group). Conventional audiometry (0.125-8 kHz), distortion product otoacoustic emissions (DPOAEs) (1, 1.5, 2, 3, 4, 6, and 8 kHz), contralateral suppression of otoacoustic emissions, and auditory brainstem response (ABR) ( 30, 50, 70 and 90 dB nHL) were measured for all participants (n = 37). Mild sensorineural hearing loss was found in 77.47% (n = 13) of the patients with GA-1, and normal hearing thresholds were seen in 23.53% (n = 4). There were three asymptomatic patients at the time of diagnosis [two developed mild mental motor retardation (MMR) and one developed severe MMR during the follow-up], one with a normal hearing threshold and two with mild hearing loss), and 14 symptomatic patients (three with normal hearing thresholds and 11 with mild hearing loss). Seven of the symptomatic patients diagnosed following an encephalopathic crisis required intensive care and showed significantly worse hearing thresholds than those without symptoms [20.86 ± 4.47 vs. 15.44 ± 3.96 decibel hearing level (dB HL), p = 0.039*], while five had mild-to-moderate hearing loss. Acute encephalopathic crisis had a negative effect on hearing function in the symptomatic patients. The emission and contralateral suppression amplitude values of the study group were significantly lower compared to the control group (p < 0.05). The I-V interpeak latency and absolute latencies of ABR waves I, III, and V of the study group were observed to be significantly prolonged and morphologically distorted compared to those of the control group (p < 0.05). Five patients had MMR, and three had moderate MMR; all eight had mild-to-moderate hearing loss. In addition, of the eight patients with mild MMR, four had mild hearing loss. In particular, the morphological findings of ABR waves were significantly worse in the patients with severe and moderate MMR (p < 0.05). There was a significant correlation between a macrocephaly history (12 patients) and hearing loss (p = 0.041*). Magnetic resonance imaging findings were evaluated in all the 17 patients with GA-1, and typical fronto-temporal atrophy and sylvian fissure enlargement were observed. Our findings support that GA-1 is associated with auditory impairment, primarily in symptomatic patients. Adequate audiological test battery evaluation is essential in this context, particularly for symptomatic patients with a history of encephalopathic crises.
Collapse
Affiliation(s)
- Dilek Demiral Özgedi K
- Health Sciences Faculty, Department of Speech Language Therapy, Lokman Hekim University, Söğütözü Mh. 2179 Cd. No: 6 Çankaya, 06510, Ankara, Turkey.
| | - Suna Tokgöz Yılmaz
- Health Sciences Faculty, Audiology Department, Ankara University, Ankara, Turkey
| | - Berrak Bilginer Gürbüz
- Faculty of Medicine, Department of Pediatrics, Metabolism Unit, Hacettepe University, Ankara, Turkey
| | - H Serap Si Vri
- Faculty of Medicine, Department of Pediatrics, Metabolism Unit, Hacettepe University, Ankara, Turkey
| | - Gonca Sennaroğlu
- Health Sciences Faculty, Audiology Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Schupper A, Almashanu S, Coster D, Keidar R, Betser M, Sagiv N, Bassan H. Metabolic biomarkers of small and large for gestational age newborns. Early Hum Dev 2021; 160:105422. [PMID: 34271419 DOI: 10.1016/j.earlhumdev.2021.105422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/19/2021] [Accepted: 06/30/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Small for gestational age (SGA) and large for gestational age (LGA) newborns are at increased risk for developmental, metabolic and cardiovascular morbidities. AIMS To compare the metabolic biomarkers of SGA and LGA infants with those of appropriate for gestational age (AGA) newborns in order to shed more light on a possible pathogenesis of those morbidities. STUDY DESIGN An observational retrospective study. SUBJECTS 70,809 term newborns divided into AGA, SGA, LGA, and severe subcategories (<3rd percentile or ≥97th percentile). OUTCOME MEASURES 18 metabolites were measured by dried blood tandem mass spectrometry and compared in between groups in univariate and multivariate logistic regression. RESULTS SGA newborns had a significant likelihood for elevated methionine, proline, free carnitine, and reduced valine levels compared to AGA newborns (P < .0001). Severe SGA showed more apparent trends including elevated leucine. LGA newborns had a significant likelihood for low citrulline, glutamine, proline, tyrosine, and elevated leucine levels (P ≤ .0033). Severe LGA newborns showed the same trends, with the exception of citrulline and glutamine. CONCLUSIONS SGA and LGA newborns demonstrate distinct metabolic biomarkers in newborn screening. Most of the altered metabolites in the SGA group were elevated while those in the LGA group were decreased in comparison to AGA newborns. These trends were more apparent in the severe SGA subgroup while they mostly remained the same in the severe LGA subgroup. Whether these metabolic changes are involved with or can predict long-term outcome awaits further trials.
