1
|
Mak G, Menon S, Lu JQ. Neurofilaments in neurologic disorders and beyond. J Neurol Sci 2022; 441:120380. [PMID: 36027641 DOI: 10.1016/j.jns.2022.120380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Many neurologic diseases can initially present as a diagnostic challenge and even when a diagnosis is made, monitoring of disease activity, progression and response to therapy may be limited with existing clinical and paraclinical assessments. As such, the identification of disease specific biomarkers provides a promising avenue by which diseases can be effectively diagnosed, monitored and used as a prognostic indicator for long-term outcomes. Neurofilaments are an integral component of the neuronal cytoskeleton, where assessment of neurofilaments in the blood, cerebrospinal fluid (CSF) and diseased tissue has been shown to have value in providing diagnostic clarity, monitoring disease activity, tracking progression and treatment efficacy, as well as lending prognostic insight into long-term outcomes. As such, this review attempts to provide a glimpse into the structure and function of neurofilaments, their role in various neurologic and non-neurologic disorders, including uncommon conditions with recent knowledge of neurofilament-related pathology, as well as their applicability in future clinical practice.
Collapse
Affiliation(s)
- Gloria Mak
- McMaster University, Department of Medicine, Hamilton, Ontario, Canada
| | - Suresh Menon
- McMaster University, Department of Medicine, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- McMaster University, Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Peptide KED: Molecular-Genetic Aspects of Neurogenesis Regulation in Alzheimer's Disease. Bull Exp Biol Med 2021; 171:190-193. [PMID: 34173097 DOI: 10.1007/s10517-021-05192-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 10/21/2022]
Abstract
Neuroprotective peptides are promising candidate molecules for the treatment of Alzheimer's disease (AD). Oral application of KED (Lys-Glu-Asp) improved memory and attention in elderly individuals with functional CNS disorders. Peptide KED also restores synaptic plasticity in in vitro model of AD. This review is focused on the analysis of the influence of KED peptide on the expression of genes and synthesis of proteins regulating apoptosis, aging, neurogenesis, and involved in AD pathogenesis. Analysis of published reports and our experimental findings suggests that KED regulates the expression of genes of cell aging and apoptosis (р16, р21), genes (NES, GAP43) and proteins (nestin, GAP43) of the neuronal differentiation, and genes involved in AD pathogenesis (SUMO, APOE, and IGF1). The study the effectiveness of neuroprotective peptide KED in animal models of AD seems to be very important.
Collapse
|
3
|
Alibert C, Pereira D, Lardier N, Etienne-Manneville S, Goud B, Asnacios A, Manneville JB. Multiscale rheology of glioma cells. Biomaterials 2021; 275:120903. [PMID: 34102526 DOI: 10.1016/j.biomaterials.2021.120903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/08/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022]
Abstract
Cells tend to soften during cancer progression, suggesting that mechanical phenotyping could be used as a diagnostic or prognostic method. Here we investigate the cell mechanics of gliomas, brain tumors that originate from glial cells or glial progenitors. Using two microrheology techniques, a single-cell parallel plates rheometer to probe whole-cell mechanics and optical tweezers to probe intracellular rheology, we show that cell mechanics discriminates human glioma cells of different grades. When probed globally, grade IV glioblastoma cells are softer than grade III astrocytoma cells, while they are surprisingly stiffer at the intracellular level. We explain this difference between global and local intracellular behaviours by changes in the composition and spatial organization of the cytoskeleton, and by changes in nuclear mechanics. Our study highlights the need to combine rheology techniques for potential diagnostic or prognostic methods based on cancer cell mechanophenotyping.
