1
|
Fennessy JR, Cornett KMD, Donlevy GA, Mckay MJ, Burns J, Menezes MP. Long-term outcomes in children with riboflavin transporter deficiency and surveillance recommendations. Dev Med Child Neurol 2025; 67:405-415. [PMID: 39252496 PMCID: PMC11794669 DOI: 10.1111/dmcn.16083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
The aim of this longitudinal case series was to describe long-term functional outcome in a group of individuals with riboflavin transporter deficiency (RTD) treated with high-dose oral riboflavin. Data were collected between 2012 to 2022. Eleven individuals with RTD were assessed at 12-month intervals for monitoring of disease progression. Patients had commenced high-dose oral riboflavin from the time of genetic diagnosis. Individuals for whom riboflavin supplementation was initiated early after disease onset had better outcomes compared to those in whom diagnosis was delayed. Despite ongoing riboflavin supplementation, the Charcot-Marie-Tooth disease Pediatric Scale (CMTPedS) total score and the subitems of balance and the 6-Minute Walk Test distance as well as respiratory function worsened, while grip strength improved. There was evidence of improvement in hearing loss and optic atrophy limited to the first 12 months of treatment. While treatment with riboflavin slowed disease progression, patients were left with residual disability. To track disease progression and response to riboflavin supplementation over time, we recommend using the RTD Pediatric Scale and provide a list of clinical measures for regular surveillance of children with RTD.
Collapse
Affiliation(s)
- Jack R. Fennessy
- Faculty of Medicine and HealthUniversity of Sydney School of Health SciencesSydneyNew South WalesAustralia
| | - Kayla M. D. Cornett
- Faculty of Medicine and HealthUniversity of Sydney School of Health SciencesSydneyNew South WalesAustralia
- Paediatric Gait Analysis Service of New South WalesSydney Children's Hospitals NetworkWestmeadNew South WalesAustralia
| | - Gabrielle A. Donlevy
- Faculty of Medicine and HealthUniversity of Sydney School of Health SciencesSydneyNew South WalesAustralia
- Paediatric Gait Analysis Service of New South WalesSydney Children's Hospitals NetworkWestmeadNew South WalesAustralia
| | - Marnee J. Mckay
- Faculty of Medicine and HealthUniversity of Sydney School of Health SciencesSydneyNew South WalesAustralia
| | - Joshua Burns
- Faculty of Medicine and HealthUniversity of Sydney School of Health SciencesSydneyNew South WalesAustralia
- Paediatric Gait Analysis Service of New South WalesSydney Children's Hospitals NetworkWestmeadNew South WalesAustralia
| | - Manoj P. Menezes
- Children's Hospital at Westmead Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
- TY Nelson Department of Neurology and NeurosurgeryThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| |
Collapse
|
2
|
Jaeger B, Langeveld M, Brunkhorst R, Distelmaier F, Pop A, Wolf NI, Bosch AM. Riboflavin transporter deficiency in young adults unmasked by dietary changes. JIMD Rep 2024; 65:233-238. [PMID: 38974615 PMCID: PMC11224500 DOI: 10.1002/jmd2.12427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 07/09/2024] Open
Abstract
Riboflavin transporter deficiency (RTD) is a genetic disorder of reduced riboflavin (vitamin B2) uptake that causes progressive, multifocal neurological dysfunction. Most patients present in early childhood; if patients present later in life, symptoms usually develop more gradually. We report three previously healthy young adults, who developed rapidly progressive neurological symptoms after decreasing dietary intake of meat and dairy. After a diagnostic odyssey, the diagnosis of a riboflavin transporter deficiency was made. Treatment with high dose oral riboflavin (20-40 mg/kg/day) partially reversed symptoms. This case series highlights that reduced riboflavin intake as a result of dietary changes can unmask RTD at a later age. We emphasize the importance of early recognition of this progressive and potentially lethal disease and show that timely treatment with high dose riboflavin is highly effective.
