1
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
2
|
Kim J, Lee H, Lee DA, Park KM. Sarcopenia and anti-seizure medication response in juvenile myoclonic epilepsy. Brain Behav 2024; 14:e3464. [PMID: 38468473 PMCID: PMC10928337 DOI: 10.1002/brb3.3464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
INTRODUCTION This study aimed to investigate the presence of sarcopenia in patients with juvenile myoclonic epilepsy (JME) and the association between sarcopenia and response to anti-seizure medication (ASM) in patients with JME. METHODS We enrolled 42 patients with JME and 42 healthy controls who underwent brain magnetic resonance imaging with three-dimensional T1-weighted imaging. We measured the temporal muscle thickness (TMT), a radiographic marker for sarcopenia, using T1-weighted imaging. We compared the TMT between patients with JME and healthy controls and analyzed it according to the ASM response in patients with JME. We also performed a receiver operating characteristic (ROC) curve analysis to evaluate how well the TMT differentiated the groups. RESULTS The TMT in patients with JME did not differ from that in healthy controls (9.630 vs. 9.956 mm, p = .306); however, ASM poor responders had a lower TMT than ASM good responders (9.109 vs. 10.104 mm, p = .023). ROC curve analysis revealed that the TMT exhibited a poor performance in differentiating patients with JME from healthy controls, with an area under the ROC curve of .570 (p = .270), but good performance in differentiating between ASM good and poor responders, with an area under the ROC curve of .700 (p = .015). CONCLUSION The TMT did not differ between patients with JME and healthy controls; however, it was reduced in ASM poor responders compared to ASM good responders, suggesting a link between ASM response and sarcopenia in patients with JME. TMT can be used to investigate sarcopenia in various neurological disorders.
Collapse
Affiliation(s)
- Jinseung Kim
- Department of Family MedicineBusan Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - Ho‐Joon Lee
- Department of RadiologyHaeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - Dong Ah Lee
- Department of NeurologyHaeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - Kang Min Park
- Department of NeurologyHaeundae Paik HospitalInje University College of MedicineBusanRepublic of Korea
| |
Collapse
|
3
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
4
|
Moos WH, Faller DV, Glavas IP, Kanara I, Kodukula K, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG. Epilepsy: Mitochondrial connections to the 'Sacred' disease. Mitochondrion 2023; 72:84-101. [PMID: 37582467 DOI: 10.1016/j.mito.2023.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
Over 65 million people suffer from recurrent, unprovoked seizures. The lack of validated biomarkers specific for myriad forms of epilepsy makes diagnosis challenging. Diagnosis and monitoring of childhood epilepsy add to the need for non-invasive biomarkers, especially when evaluating antiseizure medications. Although underlying mechanisms of epileptogenesis are not fully understood, evidence for mitochondrial involvement is substantial. Seizures affect 35%-60% of patients diagnosed with mitochondrial diseases. Mitochondrial dysfunction is pathophysiological in various epilepsies, including those of non-mitochondrial origin. Decreased ATP production caused by malfunctioning brain cell mitochondria leads to altered neuronal bioenergetics, metabolism and neurological complications, including seizures. Iron-dependent lipid peroxidation initiates ferroptosis, a cell death pathway that aligns with altered mitochondrial bioenergetics, metabolism and morphology found in neurodegenerative diseases (NDDs). Studies in mouse genetic models with seizure phenotypes where the function of an essential selenoprotein (GPX4) is targeted suggest roles for ferroptosis in epilepsy. GPX4 is pivotal in NDDs, where selenium protects interneurons from ferroptosis. Selenium is an essential central nervous system micronutrient and trace element. Low serum concentrations of selenium and other trace elements and minerals, including iron, are noted in diagnosing childhood epilepsy. Selenium supplements alleviate intractable seizures in children with reduced GPX activity. Copper and cuproptosis, like iron and ferroptosis, link to mitochondria and NDDs. Connecting these mechanistic pathways to selenoproteins provides new insights into treating seizures, pointing to using medicines including prodrugs of lipoic acid to treat epilepsy and to potential alternative therapeutic approaches including transcranial magnetic stimulation (transcranial), photobiomodulation and vagus nerve stimulation.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | | | | | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| |
Collapse
|
5
|
Madireddy S, Madireddy S. Therapeutic Strategies to Ameliorate Neuronal Damage in Epilepsy by Regulating Oxidative Stress, Mitochondrial Dysfunction, and Neuroinflammation. Brain Sci 2023; 13:brainsci13050784. [PMID: 37239256 DOI: 10.3390/brainsci13050784] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Epilepsy is a central nervous system disorder involving spontaneous and recurring seizures that affects 50 million individuals globally. Because approximately one-third of patients with epilepsy do not respond to drug therapy, the development of new therapeutic strategies against epilepsy could be beneficial. Oxidative stress and mitochondrial dysfunction are frequently observed in epilepsy. Additionally, neuroinflammation is increasingly understood to contribute to the pathogenesis of epilepsy. Mitochondrial dysfunction is also recognized for its contributions to neuronal excitability and apoptosis, which can lead to neuronal loss in epilepsy. This review focuses on the roles of oxidative damage, mitochondrial dysfunction, NAPDH oxidase, the blood-brain barrier, excitotoxicity, and neuroinflammation in the development of epilepsy. We also review the therapies used to treat epilepsy and prevent seizures, including anti-seizure medications, anti-epileptic drugs, anti-inflammatory therapies, and antioxidant therapies. In addition, we review the use of neuromodulation and surgery in the treatment of epilepsy. Finally, we present the role of dietary and nutritional strategies in the management of epilepsy, including the ketogenic diet and the intake of vitamins, polyphenols, and flavonoids. By reviewing available interventions and research on the pathophysiology of epilepsy, this review points to areas of further development for therapies that can manage epilepsy.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
6
|
Fang Q, Zheng S, Chen Q, Chen L, Yang Y, Wang Y, Zhang H, Chen J. The protective effect of inhibiting mitochondrial fission on the juvenile rat brain following PTZ kindling through inhibiting the BCL2L13/LC3 mitophagy pathway. Metab Brain Dis 2023; 38:453-466. [PMID: 36094724 DOI: 10.1007/s11011-022-01077-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 02/04/2023]
Abstract
Maintaining the balance of mitochondrial fission and mitochondrial autophagy on seizures is helpful to find a solution to control seizures and reduce brain injuries. The present study is to investigate the protective effect of inhibiting mitochondrial fission on brain injury in juvenile rat epilepsy induced by pentatetrazol (PTZ) by inhibiting the BCL2L13/LC3-mediated mitophagy pathway. PTZ was injected (40 mg/kg) to induce kindling once every other day, for a total of 15 times. In the PTZ + DMSO (DMSO), PTZ + Mdivi-1 (Mdivi-1), and PTZ + WY14643 (WY14643) groups, rats were pretreated with DMSO, Mdivi-1 and WY14643 for half an hour prior to PTZ injection. The seizure attacks of young rats were observed for 30 min after model establishment. The Morris water maze (MWM) was used to test the cognition of experimental rats. After the test, the numbers of NeuN(+) neurons and GFAP(+) astrocytes were observed and counted by immunofluorescence (IF). The protein expression levels of Drp1, BCL2L13, LC3 and caspase 3 in the hippocampus of young rats were detected by immunohistochemistry (IHC) and Western blotting (WB). Compared with the PTZ and DMSO groups, the seizure latency in the Mdivi-1 group was longer (P < 0.01), and the severity degree and frequency of seizures were lower (P < 0.01). The MWM test showed that the incubation periods of crossing the platform in the Mdivi-1 group was significantly shorter. The number of platform crossings, the platform stay time, and the ratio of residence time/total stay time were significantly increased in the Mdivi-1 group (P < 0.01). The IF results showed that the number of NeuN(+) neurons in the Mdivi-1 group was greater, while the number of GFAP(+) astrocytes was lower. IHC and WB showed that the average optical density (AOD) and relative protein expression levels of Drp1, BCL2L13, LC3 and caspase 3 in the hippocampi of rats in the Mdivi-1 group were higher (P < 0.05). The above results in the WY14643 group were opposite to those in the Mdivi-1 group. Inhibition of mitochondrial fission could reduce seizure attacks, protect injured neurons, and improve cognition following PTZ-induced epilepsy by inhibiting mitochondrial autophagy mediated by the BCL2L13/LC3 mitophagy pathway.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China.
| | - Shaojuan Zheng
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China.
| | - Lang Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Yating Yang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Ying Wang
- Department of clinical medicine, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Huixia Zhang
- Department of clinical medicine, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jiafan Chen
- Department of clinical medicine, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| |
Collapse
|
7
|
CKII Control of Axonal Plasticity Is Mediated by Mitochondrial Ca 2+ via Mitochondrial NCLX. Cells 2022; 11:cells11243990. [PMID: 36552754 PMCID: PMC9777275 DOI: 10.3390/cells11243990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial Ca2+ efflux by NCLX is a critical rate-limiting step in mitochondria signaling. We previously showed that NCLX is phosphorylated at a putative Casein Kinase 2 (CKII) site, the serine 271 (S271). Here, we asked if NCLX is regulated by CKII and interrogated the physiological implications of this control. We found that CKII inhibitors down-regulated NCLX-dependent Ca2+ transport activity in SH-SY5Y neuronal cells and primary hippocampal neurons. Furthermore, we show that the CKII phosphomimetic mutants on NCLX inhibited (S271A) and constitutively activated (S271D) NCLX transport, respectively, rendering it insensitive to CKII inhibition. These phosphomimetic NCLX mutations also control the allosteric regulation of NCLX by mitochondrial membrane potential (ΔΨm). Since the omnipresent CKII is necessary for modulating the plasticity of the axon initial segment (AIS), we interrogated, in hippocampal neurons, if NCLX is required for this process. Similarly to WT neurons, NCLX-KO neurons can exhibit homeostatic plasticity following M-channel block. However, while WT neurons utilize a CKII-sensitive distal relocation of AIS Na+ and Kv7 channels to decrease their intrinsic excitability, we did not observe such translocation in NCLX-KO neurons. Thus, our results indicate that NCLX is regulated by CKII and is a crucial link between CKII signaling and fast neuronal plasticity.