Collapse
Affiliation(s)
- Aviv Schupper
- Department of Pediatrics, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomo Almashanu
- National Newborn Screening Program, Public Health Services, Ministry of Health, Israel
| | - Dan Coster
- Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rimona Keidar
- Department of Neonatology, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Betser
- Labor & Delivery Department, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Haim Bassan
- Pediatric Neurology & Development Center, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Mohammad SS, Angiti RR, Biggin A, Morales-Briceño H, Goetti R, Perez-Dueñas B, Gregory A, Hogarth P, Ng J, Papandreou A, Bhattacharya K, Rahman S, Prelog K, Webster RI, Wassmer E, Hayflick S, Livingston J, Kurian M, Chong WK, Dale RC. Magnetic resonance imaging pattern recognition in childhood bilateral basal ganglia disorders. Brain Commun 2020; 2:fcaa178. [PMID: 33629063 PMCID: PMC7891249 DOI: 10.1093/braincomms/fcaa178] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Bilateral basal ganglia abnormalities on MRI are observed in a wide variety of childhood disorders. MRI pattern recognition can enable rationalization of investigations and also complement clinical and molecular findings, particularly confirming genomic findings and also enabling new gene discovery. A pattern recognition approach in children with bilateral basal ganglia abnormalities on brain MRI was undertaken in this international multicentre cohort study. Three hundred and five MRI scans belonging to 201 children with 34 different disorders were rated using a standard radiological scoring proforma. In addition, literature review on MRI patterns was undertaken in these 34 disorders and 59 additional disorders reported with bilateral basal ganglia MRI abnormalities. Cluster analysis on first MRI findings from the study cohort grouped them into four clusters: Cluster 1-T2-weighted hyperintensities in the putamen; Cluster 2-T2-weighted hyperintensities or increased MRI susceptibility in the globus pallidus; Cluster 3-T2-weighted hyperintensities in the globus pallidus, brainstem and cerebellum with diffusion restriction; Cluster 4-T1-weighted hyperintensities in the basal ganglia. The 34 diagnostic categories included in this study showed dominant clustering in one of the above four clusters. Inflammatory disorders grouped together in Cluster 1. Mitochondrial and other neurometabolic disorders were distributed across clusters 1, 2 and 3, according to lesions dominantly affecting the striatum (Cluster 1: glutaric aciduria type 1, propionic acidaemia, 3-methylglutaconic aciduria with deafness, encephalopathy and Leigh-like syndrome and thiamine responsive basal ganglia disease associated with SLC19A3), pallidum (Cluster 2: methylmalonic acidaemia, Kearns Sayre syndrome, pyruvate dehydrogenase complex deficiency and succinic semialdehyde dehydrogenase deficiency) or pallidum, brainstem and cerebellum (Cluster 3: vigabatrin toxicity, Krabbe disease). The Cluster 4 pattern was exemplified by distinct T1-weighted hyperintensities in the basal ganglia and other brain regions in genetically determined hypermanganesemia due to SLC39A14 and SLC30A10. Within the clusters, distinctive basal ganglia MRI patterns were noted in acquired disorders such as cerebral palsy due to hypoxic ischaemic encephalopathy in full-term babies, kernicterus and vigabatrin toxicity and in rare genetic disorders such as 3-methylglutaconic aciduria with deafness, encephalopathy and Leigh-like syndrome, thiamine responsive basal ganglia disease, pantothenate kinase-associated neurodegeneration, TUBB4A and hypermanganesemia. Integrated findings from the study cohort and literature review were used to propose a diagnostic algorithm to approach bilateral basal ganglia abnormalities on MRI. After integrating clinical summaries and MRI findings from the literature review, we developed a prototypic decision-making electronic tool to be tested using further cohorts and clinical practice.