Collapse
Affiliation(s)
- Bregje Jaeger
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical CentersAmsterdamThe Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and MetabolismAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Robert Brunkhorst
- Department of NeurologyAachen University Medical CenterAachenGermany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric CardiologyUniversity Children's Hospital, Heinrich Heine UniversityDüsseldorfGermany
| | - Ana Pop
- Laboratory of Genetic Metabolic Diseases, Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Nicole I. Wolf
- Department of Child NeurologyEmma Children's Hospital, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije UniversiteitAmsterdamThe Netherlands
| | - Annet M. Bosch
- Department of Pediatrics, Division of Metabolic DisordersEmma Children's Hospital, Gastroenterology, Endocrinology & Metabolism, Amsterdam University Medical CentersAmsterdamThe Netherlands
| |
Collapse
|
3
|
Kentab AY, Alsalloum Y, Labani M, Hudairi A, Hamad MH, Jamjoom DZ, Alwadei AH, Alhammad RM, Bashiri FA. Case Report: A rare treatable metabolic syndrome (Brown-Vialetto-Van Laere syndrome) masquerading as chronic inflammatory demyelinating polyneuropathy from Saudi Arabia. Front Pediatr 2024; 12:1377515. [PMID: 38745833 PMCID: PMC11091239 DOI: 10.3389/fped.2024.1377515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Background Brown-Vialetto-Van Laere (BVVL) syndrome is an extremely rare autosomal recessive progressive motoneuron disease that is caused by a defect in the riboflavin transporter genes SLC52A2 and SLC52A3. BVVL syndrome has a variable age of presentation, and it is characterized by progressive auditory neuropathy, bulbar palsy, stridor, muscle weakness, and respiratory compromise secondary to diaphragmatic and vocal cord paralysis. BVVL syndrome has a poor prognosis in the absence of treatment, including morbidity with quadriparesis and sensorineural hearing loss, with mortality in the younger age group. Early administration of riboflavin is associated with prolonged survival, low morbidity, and reversal of some clinical manifestations. Case presentation We describe an 18-month-old male infant with progressive pontobulbar palsy, loss of developmental milestones, and a clinical picture suggestive of chronic inflammatory demyelinating neuropathy. A nerve conduction study revealed axonal neuropathy, while molecular analysis revealed a homozygous mutation in one of the riboflavin transporter genes, SLC52A3, confirming BVVL syndrome. The patient needed long-term respiratory support and a gastrostomy tube to support feeding. With high-dose riboflavin supplementation, he experienced moderate recovery of motor function. Conclusion This report highlights the importance of considering BVVL syndrome in any patient who presents with the clinical phenotype of pontobulbar palsy and peripheral axonal neuropathy, as early riboflavin treatment may improve or halt disease progression, thus reducing the associated mortality and morbidity.
Collapse
Affiliation(s)
- Amal Y. Kentab
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Yara Alsalloum
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Mai Labani
- Pediatric Intensive Care Unit, Department of Pediatrics, King Khalid University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Abrar Hudairi
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Muddathir H. Hamad
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Dima Z. Jamjoom
- Department of Radiology and Medical Imaging, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ali H. Alwadei
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
- Pediatric Neurology Department, National Neuroscience Institute, King Fahd Medical City, Riyadh, Saudi Arabia
| | - Reem M. Alhammad
- Department of Internal Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fahad A. Bashiri
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Fennessy JR, Cornett KMD, Burns J, Menezes MP. Benefit of high-dose oral riboflavin therapy in riboflavin transporter deficiency. J Peripher Nerv Syst 2023; 28:308-316. [PMID: 37537696 DOI: 10.1111/jns.12587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Riboflavin transporter deficiency (RTD) is a progressive inherited neuropathy of childhood onset, characterised by pontobulbar palsy, sensorineural deafness, sensory ataxia, muscle weakness, optic atrophy and respiratory failure. Riboflavin supplementation is beneficial in short-term reports, but the quantum of benefit in various clinical domains is not well understood. A PubMed search was conducted, which identified 94 genetically confirmed cases of RTD who received riboflavin supplementation and had follow-up assessments. Information on the clinical and functional status before and after riboflavin supplementation was collected and analysed. Seventy-six of the 94 patients (80.9%) showed an overall improvement after riboflavin supplementation, and the remaining (19.1%) were stable, though some patients had deteriorations in individual domains with no reported deaths. The domains that had the highest rates of response to riboflavin supplementation were gross motor function (93.3% improved), bulbar palsy (91.3%) and ataxia (90.0%). Improvements were also seen in limb muscle weakness, audiology, facial nerve palsy and respiratory function. Despite treatment, many patients required assistance to ambulate and had severe or profound hearing loss and some remained gastrostomy or tracheostomy dependent. Riboflavin supplementation is a lifesaving intervention for patients with RTD and results in a profound improvement in several functional domains, with early diagnosis and treatment further improving outcomes. Despite treatment, patients are left with residual disability. There is a need to accurately measure functional outcomes in children with RTD and develop additional disease-modifying therapies.
Collapse
Affiliation(s)
- Jack R Fennessy
- Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Kayla M D Cornett
- Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Paediatric Gait Analysis Service of New South Wales, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Joshua Burns
- Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Paediatric Gait Analysis Service of New South Wales, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Manoj P Menezes
- Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Elks N, Wilmshurst JM, Raga SV. Normal Outcome With Prenatal Intervention for Riboflavin Transporter Defect. Pediatr Neurol 2023; 144:16-18. [PMID: 37116404 DOI: 10.1016/j.pediatrneurol.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Riboflavin transporter deficiency is a rare but severe neurometabolic disorder. METHODS We report two siblings with pathogenic variants in SLC52A3 gene, resulting in riboflavin transporter 3 deficiency. RESULTS The first sibling was diagnosed at age 11 months with severe respiratory compromise and regression of developmental milestones. His symptoms significantly improved with riboflavin supplementation therapy. The younger sibling was diagnosed by antenatal genetic analysis; riboflavin supplementation was initiated in utero and continued from birth. Now at age two years, he remains clinically asymptomatic despite genetic confirmation of riboflavin transporter deficiency. CONCLUSIONS Antenatal riboflavin supplementation is a safe and effective treatment for the prevention of symptomatic manifestations of riboflavin transporter deficiency.