Collapse
|
8
|
Sun H, Li J, Maimaiti B, Liu J, Li Z, Cheng Y, Zhao W, Mijiti S, Jiang T, Meng Q, Wang J, Jin Q, Meng H. Circulating malondialdehyde level in patients with epilepsy: A meta-analysis. Seizure 2022; 99:113-119. [DOI: 10.1016/j.seizure.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022] Open
|
9
|
USE OF KETOGENIC DIET THERAPY IN EPILEPSY WITH MITOCHONDRIAL DYSFUNCTION: A SYSTEMATIC AND CRITICAL REVIEW. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the development of molecular techniques over time more than %60 of epilepsy has associated with mitochondrial (mt) dysfunction. Ketogenic diet (KD) has been used in the treatment of epilepsy since the 1920s. Aim. To evaluate the evidence behind KD in mt dysfunction in epilepsy. Methods. Databases PubMed, Google Scholar and MEDLINE were searched in an umbrella approach to 12 March 2021 in English. To identify relevant studies specific search strategies were devised for the following topics: (1) mitochondrial dysfunction (2) epilepsy (3) KD treatment. Results. From 1794 papers, 36 articles were included in analysis: 16 (%44.44) preclinical studies, 11 (%30.55) case reports, 9 (%25) clinical studies. In all the preclinic studies, KD regulated the number of mt profiles, transcripts of metabolic enzymes and encoding mt proteins, protected the mice against to seizures and had an anticonvulsant mechanism. Case reports and clinical trials have reported patients with good results in seizure control and mt functions, although not all of them give good results as well as preclinical. Conclusion. Healthcare institutions, researchers, neurologists, health promotion organizations, and dietitians should consider these results to improve KD programs and disease outcomes for mt dysfunction in epilepsy.
Collapse
|
10
|
Fine AL, Liebo G, Gavrilova RH, Britton JW. Seizure Semiology, EEG, and Imaging Findings in Epilepsy Secondary to Mitochondrial Disease. Front Neurol 2021; 12:779052. [PMID: 34912288 PMCID: PMC8666417 DOI: 10.3389/fneur.2021.779052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022] Open
Abstract
Background: Identification of an underlying mitochondrial disorder can be challenging due to the significant phenotypic variability between and within specific disorders. Epilepsy can be a presenting symptom with several mitochondrial disorders. In this study, we evaluated clinical, electrophysiologic, and imaging features in patients with epilepsy and mitochondrial disorders to identify common features, which could aid in earlier identification of a mitochondrial etiology. Methods: This is a retrospective case series from January 2011 to December 2019 at a tertiary referral center of patients with epilepsy and a genetically confirmed diagnosis of a mitochondrial disorder. A total of 164 patients were reviewed with 20 patients fulfilling inclusion criteria. Results: A total of 20 patients (14 females, 6 males) aged 0.5-61 years with epilepsy and genetically confirmed mitochondrial disorders were identified. Status epilepticus occurred in 15 patients, with focal status epilepticus in 13 patients, including 9 patients with visual features. Abnormalities over the posterior cerebral regions were seen in 66% of ictal recordings and 44% of imaging studies. All the patients were on nutraceutical supplementation with no significant change in disease progression seen. At last follow-up, eight patients were deceased and the remainder had moderate-to-severe disability. Discussion: In this series of patients with epilepsy and mitochondrial disorders, we found increased propensity for seizures arising from the posterior cerebral regions. Over time, electroencephalogram (EEG) and imaging abnormalities increasingly occurred over the posterior cerebral regions. Focal seizures and focal status epilepticus with visual symptoms were common. Additional study is needed on nutraceutical supplementation in mitochondrial disorders.
Collapse
Affiliation(s)
- Anthony L. Fine
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Greta Liebo
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Ralitza H. Gavrilova
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
11
|
The Protective Role of E-64d in Hippocampal Excitotoxic Neuronal Injury Induced by Glutamate in HT22 Hippocampal Neuronal Cells. Neural Plast 2021; 2021:7174287. [PMID: 34721570 PMCID: PMC8550833 DOI: 10.1155/2021/7174287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022] Open
Abstract
Epilepsy is the most common childhood neurologic disorder. Status epilepticus (SE), which refers to continuous epileptic seizures, occurs more frequently in children than in adults, and approximately 40–50% of all cases occur in children under 2 years of age. Conventional antiepileptic drugs currently used in clinical practice have a number of adverse side effects. Drug-resistant epilepsy (DRE) can progressively develop in children with persistent SE, necessitating the development of novel therapeutic drugs. During SE, the persistent activation of neurons leads to decreased glutamate clearance with corresponding glutamate accumulation in the synaptic extracellular space, increasing the chance of neuronal excitotoxicity. Our previous study demonstrated that after developmental seizures in rats, E-64d exerts a neuroprotective effect on the seizure-induced brain damage by modulating lipid metabolism enzymes, especially ApoE and ApoJ/clusterin. In this study, we investigated the impact and mechanisms of E-64d administration on neuronal excitotoxicity. To test our hypothesis that E-64d confers neuroprotective effects by regulating autophagy and mitochondrial pathway activity, we simulated neuronal excitotoxicity in vitro using an immortalized hippocampal neuron cell line (HT22). We found that E-64d improved cell viability while reducing oxidative stress and neuronal apoptosis. In addition, E-64d treatment regulated mitochondrial pathway activity and inhibited chaperone-mediated autophagy in HT22 cells. Our findings indicate that E-64d may alleviate glutamate-induced damage via regulation of mitochondrial fission and apoptosis, as well as inhibition of chaperone-mediated autophagy. Thus, E-64d may be a promising therapeutic treatment for hippocampal injury associated with SE.
Collapse
|
12
|
Xu YW, Lin P, Zheng SF, Huang W, Lin ZY, Shang-Guan HC, Lin YX, Yao PS, Kang DZ. Acetylation Profiles in the Metabolic Process of Glioma-Associated Seizures. Front Neurol 2021; 12:713293. [PMID: 34664012 PMCID: PMC8519730 DOI: 10.3389/fneur.2021.713293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: We test the hypothesis that lysine acetylation is involved in the metabolic process of glioma-associated seizures (GAS). Methods: We used label-free mass spectrometry-based quantitative proteomics to quantify dynamic changes of protein acetylation between gliomas with seizure (CA1 group) and gliomas without seizure (CA2 group). Furthermore, differences of acetyltransferase and deacetylase expression between CA1 and CA2 groups were performed by a quantitative proteomic study. We further classified acetylated proteins into groups according to cell component, molecular function, and biological process. In addition, metabolic pathways and protein interaction networks were analyzed. Regulated acetyltransferases and acetylated profiles were validated by PRM and Western blot. Results: We detected 169 downregulated lysine acetylation sites of 134 proteins and 39 upregulated lysine acetylation sites of 35 proteins in glioma with seizures based on acetylome. We detected 407 regulated proteins by proteomics, from which ACAT2 and ACAA2 were the differentially regulated enzymes in the acetylation of GAS. According to the KEGG analysis, the upregulated acetylated proteins within the PPIs were mapped to pathways involved in the TCA cycle, oxidative phosphorylation, biosynthesis of amino acids, and carbon metabolism. The downregulated acetylated proteins within the PPIs were mapped to pathways involved in fatty acid metabolism, oxidative phosphorylation, TCA cycle, and necroptosis. Regulated ACAT2 expression and acetylated profiles were validated by PRM and Western blot. Conclusions: The data support the hypothesis that regulated protein acetylation is involved in the metabolic process of GAS, which may be induced by acetyl-CoA acetyltransferases.
Collapse
Affiliation(s)
- Ya-Wen Xu
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Peng Lin
- Department of Pain, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shu-Fa Zheng
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wen Huang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhang-Ya Lin
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huang-Cheng Shang-Guan
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuan-Xiang Lin
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Pei-Sen Yao
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - De-Zhi Kang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Acute Valproate Exposure Induces Mitochondrial Biogenesis and Autophagy with FOXO3a Modulation in SH-SY5Y Cells. Cells 2021; 10:cells10102522. [PMID: 34685502 PMCID: PMC8533738 DOI: 10.3390/cells10102522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Valproic acid (VPA) is an antiepileptic drug found to induce mitochondrial dysfunction and autophagy in cancer cell lines. We treated the SH-SY5Y cell line with various concentrations of VPA (1, 5, and 10 mM). The treatment decreased cell viability, ATP production, and mitochondrial membrane potential and increased reactive oxygen species production. In addition, the mitochondrial DNA copy number increased after VPA treatment in a dose-dependent manner. Western blotting showed that the levels of mitochondrial biogenesis-related proteins (PGC-1α, TFAM, and COX4) increased, though estrogen-related receptor expression decreased after VPA treatment. Further, VPA treatment increased the total and acetylated FOXO3a protein levels. Although SIRT1 expression was decreased, SIRT3 expression was increased, which regulated FOXO3 acetylation in the mitochondria. Furthermore, VPA treatment induced autophagy via increased LC3-II levels and decreased p62 expression and mTOR phosphorylation. We suggest that VPA treatment induces mitochondrial biogenesis and autophagy via changes in FOXO3a expression and posttranslational modification in the SH-SY5Y cell line.