Collapse
Affiliation(s)
- Shekeeb S Mohammad
- Kids Neuroscience Centre, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- TY Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Sydney, Australia
- The Children’s hospital at Westmead Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW 2145, Australia
| | - Rajeshwar Reddy Angiti
- Newborn and Peadiatric Emergency Transport Service (NETS), Bankstown, NSW, Australia
- Department of Neonatology, Liverpool Hospital, Liverpool, NSW, Australia
| | - Andrew Biggin
- The Children’s hospital at Westmead Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW 2145, Australia
| | - Hugo Morales-Briceño
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Robert Goetti
- Medical Imaging, The Children’s Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Belen Perez-Dueñas
- Paediatric Neurology Department, Hospital Vall d'Hebrón Universitat Autónoma de Barcelona, Vall d'Hebron Research Institute Barcelona, Barcelona, Spain
| | - Allison Gregory
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Penelope Hogarth
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Joanne Ng
- Molecular Neurosciences, Developmental Neurosciences, UCL-Institute of Child Health, London, UK
| | - Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences, UCL-Institute of Child Health, London, UK
| | - Kaustuv Bhattacharya
- Western Sydney Genomics Program, The Children’s Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine, Institute of Child Health, University College London and Metabolic Unit, Great Ormond Street Hospital, London, UK
| | - Kristina Prelog
- Medical Imaging, The Children’s Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Richard I Webster
- TY Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Sydney, Australia
| | - Evangeline Wassmer
- Department of Paediatric Neurology, Birmingham Children's Hospital, Birmingham, UK
| | - Susan Hayflick
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - John Livingston
- Department of Paediatric Neurology, Leeds Teaching Hospitals Trust, University of Leeds, UK
| | - Manju Kurian
- Molecular Neurosciences, Developmental Neurosciences, UCL-Institute of Child Health, London, UK
| | - W Kling Chong
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | - Russell C Dale
- Kids Neuroscience Centre, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- TY Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Sydney, Australia
- The Children’s hospital at Westmead Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
7
|
BoAli AY, Alfadhel M, Tabarki B. Neurometabolic disorders and congenital malformations of the central nervous system. ACTA ACUST UNITED AC 2019; 23:97-103. [PMID: 29664449 PMCID: PMC8015440 DOI: 10.17712/nsj.2018.2.20170481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both malformations of the central nervous system and neurometabolic disorders are common, mainly in highly consanguineous populations. Both metabolic pathways and developmental pathways are closely related and interact with each other. Neurometabolic disorders can lead to disturbances in brain development through multiple mechanisms that include deficits in energy metabolism, critical nutrient deficiency, accumulation of neurotoxic substrates, abnormality in cell membrane constituents, and interference in cell-to-cell signaling pathways. The anomalies observed include absent or hypoplastic corpus callosum, midline brain defects, and malformations of the cortex, the cerebellum and the brain stem. Early diagnosis of an underlying inherited neurometabolic disorders is critical for the institution of treatment, which may positively influence prognosis, and allow for proper genetic counseling. In this review, we discuss those disorders in which the structural brain malformation is a dominant feature, and propose a practical approach that will permit a physician to investigate, and treat these disorders.
Collapse
Affiliation(s)
- Ahmed Y BoAli
- Divisions of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City,Riyadh, Kingdom of Saudi Arabia
| | | | | |
Collapse
|
8
|
Wang FS, Goh DLM, Ong HT. Urea cycle disorder presenting as bilateral mesial temporal sclerosis - an unusual cause of seizures: a case report and review of the literature. J Med Case Rep 2018; 12:208. [PMID: 30007405 PMCID: PMC6046094 DOI: 10.1186/s13256-018-1750-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 06/17/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Urea cycle disorders are secondary to defects in the system converting ammonia into urea, causing accumulation of ammonia and other byproducts which are neurotoxic. Ornithine transcarbamylase deficiency is the most common of the urea cycle disorders and frequently presents with coma or seizures during hyperammonemia. However, seizures can also occur without metabolic decompensation. CASE PRESENTATION We describe a 23-year-old Chinese woman with urea cycle disorder who presented with confusion due to focal seizures arising from the left frontotemporal region. Interestingly, her ammonia levels remained normal during the seizures. Neuroimaging showed bilateral mesial temporal sclerosis. Her seizures were successfully controlled with two anti-epileptic medications. CONCLUSIONS This case adds evidence of the predisposition of the temporal lobe to injury in urea cycle disorder. Urea cycle disorder can lead to mesial temporal sclerosis which leads to increased susceptibility of patients to seizures regardless of their metabolic state.