Collapse
Affiliation(s)
- Natasha Elks
- University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jo M Wilmshurst
- Paediatric Neurology Department, Red Cross War Memorial Children's Hospital, Rondebosch, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sharika V Raga
- Paediatric Neurology Department, Red Cross War Memorial Children's Hospital, Rondebosch, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa; International Centre for Genomic Medicine in Neuromuscular Diseases Study, University College London, London, United Kingdom.
| |
Collapse
|
6
|
Alasqah MI, Aldriweesh B, Alshareef WA, Alhashem MH, Alammar A. Role of Otolaryngologists in the Treatment of Patients With Riboflavin Transporter Deficiency: A Case Report. Cureus 2023; 15:e36312. [PMID: 37077589 PMCID: PMC10106315 DOI: 10.7759/cureus.36312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 03/19/2023] Open
Abstract
Riboflavin transporter deficiency (RTD) is a rare genetic disorder that can have detrimental effects on the nervous system, causing progressive neurodegeneration. Here, we report the second case of RTD in Saudi Arabia. An 18-month-old boy presented to the otolaryngology clinic with six weeks history of progressive noisy breathing associated with drooling, choking, and difficulty in swallowing. Progressive regression of the child's motor and communicative abilities was reported as well. Upon examination, the child had biphasic stridor, chest retractions, bilateral facial palsy, and hypotonia. The presence of an aerodigestive foreign body or congenital anomalies was excluded using bronchoscopy and esophagoscopy. Empirical high-dose riboflavin replacement therapy was initiated upon anticipation of diagnosis. Whole exome sequencing revealed a SLC52A3 gene mutation, which confirmed the diagnosis of RTD. After a period of intensive care unit (ICU) admission with endotracheal intubation, the child's general condition improved, and he was weaned off of respiratory support. Tracheostomy was avoided in this patient, as he responded to riboflavin replacement therapy. During the disease course, an audiological assessment revealed severe bilateral sensorineural hearing loss. He was discharged home on gastrostomy feeding owing to the risk of frequent aspiration, and he was regularly followed up by the swallowing team. The early initiation of high-dose riboflavin replacement appears to be of great value. The benefits of cochlear implants in RTD have been reported, but not fully established. This case report will increase awareness in the otolaryngology community about patients with this rare disease who might initially present to the clinic with an otolaryngology-related complaint.
Collapse
|
7
|
De Pasquale L, Meo P, Fulia F, Anania A, Meli V, Mondello A, Raimondo MT, Tulino V, Coletta MS, Cacace C. A fatal case of neonatal onset multiple acyl-CoA dehydrogenase deficiency caused by novel mutation of ETFDH gene: case report. Ital J Pediatr 2022; 48:164. [PMID: 36064718 PMCID: PMC9446717 DOI: 10.1186/s13052-022-01356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II is an extremely rare autosomal recessive inborn error of fatty acid beta oxidation and branched-chain amino acids, secondary to mutations in the genes encoding the electron transfer flavoproteins A and B (ETFs; ETFA or ETFB) or ETF dehydrogenase (ETFDH). The clinical manifestation of MADD are heterogeneous, from severe neonatal forms to mild late-onset forms. CASE PRESENTATION We report the case of a preterm newborn who died a few days after birth for a severe picture of untreatable metabolic acidosis. The diagnosis of neonatal onset MADD was suggested on the basis of clinical features displaying congenital abnormalities and confirmed by the results of expanded newborn screening, which arrived the day the newborn died. Molecular genetic test revealed a homozygous indel variant c.606 + 1 _606 + 2insT in the ETFDH gene, localized in a canonical splite site. This variant, segregated from the two heterozygous parents, is not present in the general population frequency database and has never been reported in the literature. DISCUSSION AND CONCLUSION Recently introduced Expanded Newborn Screening is very important for a timely diagnosis of Inherited Metabolic Disorders like MADD. In some cases which are the most severe, diagnosis may arrive after symptoms are already present or may be the neonate already died. This stress the importance of collecting all possible samples to give parents a proper diagnosis and a genetic counselling for future pregnacies.
Collapse
Affiliation(s)
- Loredana De Pasquale
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy.