Collapse
|
14
|
Khatoon S, Agarwal NB, Samim M, Alam O. Neuroprotective Effect of Fisetin Through Suppression of IL-1R/TLR Axis and Apoptosis in Pentylenetetrazole-Induced Kindling in Mice. Front Neurol 2021; 12:689069. [PMID: 34354662 PMCID: PMC8333701 DOI: 10.3389/fneur.2021.689069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
Epilepsy is a complex neurological disorder, characterized by frequent electrical activity in brain regions. Inflammation and apoptosis cascade activation are serious neurological sequelae during seizures. Fisetin (3, 3',4',7-tetrahydroxyflavone), a flavonoid molecule, is considered for its effective anti-inflammatory and anti-apoptotic properties. This study investigated the neuroprotective effect of fisetin on experimental epilepsy. For acute studies, increasing current electroshock (ICES) and pentylenetetrazole (PTZ)-induced seizure tests were performed to evaluate the antiseizure activity of fisetin. For the chronic study, the kindling model was established by the administration of PTZ in subconvulsive dose (25 mg/kg, i.p.). Mice were treated with fisetin (5, 10, and 20 mg/kg, p.o.) to study its probable antiseizure mechanism. The kindled mice were evaluated for seizure scores. Their hippocampus and cortex were assessed for neuronal damage, inflammation, and apoptosis. Histological alterations were observed in the hippocampus of the experimental mice. Levels of high mobility group box 1 (HMGB1), Toll-like receptor-4 (TLR-4), interleukin-1 receptor 1 (IL-1R1), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed in the hippocampus and cortex by ELISA. The immunoreactivity and mRNA expressions of nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), cytochrome C, and caspase-3 were quantified by immunohistochemical analysis and real-time PCR. Phosphorylation ELISA was performed to evaluate AkT/mTOR (mammalian target of rapamycin) activation in the hippocampus and cortex of the kindled mice. The results showed that fisetin administration increased the seizure threshold current (STC) in the ICES test. In PTZ-induced seizures, fisetin administration increased the latency for myoclonic jerks (MJs) and generalized seizures (GSs). In the PTZ-induced kindling model, fisetin administration dose-dependently suppressed the development of kindling and the associated neuronal damage in the experimental mice. Further, fisetin administration ameliorated kindling-induced neuroinflammation as evident from decreased levels of HMGB1, TLR-4, IL-1R1, IL-1β, IL-6, and TNF-α in the hippocampus and cortex of the kindled mice. Also, the immunoreactivity and mRNA expressions of inflammatory molecules, NF-κB, and COX-2 were decreased with fisetin administration in the kindled animals. Decreased phosphorylation of the AkT/mTOR pathway was reported with fisetin administration in the hippocampus and cortex of the kindled mice. The immunoreactivity and mRNA expressions of apoptotic molecules, cytochrome C, and caspase-3 were attenuated upon fisetin administration. The findings suggest that fisetin shows a neuroprotective effect by suppressing the release of inflammatory and apoptosis molecules and attenuating histological alterations during experimental epilepsy.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nidhi Bharal Agarwal
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
15
|
Soleimani Meigoni Z, Jabari F, Motaghinejad M, Motevalian M. Protective effects of forced exercise against topiramate-induced cognition impairment and enhancement of its antiepileptic activity: molecular and behavioral evidences. Int J Neurosci 2021; 132:1198-1209. [PMID: 33428483 DOI: 10.1080/00207454.2021.1873979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Propose/aim of study: Forced exercise can act as a neuroprotective factor and cognitive enhancer. The aim of the current study was to evaluate the effects of forced exercise on topiramate (TPM) induced cognitive impairment and also on TPM anti-seizure activity and neurodegeneration status after seizure.Material and method: Forty adult male rats were divided into four groups receiving normal saline, TPM (100 mg/kg), TPM in combination with forced exercise and forced exercise only respectively for 21 days. MWM test, and PTZ induced seizure were used and some oxidative, inflammatory and apoptotic biomarkers were measured for assessment of experimental animals.Results: Forced exercise in combination with TPM could abolish the TPM induced cognitive impairment and potentiates its anti-seizure activity. Also forced exercise in combination with TPM decreased malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) and Bax protein, while caused increase in superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities after PTZ administration.Conclusion: It seems that forced exercise could act as an adjunct therapy with TPM for management of induced cognitive impairment and can also potentiate TPM antiepileptic and neuroprotective effects.
Collapse
Affiliation(s)
- Zahra Soleimani Meigoni
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jabari
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Natarajan GK, Mishra J, Camara AKS, Kwok WM. LETM1: A Single Entity With Diverse Impact on Mitochondrial Metabolism and Cellular Signaling. Front Physiol 2021; 12:637852. [PMID: 33815143 PMCID: PMC8012663 DOI: 10.3389/fphys.2021.637852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Nearly 2 decades since its discovery as one of the genes responsible for the Wolf-Hirschhorn Syndrome (WHS), the primary function of the leucine-zipper EF-hand containing transmembrane 1 (LETM1) protein in the inner mitochondrial membrane (IMM) or the mechanism by which it regulates mitochondrial Ca2+ handling is unresolved. Meanwhile, LETM1 has been associated with the regulation of fundamental cellular processes, such as development, cellular respiration and metabolism, and apoptosis. This mini-review summarizes the diversity of cellular functions impacted by LETM1 and highlights the multiple roles of LETM1 in health and disease.
Collapse
Affiliation(s)
- Gayathri K Natarajan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jyotsna Mishra
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
17
|
Flores-Soto M, Romero-Guerrero C, Vázquez-Hernández N, Tejeda-Martínez A, Martín-Amaya-Barajas FL, Orozco-Suárez S, González-Burgos I. Pentylenetetrazol-induced seizures in adult rats are associated with plastic changes to the dendritic spines on hippocampal CA1 pyramidal neurons. Behav Brain Res 2021; 406:113198. [PMID: 33657439 DOI: 10.1016/j.bbr.2021.113198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/29/2022]
Abstract
Epilepsy is a chronic neurobehavioral disorder whereby an imbalance between neurochemical excitation and inhibition at the synaptic level provokes seizures. Various experimental models have been used to study epilepsy, including that based on acute or chronic administration of Pentylenetetrazol (PTZ). In this study, a single PTZ dose (60 mg/kg) was administered to adult male rats and 30 min later, various neurobiological parameters were studied related to the transmission and modulation of excitatory impulses in pyramidal neurons of the hippocampal CA1 field. Rats experienced generalized seizures 1-3 min after PTZ administration, accompanied by elevated levels of Synaptophysin and Glutaminase. This response suggests presynaptic glutamate release is exacerbated to toxic levels, which eventually provokes neuronal death as witnessed by the higher levels of Caspase-3, TUNEL and GFAP. Similarly, the increase in PSD-95 suggests that viable dendritic spines are functional. Indeed, the increase in stubby and wide spines is likely related to de novo spinogenesis, and the regulation of neuronal excitability, which could represent a plastic response to the synaptic over-excitation. Furthermore, the increase in mushroom spines could be associated with the storage of cognitive information and the potentiation of thin spines until they are transformed into mushroom spines. However, the reduction in BDNF suggests that the activity of these spines would be down-regulated, may in part be responsible for the cognitive decline related to hippocampal function in patients with epilepsy.
Collapse
Affiliation(s)
- Mario Flores-Soto
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal., Mexico
| | - Christian Romero-Guerrero
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal., Mexico
| | - Nallely Vázquez-Hernández
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal., Mexico
| | - Aldo Tejeda-Martínez
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal., Mexico
| | | | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, CMN S-XXI, IMSS, Guadalajara, Jal., Mexico
| | - Ignacio González-Burgos
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal., Mexico.
| |
Collapse
|
18
|
Pavón S, Lázaro E, Martínez O, Amayra I, López-Paz JF, Caballero P, Al-Rashaida M, Luna PM, García M, Pérez M, Berrocoso S, Rodríguez AA, Pérez-Núñez P. Ketogenic diet and cognition in neurological diseases: a systematic review. Nutr Rev 2020; 79:802-813. [PMID: 33354711 DOI: 10.1093/nutrit/nuaa113] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CONTEXT In recent years, the ketogenic diet has gained special relevance as a possible therapeutic alternative to some neurological and chronic diseases. OBJECTIVE The aim of this systematic review was to answer the following question: Does a ketogenic diet improve cognitive skills in patients with Alzheimer's disease, Parkinson's disease, refractory epilepsy, and type 1 glucose deficiency syndrome? To define the research question, the PICOS criteria were used, following the guidelines of the PRISMA method. DATA SOURCES Medline/PubMed, Elsevier Science Direct, Dialnet, EBSCOhost, Mediagraphic, Sage Journals, ProQuest, and Wiley Online Library databases were used. DATA EXTRACTION After applying inclusion and exclusion criteria in accordance with the PRISMA method, a total of 63 entries published between 2004 and 2019 were used. DATA ANALYSIS The records extracted were analyzed from a qualitative approach, so no statistical analysis was carried out. CONCLUSION Although scientific literature on the subject is scarce and there has tended to be a lack of scientific rigor, the studies reviewed confirmed the effectiveness of this diet in improving the cognitive symptomatology of the aforementioned diseases.