Collapse
Affiliation(s)
- Furene Sijia Wang
- Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore. .,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Denise Li Meng Goh
- Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hian Tat Ong
- Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
de Souza PVS, Bortholin T, Naylor FGM, Chieia MAT, de Rezende Pinto WBV, Oliveira ASB. Motor neuron disease in inherited neurometabolic disorders. Rev Neurol (Paris) 2017; 174:115-124. [PMID: 29128155 DOI: 10.1016/j.neurol.2017.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/29/2017] [Accepted: 06/15/2017] [Indexed: 01/18/2023]
Abstract
Inherited neurometabolic disorders represent a growing group of inborn errors of metabolism that present with major neurological symptoms or a complex spectrum of symptoms dominated by central or peripheral nervous system dysfunction. Many neurological presentations may arise from the same metabolic defect, especially in autosomal-recessive inherited disorders. Motor neuron disease (MND), mainly represented by amyotrophic lateral sclerosis, may also result from various inborn errors of metabolism, some of which may represent potentially treatable conditions, thereby emphasizing the importance of recognizing such diseases. The present review discusses the most important neurometabolic disorders presenting with motor neuron (lower and/or upper) dysfunction as the key clinical and neuropathological feature.
Collapse
Affiliation(s)
- P Victor Sgobbi de Souza
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - T Bortholin
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - F George Monteiro Naylor
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - M Antônio Troccoli Chieia
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - W Bocca Vieira de Rezende Pinto
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - A Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
10
|
Bae YS, Yoon SH, Han JY, Woo J, Cho YS, Kwon SK, Bae YC, Kim D, Kim E, Kim MH. Deficiency of aminopeptidase P1 causes behavioral hyperactivity, cognitive deficits, and hippocampal neurodegeneration. GENES BRAIN AND BEHAVIOR 2017; 17:126-138. [PMID: 28834604 DOI: 10.1111/gbb.12419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
Abstract
Metabolic diseases affect various organs including the brain. Accumulation or depletion of substrates frequently leads to brain injury and dysfunction. Deficiency of aminopeptidase P1, a cytosolic proline-specific peptidase encoded by the Xpnpep1 gene, causes an inborn error of metabolism (IEM) characterized by peptiduria in humans. We previously reported that knockout of aminopeptidase P1 in mice causes neurodevelopmental disorders and peptiduria. However, little is known about the pathophysiological role of aminopeptidase P1 in the brain. Here, we show that loss of aminopeptidase P1 causes behavioral and neurological deficits in mice. Mice deficient in aminopeptidase P1 (Xpnpep1-/- ) display abnormally enhanced locomotor activities in both the home cage and open-field box. The aminopeptidase P1 deficiency in mice also resulted in severe impairments in novel-object recognition, the Morris water maze task, and contextual, but not cued, fear memory. These behavioral dysfunctions were accompanied by epileptiform electroencephalogram activity and neurodegeneration in the hippocampus. However, mice with a heterozygous mutation for aminopeptidase P1 (Xpnpep1+/- ) exhibited normal behaviors and brain structure. These results suggest that loss of aminopeptidase P1 leads to behavioral, cognitive and neurological deficits. This study may provide insight into new pathogenic mechanisms for brain dysfunction related to IEMs.