| | - Petronilla Meo
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Francesco Fulia
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Antonio Anania
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Valerio Meli
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Antonina Mondello
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Maria Tindara Raimondo
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Viviana Tulino
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Maria Sole Coletta
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Caterina Cacace
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| |
Collapse
|
8
|
Sinha T, Ikelle L, Makia MS, Crane R, Zhao X, Kakakhel M, Al-Ubaidi MR, Naash MI. Riboflavin deficiency leads to irreversible cellular changes in the RPE and disrupts retinal function through alterations in cellular metabolic homeostasis. Redox Biol 2022; 54:102375. [PMID: 35738087 PMCID: PMC9233280 DOI: 10.1016/j.redox.2022.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 10/25/2022] Open
Abstract
Ariboflavinosis is a pathological condition occurring as a result of riboflavin deficiency. This condition is treatable if detected early enough, but it lacks timely diagnosis. Critical symptoms of ariboflavinosis include neurological and visual manifestations, yet the effects of flavin deficiency on the retina are not well investigated. Here, using a diet induced mouse model of riboflavin deficiency, we provide the first evidence of how retinal function and metabolism are closely intertwined with riboflavin homeostasis. We find that diet induced riboflavin deficiency causes severe decreases in retinal function accompanied by structural changes in the neural retina and retinal pigment epithelium (RPE). This is preceded by increased signs of cellular oxidative stress and metabolic disorder, in particular dysregulation in lipid metabolism, which is essential for both photoreceptors and the RPE. Though many of these deleterious phenotypes can be ameliorated by riboflavin supplementation, our data suggests that some patients may continue to suffer from multiple pathologies at later ages. These studies provide an essential cellular and mechanistic foundation linking defects in cellular flavin levels with the manifestation of functional deficiencies in the visual system and paves the way for a more in-depth understanding of the cellular consequences of ariboflavinosis.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Larissa Ikelle
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Xue Zhao
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
9
|
Manyisa N, Adadey SM, Wonkam-Tingang E, Yalcouye A, Wonkam A. Hearing Impairment in South Africa and the Lessons Learned for Planetary Health Genomics: A Systematic Review. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:2-18. [PMID: 35041532 PMCID: PMC8792495 DOI: 10.1089/omi.2021.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hearing impairment (HI) is a silent planetary health crisis that requires attention worldwide. The prevalence of HI in South Africa is estimated as 5.5 in 100 live births, which is about 5 times higher than the prevalence in high-income countries. This also offers opportunity to drive progressive science, technology and innovation policy, and health systems. We present here a systematic analysis and review on the prevalence, etiologies, clinical patterns, and genetics/genomics of HI in South Africa. We searched PubMed, Scopus, African Journals Online, AFROLIB, and African Index Medicus to identify the pertinent studies on HI in South Africa, published from inception to April 30, 2021, and the data were summarized narratively. We screened 944 records, of which 27 studies were included in the review. The age at diagnosis is ∼3 years of age and the most common factor associated with acquired HI was middle ear infections. There were numerous reports on medication toxicity, with kanamycin-induced ototoxicity requiring specific attention when considering the high burden of tuberculosis in South Africa. The Waardenburg Syndrome is the most common reported syndromic HI. The Usher Syndrome is the only syndrome with genetic investigations, whereby a founder mutation was identified among black South Africans (MYO7A-c.6377delC). GJB2 and GJB6 genes are not major contributors to nonsyndromic HI among Black South Africans. Furthermore, emerging data using targeted panel sequencing have shown a low resolution rate in Black South Africans in known HI genes. Importantly, mutations in known nonsyndromic HI genes are infrequent in South Africa. Therefore, whole-exome sequencing appears as the most effective way forward to identify variants associated with HI in South Africa. Taken together, this article contributes to the emerging field of planetary health genomics with a focus on HI and offers new insights and lessons learned for future roadmaps on genomics/multiomics and clinical studies of HI around the world.
Collapse
Affiliation(s)
- Noluthando Manyisa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Samuel Mawuli Adadey
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Edmond Wonkam-Tingang
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Abdoulaye Yalcouye
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Neurology, Point G Teaching Hospital, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Burdo S, Di Berardino F, Bruno G. Is auditory neuropathy an appropriate term? A systematic literature review on its aetiology and pathogenesis. ACTA OTORHINOLARYNGOLOGICA ITALICA 2021; 41:496-506. [PMID: 34825666 PMCID: PMC8686806 DOI: 10.14639/0392-100x-n0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/15/2021] [Indexed: 11/23/2022]
Abstract
To clarify the aetio-pathogenesis of Auditory Neuropathy Spectrum Disorder (ANSD), a total of 845 papers were divided into four categories: Review, Audiology, Treatment and Aetiology. Aetiology was the topic analysed categorising papers as: Genetics, Histopathology, Imaging and Medical diseases. Isolated ANs were in relation to Otoferlin, Pejvakin and DIAPH3 deficiency, and the syndromes were mainly Charcot Marie Tooth, Friedreich Ataxia, mitochondrial disorders and those associated with optic neuropathies. In histopathology papers, important information was available from analyses on human premature newborns and on some syndromic neuropathies. From cochlear dysmorphism to cerebral tumours associated with ANs, these are described in what is identified as the Imaging area. Finally, the prevalent clinical pathology was bilirubinopathy, followed by diabetes. In conclusion, AN/ANSDs do not refer to a clear pathological condition, but to an instrumental pattern without any evidence of auditory nerve involvement, except in a few conditions. The terms AN/ANSD are misleading and should be avoided, including terms such as “synaptopathy” or “dis-synchrony”.