Collapse
Affiliation(s)
- S Pavón
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - E Lázaro
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - O Martínez
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - I Amayra
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - J F López-Paz
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - P Caballero
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - M Al-Rashaida
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - P M Luna
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - M García
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - M Pérez
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - S Berrocoso
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - A A Rodríguez
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| | - P Pérez-Núñez
- Neuromuscular and Neurodevelopment Disorders Research Group (Neuro-e-Motion), Faculty of Psychology and Education, University of Deusto, Spain
| |
Collapse
|
19
|
Andreasen M, Nedergaard S. Effect of acute mitochondrial dysfunction on hyperexcitable network activity in rat hippocampus in vitro. Brain Res 2020; 1751:147193. [PMID: 33157100 DOI: 10.1016/j.brainres.2020.147193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/15/2022]
Abstract
Metabolic stress imposed by epileptic seizures can result in mitochondrial dysfunction, believed to act as positive feedback on epileptogenesis and seizure susceptibility. As the mechanism behind this positive feedback is unclear, the aim of the present study was to investigate the causal link between acute mitochondrial dysfunction and increased seizure susceptibility in hyperexcitable hippocampal networks. Following the induction of spontaneous interictal-like discharges, acute selective pharmacological blockade of either of the mitochondrial respiratory complexes (MRC) I-IV induced seizure-like events (SLE) in 78-100% of experiments. A similar result was obtained by uncoupling the oxidative phosphorylation (OXPHOS) but not by selective blockade of MRCV (ATP synthase) which did not induce SLE. The reactive oxygen species (ROS) scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol, 2 mM) significantly reduced the proconvulsant effect of blocking MRCI but did not reduce the proconvulsant effect of OXPHOS uncoupling. These findings indicate that acute mitochondrial dysfunction can lead to a convulsive state within a short timeframe, and that increased ROS production makes substantial contribution to such induction in addition to other mitochondrial related factors, which appears to be independent of changes in ROS and ATP production.
Collapse
Affiliation(s)
- Mogens Andreasen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Steen Nedergaard
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Oh M, Kim SA, Yoo HJ. Higher Lactate Level and Lactate-to-Pyruvate Ratio in Autism Spectrum Disorder. Exp Neurobiol 2020; 29:314-322. [PMID: 32921643 PMCID: PMC7492845 DOI: 10.5607/en20030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction is considered one of the pathophysiological mechanisms of autism spectrum disorder (ASD). However, previous studies of biomarkers associated with mitochondrial dysfunction in ASD have revealed inconsistent results. The objective of this study was to evaluate biochemical markers associated with mitochondrial dysfunction in subjects with ASD and their unaffected family members. Lactate and pyruvate levels, as well as the lactate-to-pyruvate ratio, were examined in the peripheral blood of probands with ASD (Affected Group, AG) and their unaffected family members (biological parents and unaffected siblings, Unaffected Group, UG). Lactate ≥22 mg/dl, pyruvate ≥1.4 mg/dl, and lactate-to-pyruvate ratio >25 were defined as abnormal. The clinical variables were compared between subjects with higher (>25) and lower (≤25) lactate-to-pyruvate ratios within the AG. The AG (n=59) had a significantly higher lactate and lactate-to-pyruvate ratio than the UG (n=136). The frequency of subjects with abnormally high lactate levels and lactate-to-pyruvate ratio was significantly higher in the AG (lactate 31.0% vs. 9.5%, ratio 25.9% vs. 7.3%, p<0.01). The relationship between lactate level and the repetitive behavior domain of the Autism Diagnostic Interview-Revised was statistically significant. These results suggest that biochemical markers related to mitochondrial dysfunction, especially higher lactate levels and lactate-to-pyruvate ratio, might be associated with the pathophysiology of ASD. Further larger studies using unrelated individuals are needed to control for the possible effects of age and sex on chemical biomarker levels.
Collapse
Affiliation(s)
- Miae Oh
- Department of Psychiatry, Kyung Hee University Hospital, Seoul 02447, Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejon 34824, Korea
| | - Hee Jeong Yoo
- Department of Psychiatry, Seoul National University Bundang Hospital, Seongnam 13620, Korea.,Seoul National University College of Medicine, Seoul 08826, Korea
| |
Collapse
|
21
|
Transcriptomic and proteomic profiling of glial versus neuronal Dube3a overexpression reveals common molecular changes in gliopathic epilepsies. Neurobiol Dis 2020; 141:104879. [PMID: 32344153 DOI: 10.1016/j.nbd.2020.104879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/04/2020] [Accepted: 04/23/2020] [Indexed: 01/05/2023] Open
Abstract
Epilepsy affects millions of individuals worldwide and many cases are pharmacoresistant. Duplication 15q syndrome (Dup15q) is a genetic disorder caused by duplications of the 15q11.2-q13.1 region. Phenotypes include a high rate of pharmacoresistant epilepsy. We developed a Dup15q model in Drosophila melanogaster that recapitulates seizures in Dup15q by over-expressing fly Dube3a or human UBE3A in glial cells, but not neurons, implicating glia in the Dup15q epilepsy phenotype. We compared Dube3a overexpression in glia (repo>Dube3a) versus neurons (elav>Dube3a) using transcriptomics and proteomics of whole fly head extracts. We identified 851 transcripts differentially regulated in repo>Dube3a, including an upregulation of glutathione S-transferase (GST) genes that occurred cell autonomously within glial cells. We reliably measured approximately 2,500 proteins by proteomics, most of which were also quantified at the transcript level. Combined transcriptomic and proteomic analysis revealed an enrichment of 21 synaptic transmission genes downregulated at the transcript and protein in repo>Dube3a indicating synaptic proteins change in a cell non-autonomous manner in repo>Dube3a flies. We identified 6 additional glia originating bang-sensitive seizure lines and found upregulation of GSTs in 4 out of these 6 lines. These data suggest GST upregulation is common among gliopathic seizures and may ultimately provide insight for treating epilepsy.
Collapse
|
22
|
von Rüden EL, Zellinger C, Gedon J, Walker A, Bierling V, Deeg CA, Hauck SM, Potschka H. Regulation of Alzheimer's disease-associated proteins during epileptogenesis. Neuroscience 2019; 424:102-120. [PMID: 31705965 DOI: 10.1016/j.neuroscience.2019.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Clinical evidence and pathological studies suggest a bidirectional link between temporal lobe epilepsy and Alzheimer's disease (AD). Data analysis from omic studies offers an excellent opportunity to identify the overlap in molecular alterations between the two pathologies. We have subjected proteomic data sets from a rat model of epileptogenesis to a bioinformatics analysis focused on proteins functionally linked with AD. The data sets have been obtained for hippocampus (HC) and parahippocampal cortex samples collected during the course of epileptogenesis. Our study confirmed a relevant dysregulation of proteins linked with Alzheimer pathogenesis. When comparing the two brain areas, a more prominent regulation was evident in parahippocampal cortex samples as compared to the HC. Dysregulated protein groups comprised those affecting mitochondrial function and calcium homeostasis. Differentially expressed mitochondrial proteins included proteins of the mitochondrial complexes I, III, IV, and V as well as of the accessory subunit of complex I. The analysis also revealed a regulation of the microtubule associated protein Tau in parahippocampal cortex tissue during the latency phase. This was further confirmed by immunohistochemistry. Moreover, we demonstrated a complex epileptogenesis-associated dysregulation of proteins involved in amyloid β processing and its regulation. Among others, the amyloid precursor protein and the α-secretase alpha disintegrin metalloproteinase 17 were included. Our analysis revealed a relevant regulation of key proteins known to be associated with AD pathogenesis. The analysis provides a comprehensive overview of shared molecular alterations characterizing epilepsy development and manifestation as well as AD development and progression.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christina Zellinger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Julia Gedon
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Bierling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany; Experimental Ophthalmology, Philipps University of Marburg, Marburg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
23
|
Matricardi S, Canafoglia L, Ardissone A, Moroni I, Ragona F, Ghezzi D, Lamantea E, Nardocci N, Franceschetti S, Granata T. Epileptic phenotypes in children with early-onset mitochondrial diseases. Acta Neurol Scand 2019; 140:184-193. [PMID: 31102535 DOI: 10.1111/ane.13130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To determine the prevalence of epilepsy in children with early-onset mitochondrial diseases (MDs) and to evaluate the epileptic phenotypes and associated features. MATERIALS AND METHODS Children affected by MD with onset during the first year of life were enrolled. Patients were classified according to their mitochondrial phenotype, and all findings in patients with epilepsy versus patients without were compared. The epileptic features were analyzed. RESULTS The series includes 129 patients (70 females) with median age at disease onset of 3 months. The median time of follow-up was 5 years. Non-syndromic mitochondrial encephalopathy and pyruvate dehydrogenase complex deficiency were the main mitochondrial diseases associated with epilepsy (P < 0.05). Seizures occurred in 48%, and the presence of epilepsy was significantly associated with earlier age at disease onset, presence of perinatal manifestations, and early detection of developmental delay and regression (P < 0.001). Epileptic encephalopathy (EE) with spasms and EE with prominent focal seizures were the most detected epileptic syndromes (37% and 27.4%). Several seizure types were recorded in 53.2%, with the unusual association of generalized and focal epileptic pattern. Disabling epilepsy was detected in 63% and was associated with early seizure onset, presence of several seizure types, epileptic syndrome featuring EE, and the recurrence of episodes of status epilepticus and epilepsia partialis continua (P < 0.05). CONCLUSIONS Epilepsy in children with early-onset MD may be a presenting or a prominent symptom in a multisystemic clinical presentation. Epilepsy-related factors could determine a worst seizure outcome, leading to a more severe burned of the disease.