Collapse
Affiliation(s)
- Y-S Bae
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - S H Yoon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - J Y Han
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - J Woo
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Y S Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - S-K Kwon
- Department of Biological Sciences, KAIST, Daejeon, Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Y C Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - D Kim
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - E Kim
- Department of Biological Sciences, KAIST, Daejeon, Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - M-H Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea.,Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea
| |
Collapse
|
11
|
Rescue of the Functional Alterations of Motor Cortical Circuits in Arginase Deficiency by Neonatal Gene Therapy. J Neurosci 2017; 36:6680-90. [PMID: 27335400 DOI: 10.1523/jneurosci.0897-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/11/2016] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Arginase 1 deficiency is a urea cycle disorder associated with hyperargininemia, spastic diplegia, loss of ambulation, intellectual disability, and seizures. To gain insight on how loss of arginase expression affects the excitability and synaptic connectivity of the cortical neurons in the developing brain, we used anatomical, ultrastructural, and electrophysiological techniques to determine how single-copy and double-copy arginase deletion affects cortical circuits in mice. We find that the loss of arginase 1 expression results in decreased dendritic complexity, decreased excitatory and inhibitory synapse numbers, decreased intrinsic excitability, and altered synaptic transmission in layer 5 motor cortical neurons. Hepatic arginase 1 gene therapy using adeno-associated virus rescued nearly all these abnormalities when administered to neonatal homozygous knock-out animals. Therefore, gene therapeutic strategies can reverse physiological and anatomical markers of arginase 1 deficiency and therefore may be of therapeutic benefit for the neurological disabilities in this syndrome. SIGNIFICANCE STATEMENT These studies are one of the few investigations to try to understand the underlying neurological dysfunction that occurs in urea cycle disorders and the only to examine arginase deficiency. We have demonstrated by multiple modalities that, in murine layer 5 cortical neurons, a gradation of abnormalities exists based on the functional copy number of arginase: intrinsic excitability is altered, there is decreased density in asymmetrical and perisomatic synapses, and analysis of the dendritic complexity is lowest in the homozygous knock-out. With neonatal administration of adeno-associated virus expressing arginase, there is near-total recovery of the abnormalities in neurons and cortical circuits, supporting the concept that neonatal gene therapy may prevent the functional abnormalities that occur in arginase deficiency.
Collapse
|
12
|
Andrade F, López-Suárez O, Llarena M, Couce ML, Aldámiz-Echevarría L. Influence of phenylketonuria's diet on dimethylated arginines and methylation cycle. Medicine (Baltimore) 2017; 96:e7392. [PMID: 28682891 PMCID: PMC5502164 DOI: 10.1097/md.0000000000007392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Phenylketonuria's (PKU) treatment based on low natural protein diet may affect homocysteine (Hcys) metabolic pathway. Hcys alteration may be related to the methylation of arginine to asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), which both modify nitric oxide production. The aim of this work is to evaluate the status of Hcys formation methylation cycle and ADMA and SDMA levels in patients with PKU in order to establish a potential relationship.Forty-two early diagnosed PKU patients under dietary treatment and good adherence to their diets were enrolled in this cross-sectional study. Their nutritional and biochemical profile, as well as Hcys synthesis status, ADMA and SDMA levels were analyzed and compared with a control group of 40 healthy volunteers. ADMA and SDMA were determined by high-performance liquid chromatography system coupled to triple quadrupole mass spectrometer.In this study, 23 classic PKU, 16 moderate PKU, and 3 mild HPA were enrolled. The median age was 10 years old. Median ADMA, SDMA, and Hcys concentration levels (5.1 μM [2.3-25.7], 0.35 μM [0.18-0.57], 0.43 μM [0.26-0.61], respectively) were lower in patients with PKU (P < .001 for ADMA and SDMA) whereas vitamin B12 and folate levels (616 pg/mL [218-1943] and 21 ng/mL [5-51], respectively) were higher comparing with controls. Statistically significant correlations were found between ADMA, and Phe (r = -0.504, P = .001) and Hcys (r = -0.458, P = .037) levels. Several nutrition biomarkers, such as prealbumin, 25-hydroxy vitamin D, selenium, and zinc, were below the normal range.Our study suggests that patients with PKU suffer from poor methylation capacity. Restriction of natural proteins in addition to high intake of vitamin B12 and folic acid supplementation in the dietary products, produce an impairment of methylation cycle that leads to low Hcys and ADMA levels. As a result, methylated compounds compete for methyl groups, and there is an impairment of methylation cycle due to low Hcys levels, which is related to the lack of protein quality, despite of elevated concentrations of cofactors.