Collapse
|
11
|
Jin C, Yonezawa A. Recent advances in riboflavin transporter RFVT and its genetic disease. Pharmacol Ther 2021; 233:108023. [PMID: 34662687 DOI: 10.1016/j.pharmthera.2021.108023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Riboflavin (vitamin B2) is essential for cellular growth and function. It is enzymatically converted to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which participate in the metabolic oxidation-reduction reactions of carbohydrates, amino acids, and lipids. Human riboflavin transporters RFVT1, RFVT2, and RFVT3 have been identified and characterized since 2008. They are highly specific transporters of riboflavin. RFVT3 has functional characteristics different from those of RFVT1 and RFVT2. RFVT3 contributes to absorption in the small intestine, reabsorption in the kidney, and transport to the fetus in the placenta, while RFVT2 mediates the tissue distribution of riboflavin from the blood. Several mutations in the SLC52A2 gene encoding RFVT2 and the SLC52A3 gene encoding RFVT3 were found in patients with a rare neurological disorder known as Brown-Vialetto-Van Laere syndrome. These patients commonly present with bulbar palsy, hearing loss, muscle weakness, and respiratory symptoms in infancy or later in childhood. A decrease in plasma riboflavin levels has been observed in several cases. Recent studies on knockout mice and patient-derived cells have advanced the understanding of these mechanisms. Here, we summarize novel findings on RFVT1-3 and their genetic diseases and discuss their potential as therapeutic drugs.
Collapse
Affiliation(s)
- Congyun Jin
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
12
|
Frederick AL, Yang JH, Schneider S, Quade A, Guidugli L, Wigby K, Cameron M. To Be or No B2: A Rare Cause of Stridor and Weakness in a Toddler. Child Neurol Open 2021; 8:2329048X211030723. [PMID: 34395718 PMCID: PMC8361551 DOI: 10.1177/2329048x211030723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
We present a case of a young child with a rare metabolic disorder whose
clinical presentation resembled that of autoimmune myasthenia gravis.
The differential diagnosis was expanded when autoantibody testing was
negative and the patient did not respond to standard immunomodulatory
therapies. Rapid whole genome sequencing identified 2 rare variants of
uncertain significance in the SLC52A3 gene shown to
be in compound heterozygous state after parental testing. Biallelic
mutations in SLC52A3 are associated with Riboflavin
Transporter Deficiency, which in its untreated form, results in
progressive neurodegeneration and death. Supplementation with oral
riboflavin has been shown to limit disease progression and improve
symptoms in some patients. When the diagnosis is suspected, patients
should be started on supplementation immediately while awaiting
results from genetic studies.
Collapse
Affiliation(s)
- Aliya L Frederick
- Department of Neurosciences, University of California San Diego, CA, USA.,Rady Children's Hospital, San Diego, CA, USA
| | - Jennifer H Yang
- Department of Neurosciences, University of California San Diego, CA, USA.,Rady Children's Hospital, San Diego, CA, USA
| | - Sarah Schneider
- Rady Children's Hospital, San Diego, CA, USA.,Department of Pediatrics, University of California San Diego, CA, USA
| | - Alexis Quade
- Rady Children's Hospital, San Diego, CA, USA.,Department of Pediatrics, University of California San Diego, CA, USA.,Department of Internal Medicine, University of California San Diego, CA, USA
| | - Lucia Guidugli
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Kristen Wigby
- Rady Children's Hospital, San Diego, CA, USA.,Department of Genetics and Dysmorphology, University of California San Diego, CA, USA
| | - Melissa Cameron
- Rady Children's Hospital, San Diego, CA, USA.,Department of Pediatrics, University of California San Diego, CA, USA
| |
Collapse
|
13
|
Alteration of Flavin Cofactor Homeostasis in Human Neuromuscular Pathologies. Methods Mol Biol 2021; 2280:275-295. [PMID: 33751442 DOI: 10.1007/978-1-0716-1286-6_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this short review chapter is to provide a brief summary of the relevance of riboflavin (Rf or vitamin B2) and its derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) for human neuromuscular bioenergetics.Therefore, as a completion of this book we would like to summarize what kind of human pathologies could derive from genetic disturbances of Rf transport, flavin cofactor synthesis and delivery to nascent apoflavoproteins, as well as by alteration of vitamin recycling during protein turnover.
Collapse
|
14
|
Jennings MJ, Lochmüller A, Atalaia A, Horvath R. Targeted Therapies for Hereditary Peripheral Neuropathies: Systematic Review and Steps Towards a 'treatabolome'. J Neuromuscul Dis 2021; 8:383-400. [PMID: 32773395 PMCID: PMC8203235 DOI: 10.3233/jnd-200546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Hereditary peripheral neuropathies are inherited disorders affecting the peripheral nervous system, including Charcot-Marie-Tooth disease, familial amyloid polyneuropathy and hereditary sensory and motor neuropathies. While the molecular basis of hereditary peripheral neuropathies has been extensively researched, interventional trials of pharmacological therapies are lacking. Objective: We collated evidence for the effectiveness of pharmacological and gene-based treatments for hereditary peripheral neuropathies. Methods: We searched several databases for randomised controlled trials (RCT), observational studies and case reports of therapies in hereditary peripheral neuropathies. Two investigators extracted and analysed the data independently, assessing study quality using the Oxford Centre for Evidence Based Medicine 2011 Levels of Evidence in conjunction with the Jadad scale. Results: Of the 2046 studies initially identified, 119 trials met our inclusion criteria, of which only 34 were carried over into our final analysis. Ascorbic acid was shown to have no therapeutic benefit in CMT1A, while a combination of baclofen, naltrexone and sorbitol (PXT3003) demonstrated some efficacy, but phase III data are incomplete. In TTR-related amyloid polyneuropathy tafamidis, patisiran, inotersen and revusiran showed significant benefit in high quality RCTs. Smaller studies showed the efficacy of L-serine for SPTLC1-related hereditary sensory neuropathy, riboflavin for Brown-Vialetto-Van Laere syndrome (SLC52A2/3) and phytanic acid-poor diet in Refsum disease (PHYH). Conclusions: The ‘treatable’ variants highlighted in this project will be flagged in the treatabolome database to alert clinicians at the time of the diagnosis and enable timely treatment of patients with hereditary peripheral neuropathies.