Collapse
Affiliation(s)
- Sara Matricardi
- Department of Pediatric Neuroscience Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
- Department of Neuropsychiatry Children's Hospital “G. Salesi”Ospedali Riuniti Ancona Ancona Italy
| | - Laura Canafoglia
- Department of Neurophysiology and Diagnostic Epileptology Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Anna Ardissone
- Department of Pediatric Neuroscience Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Isabella Moroni
- Department of Pediatric Neuroscience Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Daniele Ghezzi
- Medical Genetics and Neurogenetics Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
- Department of Pathophysiology and Transplantation University of Milan Milan Italy
| | - Eleonora Lamantea
- Medical Genetics and Neurogenetics Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Nardo Nardocci
- Department of Pediatric Neuroscience Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Silvana Franceschetti
- Department of Neurophysiology and Diagnostic Epileptology Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| |
Collapse
|
24
|
Li F, Liu L. Comparison of kainate-induced seizures, cognitive impairment and hippocampal damage in male and female mice. Life Sci 2019; 232:116621. [PMID: 31269415 DOI: 10.1016/j.lfs.2019.116621] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/11/2019] [Accepted: 06/29/2019] [Indexed: 12/22/2022]
Abstract
Kainate (KA) mouse model induced by intraperitoneal injection has been widely used for epilepsy and neurodegeneration studies. KA elicits sustained epileptic activity in mouse brain revealed by recurrent behavioral seizures, deteriorative neurodegeneration and various neurological deficits. However, to date, the vast majority of the studies used male mice only, and few studies on the comparison of brain injury between male and female mice in this model were reported. Epidemiological studies indicate that sex may affect the susceptibility to seizure response and neurodegeneration process. Therefore, this study focused on the effect of sex difference on KA-induced recurrent seizures and mortality, locomotor activity and cognitive impairment, and hippocampal neurodegeneration and reactive gliosis in mice. Our results showed that, compared to females, adult male mice exhibited worse performance in mortality rate, severity of epileptic seizures, and cognitive impairment indicated by novel object recognition task. Unexpectedly, post-KA male and female mice underwent similar decline and recovery of locomotor activity. KA-induced neurodegeneration in the whole hippocampus, particularly in CA1 and CA3 subregions, along with the deteriorative reactive gliosis in astrocytes and microglia, was more severe in males than that in females. These data provided the direct in vivo evidence that indicates the key role of sex difference in studies with KA mouse model, and this could be beneficial for optimizing the design of future studies.
Collapse
Affiliation(s)
- Fengling Li
- Department of Pharmacy, Linyi Tumor Hospital, Linyi, Shandong 276001, China
| | - Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
25
|
Chen D, Huang C, Chen Z. A review for the pharmacological effect of lycopene in central nervous system disorders. Biomed Pharmacother 2019; 111:791-801. [DOI: 10.1016/j.biopha.2018.12.151] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/31/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
|
26
|
Şahin S, Gürgen SG, Yazar U, İnce İ, Kamaşak T, Acar Arslan E, Diler Durgut B, Dilber B, Cansu A. Vitamin D protects against hippocampal apoptosis related with seizures induced by kainic acid and pentylenetetrazol in rats. Epilepsy Res 2019; 149:107-116. [DOI: 10.1016/j.eplepsyres.2018.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 11/26/2022]
|
27
|
Tumienė B, Peterlin B, Maver A, Utkus A. Contemporary scope of inborn errors of metabolism involving epilepsy or seizures. Metab Brain Dis 2018; 33:1781-1786. [PMID: 30006695 DOI: 10.1007/s11011-018-0288-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 01/15/2023]
Abstract
Many inborn errors of metabolism may present with epilepsy or seizures, however, current scope of these diseases is unknown. Due to available precision medicine approaches in many inborn errors of metabolism and sophisticated traditional diagnostics, this group of disorders is of special relevance to clinicians. Besides, as current treatment is challenging and unsuccessful in more than 30% of all epilepsy patients, these diseases may provide valuable models for ictogenesis and epileptogenesis studies and potentially pave the ways to identification of novel treatments. The aim of this study was to elucidate genetic architecture of inborn errors of metabolism involving epilepsy or seizures and to evaluate their diagnostic approaches. After extensive search, 880 human genes were identified with a considerable part, 373 genes (42%), associated with inborn errors of metabolism. The most numerous group comprised disorders of energy metabolism (115, 31% of all inborn errors of metabolism). A substantial number of these diseases (26%, 97/373) have established specific treatments, therefore timely diagnosis comes as an obligation. Highly heterogenous, overlapping and non-specific phenotypes in most of inborn errors of metabolism presenting with epilepsy or seizures usually preclude phenotype-driven diagnostics. Besides, as traditional diagnostics involves a range of specialized metabolic tests with low diagnostic yields and is generally inefficient and lengthy, next-generation sequencing-based methods were proposed as a cost-efficient one-step way to shorten "diagnostic odyssey". Extensive list of 373 epilepsy- or seizures-associated inborn errors of metabolism genes may be of value in development of gene panels and as a tool for variants' filtration.
Collapse
Affiliation(s)
- Birutė Tumienė
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu 2, LT-08661, Vilnius, Lithuania.
- Vilnius University Hospital Santaros Klinikos, Santariskiu 2, LT-08661, Vilnius, Lithuania.
| | - Borut Peterlin
- Clinical Institute for Medical Genetics, Division of Gynecology, University of Ljubljana Medical Centre, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute for Medical Genetics, Division of Gynecology, University of Ljubljana Medical Centre, Ljubljana, Slovenia
| | - Algirdas Utkus
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu 2, LT-08661, Vilnius, Lithuania
| |
Collapse
|
28
|
Ali AE, Mahdy HM, Elsherbiny DM, Azab SS. Rifampicin ameliorates lithium-pilocarpine-induced seizures, consequent hippocampal damage and memory deficit in rats: Impact on oxidative, inflammatory and apoptotic machineries. Biochem Pharmacol 2018; 156:431-443. [PMID: 30195730 DOI: 10.1016/j.bcp.2018.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/05/2018] [Indexed: 01/28/2023]
Abstract
Epilepsy is one of the serious neurological sequelae of bacterial meningitis. Rifampicin, the well-known broad spectrum antibiotic, is clinically used for chemoprophylaxis of meningitis. Besides its antibiotic effects, rifampicin has been proven to be an effective neuroprotective candidate in various experimental models of neurological diseases. In addition, rifampicin was found to have promising antioxidant, anti-inflammatory and anti-apoptotic effects. Herein, we investigated the anticonvulsant effect of rifampicin at experimental meningitis dose (20 mg/kg, i.p.) using lithium-pilocarpine model of status epilepticus (SE) in rats. Additionally, we studied the effect of rifampicin on seizure induced histopathological, neurochemical and behavioral abnormalities. Our study showed that rifampicin pretreatment attenuated seizure activity and the resulting hippocampal insults marked by hematoxylin and eosin. Markers of oxidative stress, neuroinflammation and apoptosis were evaluated, in the hippocampus, 24 h after SE induction. We found that rifampicin pretreatment suppressed oxidative stress as indicated by normalized malondialdehyde and glutathione levels. Rifampicin pretreatment attenuated SE-induced neuroinflammation and decreased the hippocampal expression of interleukin-1β, tumor necrosis factor-α, nuclear factor kappa-B, and cyclooxygenase-2. Moreover, rifampicin mitigated SE-induced neuronal apoptosis as indicated by fewer positive cytochrome c immunostained cells and lower caspase-3 activity in the hippocampus. Furthermore, Morris water maze testing at 7 days after SE induction showed that rifampicin pretreatment can improve cognitive dysfunction. Therefore, rifampicin, currently used in the management of meningitis, has a potential additional advantage of ameliorating its epileptic sequelae.