Collapse
Affiliation(s)
- Charlotte Alibert
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France; Sorbonne Universités, UPMC University Paris 06, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France
| | - David Pereira
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France; Laboratoire Matières et Systèmes Complexes, Université de Paris, CNRS, UMR7057, Université Paris-Diderot, 10 Rue Alice Domon et Léonie Duquet, F-75013, Paris, France
| | - Nathan Lardier
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France; Sorbonne Universités, UPMC University Paris 06, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France; Sorbonne Universités, UPMC University Paris 06, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France
| | - Atef Asnacios
- Laboratoire Matières et Systèmes Complexes, Université de Paris, CNRS, UMR7057, Université Paris-Diderot, 10 Rue Alice Domon et Léonie Duquet, F-75013, Paris, France
| | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France; Sorbonne Universités, UPMC University Paris 06, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France.
| |
Collapse
|
4
|
Zottel A, Jovčevska I, Šamec N, Komel R. Cytoskeletal proteins as glioblastoma biomarkers and targets for therapy: A systematic review. Crit Rev Oncol Hematol 2021; 160:103283. [PMID: 33667657 DOI: 10.1016/j.critrevonc.2021.103283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma, the most common primary brain malignancy, is an exceptionally fatal cancer. Lack of suitable biomarkers and efficient treatment largely contribute to the therapy failure. Cytoskeletal proteins are crucial proteins in glioblastoma pathogenesis and can potentially serve as biomarkers and therapeutic targets. Among them, GFAP, has gained most attention as potential diagnostic biomarker, while vimentin and microtubules are considered as prospective therapeutic targets. Microtubules represent one of the best anti-cancer targets due to their critical role in cell proliferation. Despite testing in clinical trials, the efficiency of taxanes, epothilones, vinca-domain binding drugs, colchicine-domain binding drugs and γ-tubulin binding drugs remains to be confirmed. Moreover, tumor treating field that disrupts microtubules draw attention because of its high efficiency and is called "the fourth cancer treatment modality". Thereby, because of the involvement of cytoskeleton in key physiological and pathological processes, its therapeutic potential in glioblastoma is currently extensively investigated.
Collapse
Affiliation(s)
- Alja Zottel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Zottel A, Šamec N, Kump A, Dall’Olio LR, Pužar Dominkuš P, Romih R, Hudoklin S, Mlakar J, Nikitin D, Sorokin M, Buzdin A, Jovčevska I, Komel R. Analysis of miR-9-5p, miR-124-3p, miR-21-5p, miR-138-5p, and miR-1-3p in Glioblastoma Cell Lines and Extracellular Vesicles. Int J Mol Sci 2020; 21:ijms21228491. [PMID: 33187334 PMCID: PMC7698225 DOI: 10.3390/ijms21228491] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), the most common primary brain tumor, is a complex and extremely aggressive disease. Despite recent advances in molecular biology, there is a lack of biomarkers, which would improve GBM’s diagnosis, prognosis, and therapy. Here, we analyzed by qPCR the expression levels of a set of miRNAs in GBM and lower-grade glioma human tissue samples and performed a survival analysis in silico. We then determined the expression of same miRNAs and their selected target mRNAs in small extracellular vesicles (sEVs) of GBM cell lines. We showed that the expression of miR-21-5p was significantly increased in GBM tissue compared to lower-grade glioma and reference brain tissue, while miR-124-3p and miR-138-5p were overexpressed in reference brain tissue compared to GBM. We also demonstrated that miR-9-5p and miR-124-3p were overexpressed in the sEVs of GBM stem cell lines (NCH421k or NCH644, respectively) compared to the sEVs of all other GBM cell lines and astrocytes. VIM mRNA, a target of miR-124-3p and miR-138-5p, was overexpressed in the sEVs of U251 and U87 GBM cell lines compared to the sEVs of GBM stem cell line and also astrocytes. Our results suggest VIM mRNA, miR-9-5p miRNA, and miR-124-3p miRNA could serve as biomarkers of the sEVs of GBM cells.
Collapse
Affiliation(s)
- Alja Zottel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.K.); (L.R.D.); (P.P.D.); (I.J.)