Collapse
Affiliation(s)
- Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Antonio Atalaia
- Center of Research in Myology, Sorbonne Université - Inserm UMRS 974, Institut de Myologie, G.H. Pitie-Salpetriere, Paris, France
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Mereis M, Wanders RJA, Schoonen M, Dercksen M, Smuts I, van der Westhuizen FH. Disorders of flavin adenine dinucleotide metabolism: MADD and related deficiencies. Int J Biochem Cell Biol 2021; 132:105899. [PMID: 33279678 DOI: 10.1016/j.biocel.2020.105899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Multiple acyl-coenzyme A dehydrogenase deficiency (MADD), or glutaric aciduria type II (GAII), is a group of clinically heterogeneous disorders caused by mutations in electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) - the two enzymes responsible for the re-oxidation of enzyme-bound flavin adenine dinucleotide (FADH2) via electron transfer to the respiratory chain at the level of coenzyme Q10. Over the past decade, an increasing body of evidence has further coupled mutations in FAD metabolism (including intercellular riboflavin transport, FAD biosynthesis and FAD transport) to MADD-like phenotypes. In this review we provide a detailed description of the overarching and specific metabolic pathways involved in MADD. We examine the eight associated genes (ETFA, ETFB, ETFDH, FLAD1, SLC25A32 and SLC52A1-3) and clinical phenotypes, and report ∼436 causative mutations following a systematic literature review. Finally, we focus attention on the value and shortcomings of current diagnostic approaches, as well as current and future therapeutic options for MADD and its phenotypic disorders.
Collapse
Affiliation(s)
- Michelle Mereis
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Maryke Schoonen
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Marli Dercksen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | | |
Collapse
|
16
|
Gayathri S, Gowda VK, Udhayabanu T, O'Callaghan B, Efthymiou S, Varalakshmi P, Benakappa N, Houlden H, Ashokkumar B. Brown-Vialetto-Van Laere and Fazio-Londe syndromes: SLC52A3 mutations with puzzling phenotypes and inheritance. Eur J Neurol 2021; 28:945-954. [PMID: 33325104 DOI: 10.1111/ene.14682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/19/2020] [Accepted: 12/10/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Brown-Vialetto-Van Laere syndrome (BVVLS) and Fazio-Londe disease (FLD) are rare neurological disorders presenting with pontobulbar palsy, muscle weakness and respiratory insufficiency. Mutations in SLC52A2 (hRFVT-2) or SLC52A3 (hRFVT-3) genes can be responsible for these disorders with an autosomal recessive pattern of inheritance. The aim of this study was to screen for mutations in SLC52A2 and SLC52A3 among Indian families diagnosed with BVVLS and FLD. METHODS SLC52A2 and SLC52A3 were screened in one FLD and three BVVLS patients by exon-specific amplification using PCR and sequencing. In silico predictions using bioinformatics tools and confocal imaging using HEK-293 cells were performed to determine the functional impact of identified mutations. RESULTS Genetic analysis of a mother and son with BVVLS was identified with a novel homozygous mutation c.710C>T (p.Ala237Val) in SLC52A3. This variant was found to have an autosomal pseudodominant pattern of inheritance, which was neither listed in the Exome Variant Server or in the 1000 Genomes Project database. In silico analysis and confocal imaging of the p.Ala237Val variant showed higher degree of disorderness in hRFVT-3 that could affect riboflavin transport. Furthermore, a common homozygous mutation c.62A>G (p.Asn21Ser) was identified in other BVVLS and FLD patients. Despite having different clinical phenotypes, both BVVLS and FLD can be attributed to this mutation. CONCLUSION A rare and peculiar pattern of autosomal pseudodominant inheritance is observed for the first time in two genetically related BVVLS cases with Indian origin and a common mutation c.62A>G (p.Asn21Ser) in SLC52A3 can be responsible for both BVVLS and FLD with variable phenotypes.
Collapse
Affiliation(s)
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | | | - Benjamin O'Callaghan
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | | | - Naveen Benakappa
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Henry Houlden
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
17
|
Effect of riboflavin deficiency on development of the cerebral cortex in Slc52a3 knockout mice. Sci Rep 2020; 10:18443. [PMID: 33116204 PMCID: PMC7595085 DOI: 10.1038/s41598-020-75601-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Riboflavin transporter 3 (RFVT3), encoded by the SLC52A3 gene, is important for riboflavin homeostasis in the small intestine, kidney, and placenta. Our previous study demonstrated that Slc52a3 knockout (Slc52a3−/−) mice exhibited neonatal lethality and metabolic disorder due to riboflavin deficiency. Here, we investigated the influence of Slc52a3 gene disruption on brain development using Slc52a3−/− embryos. Slc52a3−/− mice at postnatal day 0 showed hypoplasia of the brain and reduced thickness of cortical layers. At embryonic day 13.5, the formation of Tuj1+ neurons and Tbr2+ intermediate neural progenitors was significantly decreased; no significant difference was observed in the total number and proliferative rate of Pax6+ radial glia. Importantly, the hypoplastic phenotype was rescued upon riboflavin supplementation. Thus, it can be concluded that RFVT3 contributes to riboflavin homeostasis in embryos and that riboflavin itself is required during embryonic development of the cerebral cortex in mice.