Collapse
Affiliation(s)
- Alaa E Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba M Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa M Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
29
|
Affiliation(s)
- Ursula Geronzi
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Federica Lotti
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Salvatore Grosso
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| |
Collapse
|
30
|
Drummond‐Main CD, Rho JM. Electrophysiological characterization of a mitochondrial inner membrane chloride channel in rat brain. FEBS Lett 2018; 592:1545-1553. [DOI: 10.1002/1873-3468.13042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Christopher D. Drummond‐Main
- Developmental Neurosciences Research Program University of Calgary Alberta Canada
- Alberta Children's Hospital Research Institute University of Calgary Alberta Canada
| | - Jong M. Rho
- Developmental Neurosciences Research Program University of Calgary Alberta Canada
- Alberta Children's Hospital Research Institute University of Calgary Alberta Canada
- Departments of Pediatrics Clinical Neurosciences, and Physiology & Pharmacology University of Calgary Alberta Canada
- Hotchkiss Brain Institute Cumming School of Medicine University of Calgary Alberta Canada
| |
Collapse
|
31
|
Corrêa T, Mergener R, Leite JCL, Galera MF, Moreira LMDA, Vargas JE, Riegel M. Cytogenomic Integrative Network Analysis of the Critical Region Associated with Wolf-Hirschhorn Syndrome. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5436187. [PMID: 29721507 PMCID: PMC5867687 DOI: 10.1155/2018/5436187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022]
Abstract
Deletions in the 4p16.3 region are associated with Wolf-Hirschhorn syndrome (WHS), a contiguous gene deletion syndrome involving variable size deletions. In this study, we perform a cytogenomic integrative analysis combining classical cytogenetic methods, fluorescence in situ hybridization (FISH), chromosomal microarray analysis (CMA), and systems biology strategies, to establish the cytogenomic profile involving the 4p16.3 critical region and suggest WHS-related intracellular cell signaling cascades. The cytogenetic and clinical patient profiles were evaluated. We characterized 12 terminal deletions, one interstitial deletion, two ring chromosomes, and one classical translocation 4;8. CMA allowed delineation of the deletions, which ranged from 3.7 to 25.6 Mb with breakpoints from 4p16.3 to 4p15.33. Furthermore, the smallest region of overlapping (SRO) encompassed seven genes in a terminal region of 330 kb in the 4p16.3 region, suggesting a region of susceptibility to convulsions and microcephaly. Therefore, molecular interaction networks and topological analysis were performed to understand these WHS-related symptoms. Our results suggest that specific cell signaling pathways including dopamine receptor, NAD+ nucleosidase activity, and fibroblast growth factor-activated receptor activity are associated with the diverse pathological WHS phenotypes and their symptoms. Additionally, we identified 29 hub-bottlenecks (H-B) nodes with a major role in WHS.
Collapse
Affiliation(s)
- Thiago Corrêa
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, RS, Brazil
| | - Rafaella Mergener
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, RS, Brazil
| | - Júlio César Loguercio Leite
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Marcial Francis Galera
- Department of Pediatrics, Universidade Federal do Mato Grosso (UFMT), 78600-000 Cuiabá, MT, Brazil
| | - Lilia Maria de Azevedo Moreira
- Post-Graduate Program in Genetics and Biodiversity, Universidade Federal da Bahia, Campus Ondina, 40170-290 Salvador, BA, Brazil
| | - José Eduardo Vargas
- Institute of Biological Sciences, Universidade de Passo Fundo, Passo Fundo, RS, Brazil
| | - Mariluce Riegel
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, RS, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Abstract
The basic pathophysiology of epilepsy is still not fully understood. Epidemiological evidence for epilepsy seems to suggest that it may not only be the propensity for seizures to occur. The high prevalence of comorbidity and the finding that premature mortality is still increased in those who are in long-term remission, suggest that there is a systemic component to the condition. This systemic component is an additional shared risk factor that can explain an important proportion of the comorbidities of epilepsy as well as how an individual with inactive epilepsy remains at an elevated risk of premature mortality. This systemic component can be viewed from the perspective of a number of fundamental pathophysiological processes: inflammation, oxidative stress, glycation, and methylation capacity. These processes are associated with all-cause mortality and there is also a growing understanding of their impact on seizure processes. We propose that epilepsy be considered as the sum of seizures and comorbidities caused by systemic dysfunction, and that the comprehensive management of epilepsy should also include the management of the systemic dysfunction.
Collapse
|
33
|
Alterations in Cytosolic and Mitochondrial [U- 13C]Glucose Metabolism in a Chronic Epilepsy Mouse Model. eNeuro 2017; 4:eN-NWR-0341-16. [PMID: 28303258 PMCID: PMC5343280 DOI: 10.1523/eneuro.0341-16.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 01/17/2023] Open
Abstract
Temporal lobe epilepsy is a common form of adult epilepsy and shows high resistance to treatment. Increasing evidence has suggested that metabolic dysfunction contributes to the development of seizures, with previous studies indicating impairments in brain glucose metabolism. Here we aim to elucidate which pathways involved in glucose metabolism are impaired, by tracing the hippocampal metabolism of injected [U-13C]glucose (i.p.) during the chronic stage of the pilocarpine-status epilepticus mouse model of epilepsy. The enrichment of 13C in the intermediates of glycolysis and the TCA cycle were quantified in hippocampal extracts using liquid chromatography–tandem mass spectroscopy, along with the measurement of the activities of enzymes in each pathway. We show that there is reduced incorporation of 13C in the intermediates of glycolysis, with the percentage enrichment of all downstream intermediates being highly correlated with those of glucose 6-phosphate. Furthermore, the activities of all enzymes in this pathway including hexokinase and phosphofructokinase were unaltered, suggesting that glucose uptake is reduced in this model without further impairments in glycolysis itself. The key findings were 33% and 55% losses in the activities of pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase, respectively, along with reduced 13C enrichment in TCA cycle intermediates. This lower 13C enrichment is best explained in part by the reduced enrichment in glycolytic intermediates, whereas the reduction of key TCA cycle enzyme activity indicates that TCA cycling is also impaired in the hippocampal formation. Together, these data suggest that multitarget approaches may be necessary to restore metabolism in the epileptic brain.
Collapse
|
34
|
Accurate Breakpoint Mapping in Apparently Balanced Translocation Families with Discordant Phenotypes Using Whole Genome Mate-Pair Sequencing. PLoS One 2017; 12:e0169935. [PMID: 28072833 PMCID: PMC5225008 DOI: 10.1371/journal.pone.0169935] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Familial apparently balanced translocations (ABTs) segregating with discordant phenotypes are extremely challenging for interpretation and counseling due to the scarcity of publications and lack of routine techniques for quick investigation. Recently, next generation sequencing has emerged as an efficacious methodology for precise detection of translocation breakpoints. However, studies so far have mainly focused on de novo translocations. The present study focuses specifically on familial cases in order to shed some light to this diagnostic dilemma. Whole-genome mate-pair sequencing (WG-MPS) was applied to map the breakpoints in nine two-way ABT carriers from four families. Translocation breakpoints and patient-specific structural variants were validated by Sanger sequencing and quantitative Real Time PCR, respectively. Identical sequencing patterns and breakpoints were identified in affected and non-affected members carrying the same translocations. PTCD1, ATP5J2-PTCD1, CADPS2, and STPG1 were disrupted by the translocations in three families, rendering them initially as possible disease candidate genes. However, subsequent mutation screening and structural variant analysis did not reveal any pathogenic mutations or unique variants in the affected individuals that could explain the phenotypic differences between carriers of the same translocations. In conclusion, we suggest that NGS-based methods, such as WG-MPS, can be successfully used for detailed mapping of translocation breakpoints, which can also be used in routine clinical investigation of ABT cases. Unlike de novo translocations, no associations were determined here between familial two-way ABTs and the phenotype of the affected members, in which the presence of cryptic imbalances and complex chromosomal rearrangements has been excluded. Future whole-exome or whole-genome sequencing will potentially reveal unidentified mutations in the patients underlying the discordant phenotypes within each family. In addition, larger studies are needed to determine the exact percentage for phenotypic risk in families with ABTs.
Collapse
|
35
|
Dominiak A, Wilkaniec A, Wroczyński P, Adamczyk A. Selenium in the Therapy of Neurological Diseases. Where is it Going? Curr Neuropharmacol 2016; 14:282-99. [PMID: 26549649 PMCID: PMC4857624 DOI: 10.2174/1570159x14666151223100011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 12/19/2022] Open
Abstract
Selenium (34Se), an antioxidant trace element, is an important regulator of brain function. These beneficial properties that Se possesses are attributed to its ability to be incorporated into selenoproteins as an amino acid. Several selenoproteins are expressed in the brain, in which some of them, e.g. glutathione peroxidases (GPxs), thioredoxin reductases (TrxRs) or selenoprotein P (SelP), are strongly involved in antioxidant defence and in maintaining intercellular reducing conditions. Since increased oxidative stress has been implicated in neurological disorders, including Parkinson’s disease, Alzheimer’s disease, stroke, epilepsy and others, a growing body of evidence suggests that Se depletion followed by decreased activity of Se-dependent enzymes may be important factors connected with those pathologies. Undoubtedly, the remarkable progress that has been made in understanding the biological function of Se in the brain has opened up new potential possibilities for the treatment of neurological diseases by using Se as a potential drug. However, further research in the search for optimal Se donors is necessary in order to achieve an effective and safe therapeutic income.