- Correspondence: (A.Z.); (R.K.); Tel.: +386-1-543-7662 (A.Z.)
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.K.); (L.R.D.); (P.P.D.); (I.J.)
| | - Ana Kump
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.K.); (L.R.D.); (P.P.D.); (I.J.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Lucija Raspor Dall’Olio
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.K.); (L.R.D.); (P.P.D.); (I.J.)
| | - Pia Pužar Dominkuš
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.K.); (L.R.D.); (P.P.D.); (I.J.)
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.R.); (S.H.)
| | - Samo Hudoklin
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.R.); (S.H.)
| | - Jernej Mlakar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Daniil Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.N.); (A.B.)
- Oncobox ltd., Moscow 121205, Russia;
| | - Maxim Sorokin
- Oncobox ltd., Moscow 121205, Russia;
- Laboratory of Clinical and Genomic Bioinformatics, I. M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Moscow Institute of Physics and Technology (National Research University), Moscow region 141700, Russia
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (D.N.); (A.B.)
- Laboratory of Clinical and Genomic Bioinformatics, I. M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Moscow Institute of Physics and Technology (National Research University), Moscow region 141700, Russia
- OmicsWay Corp., Walnut, CA 91789, USA
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.K.); (L.R.D.); (P.P.D.); (I.J.)
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.K.); (L.R.D.); (P.P.D.); (I.J.)
- Correspondence: (A.Z.); (R.K.); Tel.: +386-1-543-7662 (A.Z.)
| |
Collapse
|
6
|
Deville SS, Vehlow A, Förster S, Dickreuter E, Borgmann K, Cordes N. The Intermediate Filament Synemin Regulates Non-Homologous End Joining in an ATM-Dependent Manner. Cancers (Basel) 2020; 12:cancers12071717. [PMID: 32605308 PMCID: PMC7407367 DOI: 10.3390/cancers12071717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 01/26/2023] Open
Abstract
The treatment resistance of cancer cells is a multifaceted process in which DNA repair emerged as a potential therapeutic target. DNA repair is predominantly conducted by nuclear events; yet, how extra-nuclear cues impact the DNA damage response is largely unknown. Here, using a high-throughput RNAi-based screen in three-dimensionally-grown cell cultures of head and neck squamous cell carcinoma (HNSCC), we identified novel focal adhesion proteins controlling DNA repair, including the intermediate filament protein, synemin. We demonstrate that synemin critically regulates the DNA damage response by non-homologous end joining repair. Mechanistically, synemin forms a protein complex with DNA-PKcs through its C-terminal tail domain for determining DNA repair processes upstream of this enzyme in an ATM-dependent manner. Our study discovers a critical function of the intermediate filament protein, synemin in the DNA damage response, fundamentally supporting the concept of cytoarchitectural elements as co-regulators of nuclear events.
Collapse
Affiliation(s)
- Sara Sofia Deville
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.); (S.F.); (E.D.)
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
| | - Anne Vehlow
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.); (S.F.); (E.D.)
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
- German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sarah Förster
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.); (S.F.); (E.D.)
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
| | - Ellen Dickreuter
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.); (S.F.); (E.D.)
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Nils Cordes
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.); (S.F.); (E.D.)