Collapse
|
18
|
Carreau C, Benoit C, Ahle G, Cauquil C, Roubertie A, Lenglet T, Cosgrove J, Meunier I, Veauville-Merllié A, Acquaviva-Bourdain C, Nadjar Y. Late-onset riboflavin transporter deficiency: a treatable mimic of various motor neuropathy aetiologies. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-323304. [PMID: 33087424 DOI: 10.1136/jnnp-2020-323304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/27/2020] [Accepted: 08/18/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Riboflavin transporter deficiencies (RTDs), involving SLC52A3 and SLC52A2 genes, have recently been related to Brown-Vialetto-Van Laere (BVVL) syndrome, a hereditary paediatric condition associating motor neuropathy (MN) and deafness. BVVL/RTD has rarely been reported in adult patients, but is probably underdiagnosed due to poor knowledge and lack of awareness of this form of disease among neurologists. In this study, we aimed to investigate the phenotype and prognosis of RTD patients with late-onset MN. METHODS We retrospectively collected clinical, biological and electrophysiological data from all French RTD patients with MN onset after 10 years of age (n=6) and extracted data from 19 other similar RTD patients from the literature. RESULTS Adult RTD patients with MN had heterogeneous clinical presentations, potentially mimicking amyotrophic lateral sclerosis or distal hereditary motor neuropathy (56%), multinevritis with cranial nerve involvement (16%), Guillain-Barré syndrome (8%) and mixed motor and sensory neuronopathy syndromes (20%, only in SLC52A2 patients). Deafness was often diagnosed before MN (in 44%), but in some patients, onset began only with MN (16%). The pattern of weakness varied widely, and the classic pontobulbar palsy described in BVVL was not constant. Biochemical tests were often normal. The majority of patients improved under riboflavin supplementation (86%). INTERPRETATION Whereas late-onset RTD may mimic different acquired or genetic causes of motor neuropathies, it is a diagnosis not to be missed since high-dose riboflavin per oral supplementation is often highly efficient.
Collapse
Affiliation(s)
- Christophe Carreau
- Department of Neurology, Reference Center for Lysosomal Diseases, Neuro-Metabolism Unit, AP-HP, Hôpital Universitaire Pitié Salpêtrière, Paris, France
| | - Charline Benoit
- Department of Neurology, AP-HP, Hôpital Universitaire Pitié Salpêtrière, Paris, France
| | - Guido Ahle
- Neurology, Hôpital Louis Pasteur, Colmar, Alsace, France
| | - Cécile Cauquil
- Neurology, Hôpital Bicêtre, Le Kremlin-Bicêtre, Île-de-France, France
| | - Agathe Roubertie
- Neuropediatrie, Hôpital Gui de Chauliac Pôle Neurosciences tête et cou, Montpellier, Languedoc-Roussillon Midi, France
| | - Timothée Lenglet
- Department of Neurophysiology, AP-HP, Hôpital Universitaire Pitié Salpêtrière, Paris, France
| | | | - Isabelle Meunier
- Ophthalmology, Hôpital Gui de Chauliac, Montpellier, Languedoc-Roussillon, France
| | - Alice Veauville-Merllié
- Laboratory of Inborn Errors of Metabolism, Hospices Civils de Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Cécile Acquaviva-Bourdain
- Laboratory of Inborn Errors of Metabolism, Hospices Civils de Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Yann Nadjar
- Department of Neurology, Reference Center for Lysosomal Diseases, Neuro-Metabolism Unit, AP-HP, Hôpital Universitaire Pitié Salpêtrière, Paris, France
| |
Collapse
|
19
|
Tolomeo M, Nisco A, Leone P, Barile M. Development of Novel Experimental Models to Study Flavoproteome Alterations in Human Neuromuscular Diseases: The Effect of Rf Therapy. Int J Mol Sci 2020; 21:ijms21155310. [PMID: 32722651 PMCID: PMC7432027 DOI: 10.3390/ijms21155310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Inborn errors of Riboflavin (Rf) transport and metabolism have been recently related to severe human neuromuscular disorders, as resulting in profound alteration of human flavoproteome and, therefore, of cellular bioenergetics. This explains why the interest in studying the “flavin world”, a topic which has not been intensively investigated before, has increased much over the last few years. This also prompts basic questions concerning how Rf transporters and FAD (flavin adenine dinucleotide) -forming enzymes work in humans, and how they can create a coordinated network ensuring the maintenance of intracellular flavoproteome. The concept of a coordinated cellular “flavin network”, introduced long ago studying humans suffering for Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), has been, later on, addressed in model organisms and more recently in cell models. In the frame of the underlying relevance of a correct supply of Rf in humans and of a better understanding of the molecular rationale of Rf therapy in patients, this review wants to deal with theories and existing experimental models in the aim to potentiate possible therapeutic interventions in Rf-related neuromuscular diseases.