Collapse
Affiliation(s)
- Fernando Andrade
- Unit of Metabolism, BioCruces Health Research Institute, CIBER de Enfermedades Raras (CIBERER), Barakaldo
| | - Olalla López-Suárez
- Metabolic Disorders Unit, Santiago de Compostela University Hospital, IDIS, CIBERER, Santiago de Compostela, Spain
| | - Marta Llarena
- Unit of Metabolism, BioCruces Health Research Institute, CIBER de Enfermedades Raras (CIBERER), Barakaldo
| | - María L. Couce
- Metabolic Disorders Unit, Santiago de Compostela University Hospital, IDIS, CIBERER, Santiago de Compostela, Spain
| | - Luis Aldámiz-Echevarría
- Unit of Metabolism, BioCruces Health Research Institute, CIBER de Enfermedades Raras (CIBERER), Barakaldo
| |
Collapse
|
13
|
Tiwari S, Kallianpur D, DeSilva KA. Communication Impairments in Children with Inborn Errors of Metabolism: A Preliminary Study. Indian J Psychol Med 2017; 39:146-151. [PMID: 28515550 PMCID: PMC5385742 DOI: 10.4103/0253-7176.203125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Inborn Errors of Metabolism (IEMs) are a group of complex genetic conditions, predominantly affecting the pediatric population. While the understanding and identification of various IEMs has significantly improved over recent times, not much is known about the communication disorders in this population. The present study focused on identification and profiling of communication impairments in children diagnosed with IEMs. METHODS Data was obtained retrospectively from medical records of children visiting a tertiary care hospital over a period of ten years (2005 - 2014). Selected data was reviewed to obtain demographic details, clinical signs/manifestations, laboratory findings, risk factors, developmental disorders and reported communication impairments. RESULTS The findings of the study showed a variety of clinical signs and laboratory findings in children with inborn errors of metabolism. A few of the risk factors observed in the group were consanguinity, sibling death and family history of other disorders. Many children with IEM displayed communication disorders, most common as the delay in speech and language development. CONCLUSIONS The results of this study showed that various communication disorders were seen in almost half of the children with a diagnosis of IEM. Findings are discussed with implications for future research in this direction.
Collapse
Affiliation(s)
- Shivani Tiwari
- Department of Speech and Hearing, School of Allied Health Sciences, Manipal University, Manipal, Karnataka, India
| | - Divya Kallianpur
- Department of Speech and Hearing, School of Allied Health Sciences, Manipal University, Manipal, Karnataka, India
| | - Kelly Ann DeSilva
- Department of Speech and Hearing, School of Allied Health Sciences, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
14
|
Echeverri-Peña OY, Mera P, Cabarcas-Castro L, Ardila-Gómez YA, Ardila-Gómez YA, Espinosa-García E, Barrera-Avellaneda LA. ¿Tiene el paciente una leucodistrofia? Importancia de la descripción clínica, la semiología y las neuroimágenes ante la sospecha diagnóstica de leucodistrofia de origen metabólico. IATREIA 2017. [DOI: 10.17533/udea.iatreia.v30n2a09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Multifactorial Effects on Different Types of Brain Cells Contribute to Ammonia Toxicity. Neurochem Res 2016; 42:721-736. [PMID: 27286679 DOI: 10.1007/s11064-016-1966-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Abstract
Effects of ammonia on astrocytes play a major role in hepatic encephalopathy, acute liver failure and other diseases caused by increased arterial ammonia concentrations (e.g., inborn errors of metabolism, drug or mushroom poisoning). There is a direct correlation between arterial ammonia concentration, brain ammonia level and disease severity. However, the pathophysiology of hyperammonemic diseases is disputed. One long recognized factor is that increased brain ammonia triggers its own detoxification by glutamine formation from glutamate. This is an astrocytic process due to the selective expression of the glutamine synthetase in astrocytes. A possible deleterious effect of the resulting increase in glutamine concentration has repeatedly been discussed and is supported by improvement of some pathologic effects by GS inhibition. However, this procedure also inhibits a large part of astrocytic energy metabolism and may prevent astrocytes from responding to pathogenic factors. A decrease of the already low glutamate concentration in astrocytes due to increased synthesis of glutamine inhibits the malate-aspartate shuttle and energy metabolism. A more recently described pathogenic factor is the resemblance between NH4+ and K+ in their effects on the Na+,K+-ATPase and the Na+,K+, 2 Cl- and water transporter NKCC1. Stimulation of the Na+,K+-ATPase driven NKCC1 in both astrocytes and endothelial cells is essential for the development of brain edema. Na+,K+-ATPase stimulation also activates production of endogenous ouabains. This leads to oxidative and nitrosative damage and sensitizes NKCC1. Administration of ouabain antagonists may accordingly have therapeutic potential in hyperammonemic diseases.