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
- German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Correspondence: ; Tel.: +49-(0)351-458-7401; Fax: +49-(0)351-458-7311
| |
Collapse
|
7
|
Zottel A, Jovčevska I, Šamec N, Mlakar J, Šribar J, Križaj I, Skoblar Vidmar M, Komel R. Anti-vimentin, anti-TUFM, anti-NAP1L1 and anti-DPYSL2 nanobodies display cytotoxic effect and reduce glioblastoma cell migration. Ther Adv Med Oncol 2020; 12:1758835920915302. [PMID: 32426045 PMCID: PMC7222267 DOI: 10.1177/1758835920915302] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/04/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Glioblastoma is a particularly common and very aggressive primary brain tumour. One of the main causes of therapy failure is the presence of glioblastoma stem cells that are resistant to chemotherapy and radiotherapy, and that have the potential to form new tumours. This study focuses on validation of eight novel antigens, TRIM28, nucleolin, vimentin, nucleosome assembly protein 1-like 1 (NAP1L1), mitochondrial translation elongation factor (EF-TU) (TUFM), dihydropyrimidinase-related protein 2 (DPYSL2), collapsin response mediator protein 1 (CRMP1) and Aly/REF export factor (ALYREF), as putative glioblastoma targets, using nanobodies. Methods: Expression of these eight antigens was analysed at the cellular level by qPCR, ELISA and immunocytochemistry, and in tissues by immunohistochemistry. The cytotoxic effects of the nanobodies were determined using AlamarBlue and water-soluble tetrazolium tests. Annexin V/propidium iodide tests were used to determine apoptotsis/necrosis of the cells in the presence of the nanobodies. Cell migration assays were performed to determine the effects of the nanobodies on cell migration. Results: NAP1L1 and CRMP1 were significantly overexpressed in glioblastoma stem cells in comparison with astrocytes and glioblastoma cell lines at the mRNA and protein levels. Vimentin, DPYSL2 and ALYREF were overexpressed in glioblastoma cell lines only at the protein level. The functional part of the study examined the cytotoxic effects of the nanobodies on glioblastoma cell lines. Four of the nanobodies were selected in terms of their specificity towards glioblastoma cells and protein overexpression: anti-vimentin (Nb79), anti-NAP1L1 (Nb179), anti-TUFM (Nb225) and anti-DPYSL2 (Nb314). In further experiments to optimise the nanobody treatment schemes, to increase their effects, and to determine their impact on migration of glioblastoma cells, the anti-TUFM nanobody showed large cytotoxic effects on glioblastoma stem cells, while the anti-vimentin, anti-NAP1L1 and anti-DPYSL2 nanobodies were indicated as agents to target mature glioblastoma cells. The anti-vimentin nanobody also had significant effects on migration of mature glioblastoma cells. Conclusion: Nb79 (anti-vimentin), Nb179 (anti-NAP1L1), Nb225 (anti-TUFM) and Nb314 (anti-DPYSL2) nanobodies are indicated for further examination for cell targeting. The anti-TUFM nanobody, Nb225, is particularly potent for inhibition of cell growth after long-term exposure of glioblastoma stem cells, with minor effects seen for astrocytes. The anti-vimentin nanobody represents an agent for inhibition of cell migration.
Collapse
Affiliation(s)
- Alja Zottel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Mlakar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
8
|
Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders. Cells 2020; 9:cells9020358. [PMID: 32033020 PMCID: PMC7072452 DOI: 10.3390/cells9020358] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023] Open
Abstract
Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.
Collapse
|
9
|
Khavinson V, Diomede F, Mironova E, Linkova N, Trofimova S, Trubiani O, Caputi S, Sinjari B. AEDG Peptide (Epitalon) Stimulates Gene Expression and Protein Synthesis during Neurogenesis: Possible Epigenetic Mechanism. Molecules 2020; 25:molecules25030609. [PMID: 32019204 PMCID: PMC7037223 DOI: 10.3390/molecules25030609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 01/07/2023] Open
Abstract
It was shown that AEDG peptide (Ala-Glu-Asp-Gly, Epitalon) regulates the function of the pineal gland, the retina, and the brain. AEDG peptide increases longevity in animals and decreases experimental cancerogenesis. AEDG peptide induces neuronal cell differentiation in retinal and human periodontal ligament stem cells. The aim of the study was to investigate the influence of AEDG peptide on neurogenic differentiation gene expression and protein synthesis in human gingival mesenchymal stem cells, and to suggest the basis for the epigenetic mechanism of this process. AEDG peptide increased the synthesis of neurogenic differentiation markers: Nestin, GAP43, β Tubulin III, Doublecortin in hGMSCs. AEDG peptide increased Nestin, GAP43, β Tubulin III and Doublecortin mRNA expression by 1.6–1.8 times in hGMSCs. Molecular modelling method showed, that AEDG peptide preferably binds with H1/6 and H1/3 histones in His-Pro-Ser-Tyr-Met-Ala-His-Pro-Ala-Arg-Lys and Tyr-Arg-Lys-Thr-Gln sites, which interact with DNA. These results correspond to previous experimental data. AEDG peptide and histones H1/3, H1/6 binding may be one of the mechanisms which provides an increase of Nestin, GAP43, β Tubulin III, and Doublecortin neuronal differentiation gene transcription. AEDG peptide can epigenetically regulate neuronal differentiation gene expression and protein synthesis in human stem cells.