Collapse
Affiliation(s)
| | - Anna Wilkaniec
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland.
| | | | | |
Collapse
|
36
|
Li F, Liu L. SIRT5 Deficiency Enhances Susceptibility to Kainate-Induced Seizures and Exacerbates Hippocampal Neurodegeneration not through Mitochondrial Antioxidant Enzyme SOD2. Front Cell Neurosci 2016; 10:171. [PMID: 27445698 PMCID: PMC4922023 DOI: 10.3389/fncel.2016.00171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a common and serious neurological disorder characterized by occurrence of recurrent spontaneous seizures, and emerging evidences support the association of mitochondrial dysfunction with epilepsy. Sirtuin 5 (SIRT5), localized in mitochondrial matrix, has been considered as an important functional modulator of mitochondria that contributes to ageing and neurological diseases. Our data shows that SIRT5 deficiency strikingly increased mortality rate and severity of response to epileptic seizures, dramatically exacerbated hippocampal neuronal loss and degeneration in mice exposed to Kainate (KA), and triggered more severe reactive astrogliosis. We found that the expression of mitochondrial SIRT5 of injured hippocampus was relatively up-regulated, indicating its potential contribution to the comparably increased survival of these cells and its possible neuroprotective role. Unexpectedly, SIRT5 seems not to apparently alter the decline of antioxidant enzymes superoxide dismutase 2 (SOD2) and glutathione peroxidase (GPx) in hippocampus caused by KA exposure in our paradigm, which indicates the protective role of SIRT5 on seizures and cellular degeneration might through different regulatory mechanism that would be explored in the future. In the present study, we provided strong evidences for the first time to demonstrate the association between SIRT5 and epilepsy, which offers a new understanding of the roles of SIRT5 in mitochondrial functional regulation. The neuroprotection of SIRT5 in KA-induced epileptic seizure and neurodegeneration will improve our current knowledge of the nature of SIRT5 in central nervous system (CNS) and neurological diseases.
Collapse
Affiliation(s)
- Fengling Li
- Department of Pharmacy, Linyi Tumor Hospital Linyi, Shandong, China
| | - Lei Liu
- Department of Anesthesiology, University of FloridaGainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of FloridaGainesville, FL, USA
| |
Collapse
|
37
|
Janssen W, Quaegebeur A, Van Goethem G, Ann L, Smets K, Vandenberghe R, Van Paesschen W. The spectrum of epilepsy caused by POLG mutations. Acta Neurol Belg 2016; 116:17-25. [PMID: 26104464 DOI: 10.1007/s13760-015-0499-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022]
Abstract
Mutations in POLG are increasingly recognized as a cause of refractory occipital lobe epilepsy (OLE) and status epilepticus (SE). Our aim was to describe the epilepsy syndrome in seven patients with POLG mutations. We retrospectively reviewed the medical records of seven patients with POLG mutations and epilepsy. Mutation analysis was performed by direct sequencing of the coding exons of the POLG gene. Disease onset was at a median age of 18 years (range 12-26). Epilepsy was the presenting problem in six patients. All had focal seizures, with motor (n = 6) and visual (n = 6) phenomena. Six patients had secondarily generalized seizures and two patients had myoclonic seizures. Six patients had one or more episodes of refractory SE, including focal (n = 5), subtle (n = 4), myoclonic (n = 2) and convulsive (n = 3) SE. During or after SE, brain MRI showed lesions affecting the occipital lobe in all patients, probably due to continuous epileptic activity. Five of the six patients with SE died during treatment of SE, one due to valproate-induced hepatotoxicity. Associated clinical symptoms were ataxia (n = 6), polyneuropathy (n = 6), progressive external ophthalmoplegia (PEO) (n = 3) and migraine (n = 3). Epilepsy may be the first and dominant neurological problem caused by POLG mutations. The epilepsy may be severe and the condition of the patient may end in fatal SE. Refractory OLE and SE in a patient with polyneuropathy, ataxia, PEO or migraine warrant screening for POLG mutations. In this clinical setting, valproate should not be given in view of the risk of fatal hepatotoxicity.
Collapse
Affiliation(s)
- Wouter Janssen
- Department of Neurology, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium.
| | - Annelies Quaegebeur
- Department of Neurology, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium
| | - Gert Van Goethem
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, Antwerp, Belgium
- University of Antwerpen, Antwerp, Belgium
- Department of Neurology, University Hospital Antwerpen, Antwerp, Belgium
| | - Löfgren Ann
- Laboratory of Neurogenetics, Institute Born-Bunge, Antwerp, Belgium
- University of Antwerpen, Antwerp, Belgium
| | - Katrien Smets
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, Antwerp, Belgium
- University of Antwerpen, Antwerp, Belgium
- Department of Neurology, University Hospital Antwerpen, Antwerp, Belgium
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium
| | - Wim Van Paesschen
- Department of Neurology, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium.
| |
Collapse
|
38
|
Bagnall RD, Crompton DE, Petrovski S, Lam L, Cutmore C, Garry SI, Sadleir LG, Dibbens LM, Cairns A, Kivity S, Afawi Z, Regan BM, Duflou J, Berkovic SF, Scheffer IE, Semsarian C. Exome-based analysis of cardiac arrhythmia, respiratory control, and epilepsy genes in sudden unexpected death in epilepsy. Ann Neurol 2016; 79:522-34. [PMID: 26704558 DOI: 10.1002/ana.24596] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 12/14/2015] [Accepted: 12/20/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The leading cause of epilepsy-related premature mortality is sudden unexpected death in epilepsy (SUDEP). The cause of SUDEP remains unknown. To search for genetic risk factors in SUDEP cases, we performed an exome-based analysis of rare variants. METHODS Demographic and clinical information of 61 SUDEP cases were collected. Exome sequencing and rare variant collapsing analysis with 2,936 control exomes were performed to test for genes enriched with damaging variants. Additionally, cardiac arrhythmia, respiratory control, and epilepsy genes were screened for variants with frequency of <0.1% and predicted to be pathogenic with multiple in silico tools. RESULTS The 61 SUDEP cases were categorized as definite SUDEP (n = 54), probable SUDEP (n = 5), and definite SUDEP plus (n = 2). We identified de novo mutations, previously reported pathogenic mutations, or candidate pathogenic variants in 28 of 61 (46%) cases. Four SUDEP cases (7%) had mutations in common genes responsible for the cardiac arrhythmia disease, long QT syndrome (LQTS). Nine cases (15%) had candidate pathogenic variants in dominant cardiac arrhythmia genes. Fifteen cases (25%) had mutations or candidate pathogenic variants in dominant epilepsy genes. No gene reached genome-wide significance with rare variant collapsing analysis; however, DEPDC5 (p = 0.00015) and KCNH2 (p = 0.0037) were among the top 30 genes, genome-wide. INTERPRETATION A sizeable proportion of SUDEP cases have clinically relevant mutations in cardiac arrhythmia and epilepsy genes. In cases with an LQTS gene mutation, SUDEP may occur as a result of a predictable and preventable cause. Understanding the genetic basis of SUDEP may inform cascade testing of at-risk family members.
Collapse
Affiliation(s)
- Richard D Bagnall
- Agnes Ginges Center for Molecular Cardiology, Centenary Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Douglas E Crompton
- Neurology Department, Northern Health, Melbourne, Australia.,Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Slavé Petrovski
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia.,Institute for Genomic Medicine, Columbia University, New York, NY
| | - Lien Lam
- Agnes Ginges Center for Molecular Cardiology, Centenary Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Carina Cutmore
- Agnes Ginges Center for Molecular Cardiology, Centenary Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Sarah I Garry
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Lynette G Sadleir
- Department of Pediatrics and Child Health, School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Leanne M Dibbens
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Anita Cairns
- Neurosciences Department, Lady Cilento Children's Hospital, Brisbane, Australia
| | - Sara Kivity
- Epilepsy Unit, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Zaid Afawi
- Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Brigid M Regan
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Johan Duflou
- Sydney Medical School, University of Sydney, Sydney, Australia.,Department of Forensic Medicine, Sydney, Australia
| | - Samuel F Berkovic
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia.,Department of Neurology, The Royal Children's Hospital, Parkville, Melbourne, Victoria, Australia.,Florey Institute of Neurosciences and Mental Health, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Christopher Semsarian
- Agnes Ginges Center for Molecular Cardiology, Centenary Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
39
|
Miles L, Greiner HM, Mangano FT, Horn PS, Leach JL, Miles MV. Cytochrome c oxidase deficit is associated with the seizure onset zone in young patients with focal cortical dysplasia Type II. Metab Brain Dis 2015; 30:1151-60. [PMID: 25957585 DOI: 10.1007/s11011-015-9680-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022]
Abstract
It has been postulated that mitochondrial dysfunction may be an important factor in epileptogenesis of intractable epilepsy. The current study tests the hypothesis that mitochondrial Complex IV (CIV) or cytochrome c oxidase dysfunction is associated with the seizure onset zone (SOZ) in patients with focal cortical dysplasia (FCD). Subjects were selected based on: age <19y; epilepsy surgery between May, 2010 and October, 2011; pathological diagnosis of isolated focal cortical dysplasia Type I (FCDI) or Type II (FCDII); and sufficient residual cortical tissue to conduct analysis of electron transport chain complex (ETC) activity in SOZ and adjacent cortical regions. In this retrospective study, patients were identified who had sufficient unfixed, frozen brain tissue for biochemical analysis in tissue homogenates. Specimens were subtyped using ILAE classification for FCD, and excluded if diagnosed with FCD Type III or dual pathology. Analysis of ETC activity in resected tissues was conducted independently and without knowledge of the identity, diagnosis, or clinical status of individual subjects. Seventeen patients met the inclusion criteria, including 6 FCDI and 11 FCDII. Comparison of adjacent cortical resections showed decreased CIV activity in the SOZ of the FCDII group (P = 0.003), but no significant CIV difference in adjacent tissues of the FCDI group. Because of the importance of CIV as the terminal and rate-limiting complex in the mitochondrial electron transport chain, these authors conclude that 1) a deficit of CIV is associated with the SOZ of patients with FCDII; 2) CIV deficiency may contribute to the spectrum of FCD neuropathology; and 3) further investigation of CIV in FCD may lead to the discovery of new targets for neuroprotective therapies for patients with intractable epilepsy.