Collapse
|
16
|
Hope S, Johannessen CH, Aanonsen NO, Strømme P. The investigation of inborn errors of metabolism as an underlying cause of idiopathic intellectual disability in adults in Norway. Eur J Neurol 2015; 23 Suppl 1:36-44. [DOI: 10.1111/ene.12884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 12/17/2022]
Affiliation(s)
- S. Hope
- Department of Neuro Habilitation; Oslo University Hospital, Ullevål; Oslo Norway
- NORMENT; KG Jebsen Centre for Psychosis Research; Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - C. H. Johannessen
- Department of Neuro Habilitation; Oslo University Hospital, Ullevål; Oslo Norway
| | - N. O. Aanonsen
- Department of Neuro Habilitation; Oslo University Hospital, Ullevål; Oslo Norway
| | - P. Strømme
- Department of Clinical Neurosciences for Children; Women and Children′s Division; Oslo University Hospital, Ullevål; Oslo Norway
- University of Oslo; Oslo Norway
| |
Collapse
|
17
|
Nebbioso M, Plateroti AM, Pucci B, Pescosolido N. Role of the dopaminergic system in the development of myopia in children and adolescents. J Child Neurol 2014; 29:1739-46. [PMID: 24996871 DOI: 10.1177/0883073814538666] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review summarizes the experimental evidence that supports the role of dopamine in the regulation of ocular axial growth. The most important functions attributed to dopamine are light adaptation and regulation of the retinal circadian rhythm. An increase of the retinal levels of dopamine activates D1 and D2 dopaminergic receptors present throughout the retina, generating a signal that inhibits axial growth once the eye has reached emmetropization. Researchers induced form-deprivation myopia in animal models in order to assess the different changes of ocular axial growth. Other studies have shown that phenylethylamine is an endogenous precursor-neurotransmitter capable of modulating the activity of dopamine. Considering the role of the dopaminergic system in the development of myopia (in children and adolescents) and the fact that phenylethylamine improves the consequences of a dopamine deficit, it would be interesting to study the effect of phenylethylamine on the regulation of axial growth, which represents the genesis of myopia.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | | | - Bruna Pucci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Nicola Pescosolido
- Department of Cardiovascular, Respiratory, Nephrology, Geriatric, and Anesthetic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Hertz L, Peng L, Song D. Ammonia, like K(+), stimulates the Na(+), K(+), 2 Cl(-) cotransporter NKCC1 and the Na(+),K(+)-ATPase and interacts with endogenous ouabain in astrocytes. Neurochem Res 2014; 40:241-57. [PMID: 24929663 DOI: 10.1007/s11064-014-1352-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 12/12/2022]
Abstract
Brain edema during hepatic encephalopathy or acute liver failure as well as following brain ischemia has a multifactorial etiology, but it is a dangerous and occasionally life-threatening complication because the brain is enclosed in the rigid skull. During ischemia the extracellular K(+) concentration increases to very high levels, which when energy becomes available during reperfusion stimulate NKCC1, a cotransporter driven by the transmembrane ion gradients established by the Na(+),K(+)-ATPase and accumulating Na(+), K(+) and 2 Cl(-) together with water. This induces pronounced astrocytic swelling under pathologic conditions, but NKCC1 is probably also activated, although to a lesser extent, during normal brain function. Redistribution of ions and water between extra- and intracellular phases does not create brain edema, which in addition requires uptake across the blood-brain barrier. During hepatic encephalopathy and acute liver failure a crucial factor is the close resemblance between K(+) and NH4(+) in their effects not only on NKCC1 and Na(+),K(+)-ATPase but also on Na(+),K(+)-ATPase-induced signaling by endogenous ouabains. These in turn activate production of ROS and nitrosactive agents which slowly sensitize NKCC1, explaining why cell swelling and brain edema generally are delayed under hyperammonemic conditions, although very high ammonia concentrations can cause immediate NKCC1 activation.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 92 Beier Road, Heping District, Shenyang, People's Republic of China
| | | | | |
Collapse
|