Collapse
Affiliation(s)
- Vladimir Khavinson
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, 197110 St. Petersburg, Russia; (V.K.); (E.M.); (S.T.)
- Pavlov Institute of Physiology Russian Academy of Sciences, Makarova Emb., 6, 199034 St. Petersburg, Russia
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (O.T.); (S.C.); (B.S.)
| | - Ekaterina Mironova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, 197110 St. Petersburg, Russia; (V.K.); (E.M.); (S.T.)
| | - Natalia Linkova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, 197110 St. Petersburg, Russia; (V.K.); (E.M.); (S.T.)
- Academy of postgraduate education under FSBU FSCC of FMBA of Russia, Volokolamskaya r., 91, 125371 Moscow, Russia
- Correspondence: ; Tel.: +7-921-311-4210
| | - Svetlana Trofimova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, 197110 St. Petersburg, Russia; (V.K.); (E.M.); (S.T.)
- Academy of postgraduate education under FSBU FSCC of FMBA of Russia, Volokolamskaya r., 91, 125371 Moscow, Russia
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (O.T.); (S.C.); (B.S.)
| | - Sergio Caputi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (O.T.); (S.C.); (B.S.)
| | - Bruna Sinjari
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (O.T.); (S.C.); (B.S.)
| |
Collapse
|
10
|
Klingler-Hoffmann M, Mittal P, Hoffmann P. The Emerging Role of Cytoskeletal Proteins as Reliable Biomarkers. Proteomics 2019; 19:e1800483. [PMID: 31525818 DOI: 10.1002/pmic.201800483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Indexed: 12/26/2022]
Abstract
Cytoskeletal proteins are essential building blocks of cells. More than 100 cytoskeletal and cytoskeleton-associated proteins are known and for some, their function and regulation are understood in great detail. Apart from cell shape and support, they facilitate many processes such as intracellular signaling and transport, and cancer related processes such as proliferation, migration, and invasion. During the last decade, comparative proteomic studies have identified cytoskeletal proteins as in vitro markers for tumor progression and metastasis. Here, these results are summarized and a number of unrelated studies are highlighted, identifying the same cytoskeletal proteins as potential biomarkers. These findings might indicate that the abundance of these potential markers of tumor progression is associated with the biological outcome and are independent of the cancer origin. This correlates well with recently published results from the Cancer Genome Atlas, indicating that cancers show remarkable similarities in their analyzed molecular information, independent of their organ of origin. It is postulated that the quantification of cytoskeletal proteins in healthy tissues, tumors, in adjacent tissues, and in stroma, is a great source of molecular information, which might not only be used to classify tumors, but more importantly to predict patients' outcome or even best treatment choices.