Collapse
|
20
|
Wilmshurst JM, Ouvrier RA, Ryan MM. Peripheral nerve disease secondary to systemic conditions in children. Ther Adv Neurol Disord 2019; 12:1756286419866367. [PMID: 31447934 PMCID: PMC6691669 DOI: 10.1177/1756286419866367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/07/2019] [Indexed: 12/17/2022] Open
Abstract
This review is an overview of systemic conditions that can be associated with peripheral nervous system dysfunction. Children may present with neuropathic symptoms for which, unless considered, a causative systemic condition may not be recognized. Similarly, some systemic conditions may be complicated by comorbid peripheral neuropathies, surveillance for which is indicated. The systemic conditions addressed in this review are critical illness polyneuropathy, chronic renal failure, endocrine disorders such as insulin-dependent diabetes mellitus and multiple endocrine neoplasia type 2b, vitamin deficiency states, malignancies and reticuloses, sickle cell disease, neurofibromatosis, connective tissue disorders, bowel dysmotility and enteropathy, and sarcoidosis. In some disorders presymptomatic screening should be undertaken, while in others there is no benefit from early detection of neuropathy. In children with idiopathic peripheral neuropathies, systemic disorders such as celiac disease should be actively excluded. While management is predominantly focused on symptomatic care through pain control and rehabilitation, some neuropathies improve with effective control of the underlying etiology and in a small proportion a more targeted approach is possible. In conclusion, peripheral neuropathies can be associated with a diverse range of medical conditions and unless actively considered may not be recognized and inadequately managed.
Collapse
Affiliation(s)
- Jo M. Wilmshurst
- Department of Paediatric Neurology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s, Hospital Neuroscience Institute, University of Cape Town, Klipfontein Road, Cape Town, Western Cape, 7700, South Africa
| | - Robert A. Ouvrier
- The Institute of Neuroscience and Muscle Research, The Children’s Hospital at Westmead, Sydney, Australia
| | - Monique M. Ryan
- Department of Neurology, Royal Children’s Hospital, Murdoch Children’s Research Institute and University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
O'Callaghan B, Bosch AM, Houlden H. An update on the genetics, clinical presentation, and pathomechanisms of human riboflavin transporter deficiency. J Inherit Metab Dis 2019; 42:598-607. [PMID: 30793323 DOI: 10.1002/jimd.12053] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/31/2018] [Indexed: 11/10/2022]
Abstract
Riboflavin transporter deficiency (RTD) is a rare neurological condition that encompasses the Brown-Vialetto-Van Laere and Fazio-Londe syndromes since the discovery of pathogenic mutations in the SLC52A2 and SLC52A3 genes that encode human riboflavin transporters RFVT2 and RFVT3. Patients present with a deteriorating progression of peripheral and cranial neuropathy that causes muscle weakness, vision loss, deafness, sensory ataxia, and respiratory compromise which when left untreated can be fatal. Considerable progress in the clinical and genetic diagnosis of RTDs has been made in recent years and has permitted the successful lifesaving treatment of many patients with high dose riboflavin supplementation. In this review, we first outline the importance of riboflavin and its efficient transmembrane transport in human physiology. Reports on 109 patients with a genetically confirmed diagnosis of RTD are then summarized in order to highlight commonly presenting clinical features and possible differences between patients with pathogenic SLC52A2 (RTD2) or SLC52A3 (RTD3) mutations. Finally, we focus attention on recent work with different models of RTD that have revealed possible pathomechanisms contributing to neurodegeneration in patients.
Collapse
Affiliation(s)
- Benjamin O'Callaghan
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Annet M Bosch
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Metabolic Diseases, Amsterdam, The Netherlands
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
22
|
Abbas Q, Jafri SK, Ishaque S, Rahman AJ. Brown-Vialetto-Van Laere syndrome: a novel diagnosis to a common presentation. BMJ Case Rep 2018; 2018:bcr-2018-224958. [PMID: 29950502 DOI: 10.1136/bcr-2018-224958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Brown-Vialetto-Van Laere syndrome (BVVLS) or riboflavin transporter deficiency (OMIM 211530) is a rare treatable autosomal recessive neurodegenerative disorder. This condition is associated with progressive pontobulbar palsy. We describe the clinical course of a 16-month-old boy with BVVLS and a novel homozygous mutation from Pakistan. Our patient presented with stridor and respiratory insufficiency. Hearing loss which is the most common sign of this condition was absent, making it an unusual presentation of BVVLS. His examination revealed ptosis and tongue fasciculation. His riboflavin receptor mutational analysis showed the homozygous mutation in the SLC52A3 gene. Per oral riboflavin was administered, and subsequently, he was able to be weaned off the ventilator. Now the child is improving and attaining developmental milestones.
Collapse
Affiliation(s)
- Qalab Abbas
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Sidra Kaleem Jafri
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Sidra Ishaque
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | | |
Collapse
|