Collapse
Affiliation(s)
- Lili Miles
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA,
| | | | | | | | | | | |
Collapse
|
40
|
Bhatnagar M, Shorvon S. Genetic mutations associated with status epilepticus. Epilepsy Behav 2015; 49:104-110. [PMID: 25982265 DOI: 10.1016/j.yebeh.2015.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 01/28/2023]
Abstract
This paper reports the results of a preliminary search of the literature aimed at identifying the genetic mutations reported to be strongly associated with status epilepticus. Genetic mutations were selected for inclusion if status epilepticus was specifically mentioned as a consequence of the mutation in standard genetic databases or in a case report or review article. Mutations in 122 genes were identified. The genetic mutations identified were found in only rare conditions (sometimes vanishingly rare) and mostly in infants and young children with multiple other handicaps. Most of the genetic mutations can be subdivided into those associated with cortical dysplasias, inborn errors of metabolism, mitochondrial disease, or epileptic encephalopathies and childhood syndromes. There are no identified 'pure status epilepticus genes'. The range of genes underpinning status epilepticus differs in many ways from the range of genes underpinning epilepsy, which suggests that the processes underpinning status epilepticus differ from those underpinning epilepsy. It has been frequently postulated that status epilepticus is the result of a failure of 'seizure termination mechanisms', but the wide variety of genes affecting very diverse biochemical pathways identified in this survey makes any unitary cause unlikely. The genetic influences in status epilepticus are likely to involve a wide range of mechanisms, some related to development, some to cerebral energy production, some to diverse altered biochemical pathways, some to transmitter and membrane function, and some to defects in networks or systems. The fact that many of the identified genes are involved with cerebral development suggests that status epilepticus might often be a system or network phenomenon. To date, there are very few genes identified which are associated with adult-onset status epilepticus (except in those with preexisting neurological damage), and this is disappointing as the cause of many adult-onset status epilepticus cases remains obscure. It has been suggested that idiopathic adult-onset status epilepticus might often have an immunological cause but no gene mutations which relate to immunological mechanisms were identified. Overall, the clinical utility of what is currently known about the genetics of status epilepticus is slight and the findings have had little impact on clinical treatment despite what has been a very large investment in money and time. New genetic technologies may result in the identification of further genes, but if the identified genetic defects confer only minor susceptibility, this is unlikely to influence therapy. It is also important to recognize that genetics has social implications in a way that other areas of science do not. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
Affiliation(s)
- M Bhatnagar
- UCL Institute of Neurology, University College London, UK
| | - S Shorvon
- UCL Institute of Neurology, University College London, UK.
| |
Collapse
|
41
|
Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons. Cell Death Dis 2015; 6:e1725. [PMID: 25880092 PMCID: PMC4650558 DOI: 10.1038/cddis.2015.94] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/15/2015] [Accepted: 03/02/2015] [Indexed: 12/11/2022]
Abstract
Disrupting particular mitochondrial fission and fusion proteins leads to the death of specific neuronal populations; however, the normal functions of mitochondrial fission in neurons are poorly understood, especially in vivo, which limits the understanding of mitochondrial changes in disease. Altered activity of the central mitochondrial fission protein dynamin-related protein 1 (Drp1) may contribute to the pathophysiology of several neurologic diseases. To study Drp1 in a neuronal population affected by Alzheimer's disease (AD), stroke, and seizure disorders, we postnatally deleted Drp1 from CA1 and other forebrain neurons in mice (CamKII-Cre, Drp1lox/lox (Drp1cKO)). Although most CA1 neurons survived for more than 1 year, their synaptic transmission was impaired, and Drp1cKO mice had impaired memory. In Drp1cKO cell bodies, we observed marked mitochondrial swelling but no change in the number of mitochondria in individual synaptic terminals. Using ATP FRET sensors, we found that cultured neurons lacking Drp1 (Drp1KO) could not maintain normal levels of mitochondrial-derived ATP when energy consumption was increased by neural activity. These deficits occurred specifically at the nerve terminal, but not the cell body, and were sufficient to impair synaptic vesicle cycling. Although Drp1KO increased the distance between axonal mitochondria, mitochondrial-derived ATP still decreased similarly in Drp1KO boutons with and without mitochondria. This indicates that mitochondrial-derived ATP is rapidly dispersed in Drp1KO axons, and that the deficits in axonal bioenergetics and function are not caused by regional energy gradients. Instead, loss of Drp1 compromises the intrinsic bioenergetic function of axonal mitochondria, thus revealing a mechanism by which disrupting mitochondrial dynamics can cause dysfunction of axons.
Collapse
|
42
|
Pecorelli A, Natrella F, Belmonte G, Miracco C, Cervellati F, Ciccoli L, Mariottini A, Rocchi R, Vatti G, Bua A, Canitano R, Hayek J, Forman H, Valacchi G. NADPH oxidase activation and 4-hydroxy-2-nonenal/aquaporin-4 adducts as possible new players in oxidative neuronal damage presents in drug-resistant epilepsy. Biochim Biophys Acta Mol Basis Dis 2015; 1852:507-19. [DOI: 10.1016/j.bbadis.2014.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/27/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
|
43
|
Xie N, Wang C, Lian Y, Wu C, Zhang H, Zhang Q. Puerarin protects hippocampal neurons against cell death in pilocarpine-induced seizures through antioxidant and anti-apoptotic mechanisms. Cell Mol Neurobiol 2014; 34:1175-82. [PMID: 25151533 PMCID: PMC11488856 DOI: 10.1007/s10571-014-0093-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/22/2014] [Indexed: 11/25/2022]
Abstract
Puerarin extracted from Radix puerariae has been shown to exert neuroprotective effects. However, it is still not known whether puerarin protects hippocampal neurons against cell death in pilocarpine-induced seizures. In this study, we found that pretreatment with puerarin significantly attenuated the neuronal death in the hippocampus of rats with pilocarpine-induced epilepsy. In addition, puerarin decreased the level of seizure-induced reactive oxygen species in mitochondria isolated from the rat hippocampi. Terminal deoxyuridine triphosphate nick-end labeling staining showed that puerarin exerted an anti-apoptotic effect on the neurons in the epileptic hippocampus. Western blot analysis showed that puerarin treatment significantly decreased the expression of Bax and increased the expression of Bcl-2. Moreover, puerarin treatment restored the altered mitochondrial membrane potential and cytochrome c release from the mitochondria in the epileptic hippocampi. Altogether, the findings of this study suggest that puerarin exerts a therapeutic effect on epilepsy-induced brain injury through antioxidant and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China,
| | | | | | | | | | | |
Collapse
|
44
|
Olson HE, Poduri A, Pearl PL. Genetic forms of epilepsies and other paroxysmal disorders. Semin Neurol 2014; 34:266-79. [PMID: 25192505 DOI: 10.1055/s-0034-1386765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic mechanisms explain the pathophysiology of many forms of epilepsy and other paroxysmal disorders, such as alternating hemiplegia of childhood, familial hemiplegic migraine, and paroxysmal dyskinesias. Epilepsy is a key feature of well-defined genetic syndromes including tuberous sclerosis complex, Rett syndrome, Angelman syndrome, and others. There is an increasing number of single-gene causes or susceptibility factors associated with several epilepsy syndromes, including the early-onset epileptic encephalopathies, benign neonatal/infantile seizures, progressive myoclonus epilepsies, genetic generalized and benign focal epilepsies, epileptic aphasias, and familial focal epilepsies. Molecular mechanisms are diverse, and a single gene can be associated with a broad range of phenotypes. Additional features, such as dysmorphisms, head size, movement disorders, and family history may provide clues to a genetic diagnosis. Genetic testing can impact medical care and counseling. We discuss genetic mechanisms of epilepsy and other paroxysmal disorders, tools and indications for genetic testing, known genotype-phenotype associations, the importance of genetic counseling, and a look toward the future of epilepsy genetics.
Collapse
Affiliation(s)
- Heather E Olson
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Annapurna Poduri
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Phillip L Pearl
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
45
|
Wallace KB. Drug-induced mitochondrial neuropathy in children: a conceptual framework for critical windows of development. J Child Neurol 2014; 29:1241-8. [PMID: 25008905 DOI: 10.1177/0883073814538510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial disease arises from genetic or nongenetic events that interfere either directly or indirectly with the bioenergetic function of the mitochondrion and manifest clinically in some form of metabolic disorder. In primary mitochondrial disease, the critical molecular target is one or more of the individual subunits of the respiratory complexes or their assembly and incorporation into the inner mitochondrial membrane, whereas with secondary mitochondrial disease the bioenergetic deficits are secondary to effects on targets other than the electron transport chain and oxidative phosphorylation. Primary genetic events include mutations to or altered expression of proteins targeted to the mitochondrial compartment, whether they are encoded by the nuclear or mitochondrial genome. In this review, we emphasize the occurrence of nongenetic mitochondrial disease resulting from therapeutic drug administration, review the broad scope of drugs implicated in affecting specific primary mitochondrial targets, and describe evidence demonstrating critical windows of risk for the developing neonate to drug-induced mitochondrial disease and neuropathy.
Collapse
Affiliation(s)
- Kendall B Wallace
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota
| |
Collapse
|