Collapse
Affiliation(s)
- Manuela Klingler-Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| |
Collapse
|
11
|
Pan Y, Song Y, Cheng L, Xu H, Liu J. Analysis of methylation‐driven genes for predicting the prognosis of patients with head and neck squamous cell carcinoma. J Cell Biochem 2019; 120:19482-19495. [PMID: 31264288 DOI: 10.1002/jcb.29252] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Yihua Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yidan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Lanxin Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Hongdan Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
12
|
Caputi S, Trubiani O, Sinjari B, Trofimova S, Diomede F, Linkova N, Diatlova A, Khavinson V. Effect of short peptides on neuronal differentiation of stem cells. Int J Immunopathol Pharmacol 2019; 33:2058738419828613. [PMID: 30791821 PMCID: PMC6376556 DOI: 10.1177/2058738419828613] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It has been demonstrated that short peptides play an important role in the transmission of biological information, modulation of transcription, and restoring genetically conditioned alterations occurring with age. Peptidergic regulation of homeostasis occupies an important place in physiological processes, which lead to the aging of cells, tissues, and organs, consisting in the involution of major regulatory systems-the nervous, the endocrine, and the immune. The effect of AED (Ala-Glu-Asp), KED (Lys-Glu-Asp), KE (Lys-Glu), AEDG (Ala-Glu-Asp-Gly) peptides and their compound on neuronal differentiation of human periodontal ligament stem cells (hPDLSCs) was studied by immunofluorescence and western blot analysis. Growth-Associated Protein 43 (GAP43), which implements neurotransmission mechanisms and neuroplasticity, demonstrated an increased expression in hPDLSCs cultured with a compound of all studied peptides and with KED alone. The peptide compound and KED, increase the expression of Nestin (neurofilament protein), expressed in early neuronal precursors in hPDLSCs cultures. Thus, the compound of peptides AEDG, KE, AED, and KED could promote the neuronal differentiation of hPDLSCs and be a promising tool for the study of peptides as a modulator of neurogenesis in neurodegenerative diseases studied in animal models.
Collapse
Affiliation(s)
- Sergio Caputi
- 1 Laboratory of Stem Cells and Regenerative Medicine, Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- 1 Laboratory of Stem Cells and Regenerative Medicine, Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Bruna Sinjari
- 1 Laboratory of Stem Cells and Regenerative Medicine, Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Svetlana Trofimova
- 2 Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia
| | - Francesca Diomede
- 1 Laboratory of Stem Cells and Regenerative Medicine, Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Natalia Linkova
- 2 Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,3 Department of Medical Physic, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Anastasia Diatlova
- 2 Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,3 Department of Medical Physic, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Vladimir Khavinson
- 2 Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,4 Group of Peptide Regulation of Ageing, Pavlov Institute of Physiology of RAS, Saint Petersburg, Russia
| |
Collapse
|
13
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
14
|
Criswell S, O’Brien T, Skalli O. Presence of intermediate filament protein synemin in select sarcomas. J Histotechnol 2018. [DOI: 10.1080/01478885.2018.1438757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sheila Criswell
- Department of Clinical Laboratory Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Thomas O’Brien
- Memphis Pathology Group, Department of Pathology, Methodist University Hospital, Memphis, TN, USA
| | - Omar Skalli
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| |
Collapse
|
15
|
Guo YC, Wang YX, Ge YP, Yu LJ, Guo J. Analysis of subcellular structural tension in axonal growth of neurons. Rev Neurosci 2018; 29:125-137. [DOI: 10.1515/revneuro-2017-0047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/05/2017] [Indexed: 01/08/2023]
Abstract
AbstractThe growth and regeneration of axons are the core processes of nervous system development and functional recovery. They are also related to certain physiological and pathological conditions. For decades, it has been the consensus that a new axon is formed by adding new material at the growth cone. However, using the existing technology, we have studied the structural tension of the nerve cell, which led us to hypothesize that some subcellular structural tensions contribute synergistically to axonal growth and regeneration. In this review, we classified the subcellular structural tension, osmotic pressure, microfilament and microtubule-dependent tension involved controllably in promoting axonal growth. A squeezing model was built to analyze the mechanical mechanism underlying axonal elongation, which may provide a new view of axonal growth and inspire further research.
Collapse
|
16
|
Molecular Determinants of Malignant Brain Cancers: From Intracellular Alterations to Invasion Mediated by Extracellular Vesicles. Int J Mol Sci 2017; 18:ijms18122774. [PMID: 29261132 PMCID: PMC5751372 DOI: 10.3390/ijms18122774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma cells invade the surrounding brain parenchyma, by migrating along the blood vessels, thus promoting cancer growth. The biological bases of these activities are grounded in profound alterations of the metabolism and the structural organization of the cells, which consequently acquire the ability to modify the surrounding microenvironment, by altering the extracellular matrix and affecting the properties of the other cells present in the brain, such as normal glial-, endothelial- and immune-cells. Most of the effects on the surrounding environment are probably exerted through the release of a variety of extracellular vesicles (EVs), which contain many different classes of molecules, from genetic material to defined species of lipids and enzymes. EV-associated molecules can be either released into the extracellular matrix (ECM) and/or transferred to neighboring cells: as a consequence, both deep modifications of the recipient cell phenotype and digestion of ECM components are obtained, thus causing cancer propagation, as well as a general brain dysfunction. In this review, we first analyze the main intracellular and extracellular transformations required for glioma cell invasion into the brain parenchyma; then we discuss how these events may be attributed, at least in part, to EVs that, like the pawns of a dramatic chess game with cancer, open the way to the tumor cells themselves.
Collapse
|
17
|
Miao Z, Ali A, Hu L, Zhao F, Yin C, Chen C, Yang T, Qian A. Microtubule actin cross-linking factor 1, a novel potential target in cancer. Cancer Sci 2017; 108:1953-1958. [PMID: 28782898 PMCID: PMC5623738 DOI: 10.1111/cas.13344] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 01/09/2023] Open
Abstract
Cancer is a polygenic disease characterized by uncontrolled growth of normal body cells, deregulation of the cell cycle as well as resistance to apoptosis. The spectraplakin protein microtubule actin cross-linking factor 1 (MACF1) plays an essential function in various cellular processes, including cell proliferation, migration, signaling transduction and embryo development. MACF1 is also involved in processes such as metastatic invasion in which cytoskeleton organization is a critical element that contributes to tumor progression in various human cancers. Aberrant expression of MACF1 initiates the tumor cell proliferation, and migration and metastasis in numerous cancers, such as breast cancer, colon cancer, lung cancer and glioblastoma. In this review, we summarized the current knowledge of MACF1 and its critical role in different human cancers. This will be helpful for researchers to investigate the novel functional role of MACF1 in human cancers and as a potential target to enhance the efficacy of therapeutic treatment modalities.
Collapse
Affiliation(s)
- Zhiping Miao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, China
| | - Arshad Ali
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, China
| | - Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, China
| | - Fan Zhao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, China
| | - Chong Yin
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, China
| | - Chu Chen
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Tuanmin Yang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, China
| |
Collapse
|
18
|
Afghani N, Mehta T, Wang J, Tang N, Skalli O, Quick QA. Microtubule actin cross-linking factor 1, a novel target in glioblastoma. Int J Oncol 2016; 50:310-316. [PMID: 27959385 DOI: 10.3892/ijo.2016.3798] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022] Open
Abstract
Genetic heterogeneity is recognized as a major contributing factor of glioblastoma resistance to clinical treatment modalities and consequently low overall survival rates. This genetic diversity results in variations in protein expression, both intratumorally and between individual glioblastoma patients. In this regard, the spectraplakin protein, microtubule actin cross-linking factor 1 (MACF1), was examined in glioblastoma. An expression analysis of MACF1 in various types of brain tumor tissue revealed that MACF1 was predominately present in grade III-IV astroctyomas and grade IV glioblastoma, but not in normal brain tissue, normal human astrocytes and lower grade brain tumors. Subsequent genetic inhibition experiments showed that suppression of MACF1 selectively inhibited glioblastoma cell proliferation and migration in cell lines established from patient derived xenograft mouse models and immortalized glioblastoma cell lines that were associated with downregulation of the Wnt-signaling mediators, Axin1 and β-catenin. Additionally, concomitant MACF1 silencing with the chemotherapeutic agent temozolomide (TMZ) used for the clinical treatment of glioblastomas cooperatively reduced the proliferative capacity of glioblastoma cells. In conclusion, the present study represents the first investigation on the functional role of MACF1 in tumor cell biology, as well as demonstrates its potential as a unique biomarker that can be targeted synergistically with TMZ as part of a combinatorial therapeutic approach for the treatment of genetically multifarious glioblastomas.
Collapse
Affiliation(s)
- Najlaa Afghani
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | - Toral Mehta
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | - Jialiang Wang
- Department of Neurological Surgery, Vanderbilt Medical Center, Nashville, TN, USA
| | - Nan Tang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Omar Skalli
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Quincy A Quick
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| |
Collapse
|
19
|
Embryonal Tumor With Abundant Neuropil and True Rosettes: A Distinct Immunohistochemical Pattern. Appl Immunohistochem Mol Morphol 2015; 24:e41-9. [PMID: 26658063 DOI: 10.1097/pai.0000000000000285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Embryonal tumors with abundant neuropil and true rosettes (ETANTR) are rare pediatric embryonal neoplasms that combine features of neuroblastoma and ependymoblastoma. We report a distinct immunohistochemical-staining pattern of ETANTR in a 12-month-old baby who presented with a supratentorial mass. The tumor exhibited a characteristic biphasic pattern of neuropil-rich areas and patchy cellular neuropil-poor areas. The neoplastic cells in neuropil-rich areas are diffusely immunoreactive to chromogranin A, synaptophysin, neurofilament, and CD56, but show no immunoreactivity to nestin, SOX2, WT-1, β-catenin, and vimentin. While the cells in neuropil-poor areas, including ependymoblastic and Flexner-Wintersteiner rosettes, are diffusely immunoreactive to nestin, SOX2, WT-1, β-catenin, and vimentin but show no immunoreactivity to chromogranin A, synaptophysin, neurofilament, and CD56. Ependymoblastic rosettes show luminal membranous immunoreactivity to EMA. We believe that ETANTR has a distinct histologic and immunohistochemical pattern supporting the embryonal origin of this tumor with divergent neuroblastic and primitive glial differentiation.
Collapse
|
20
|
The Hematopoietic Niche in Myeloproliferative Neoplasms. Mediators Inflamm 2015; 2015:347270. [PMID: 26696752 PMCID: PMC4677214 DOI: 10.1155/2015/347270] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/12/2015] [Indexed: 12/18/2022] Open
Abstract
Specialized microanatomical areas of the bone marrow provide the signals that are mandatory for the maintenance and regulation of hematopoietic stem cells (HSCs) and progenitor cells. A complex microenvironment adjacent to the marrow vasculature (vascular niche) and close to the endosteum (endosteal niche) harbors multiple cell types including mesenchymal stromal cells and their derivatives such as CAR cells expressing high levels of chemokines C-X-C motif ligand 12 and early osteoblastic lineage cells, endothelial cells, and megakaryocytes. The characterization of the cellular and molecular networks operating in the HSC niche has opened new perspectives for the understanding of the bidirectional cross-talk between HSCs and stromal cell populations in normal and malignant conditions. A structural and functional remodeling of the niche may contribute to the development of myeloproliferative neoplasms (MPN). Malignant HSCs may alter the function and survival of MSCs that do not belong to the neoplastic clone. For example, a regression of nestin+ MSCs by apoptosis has been attributed to neuroglial damage in MPN. Nonneoplastic MSCs in turn can promote aggressiveness and drug resistance of malignant cells. In the future, strategies to counteract the pathological interaction between the niche and neoplastic HSCs may offer additional treatment strategies for MPN patients.
Collapse
|