1
|
Zhao Y, Chen L, Jiang S, Wu Z, Xiang Q, Lin J, Tian S, Sun Z, Sun C, Li W. Exosomes derived from MSCs exposed to hypoxic and inflammatory environments slow intervertebral disc degeneration by alleviating the senescence of nucleus pulposus cells through epigenetic modifications. Bioact Mater 2025; 49:515-530. [PMID: 40206196 PMCID: PMC11979484 DOI: 10.1016/j.bioactmat.2025.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/11/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of low back pain, which places heavy burdens on society and individuals. Surgical intervention is the conventional therapy for IDD, but patients who undergo surgery face relatively high risks of recurrence and complications. Therefore, a relatively less invasive and efficient treatment for IDD is urgently needed. In this study, we constructed a novel nanobiomaterial, named Hi-Exos, to slow IDD. Hi-Exos are exosomes derived from mesenchymal stem cells exposed to hypoxic and inflammatory environments. Hi-Exos could relieve the senescence of nucleus pulposus cells and slow IDD through an epigenetic modification mechanism by introducing the epigenetic factor miR-221-3p into senescent nucleus pulposus cells to reduce DDIT4 expression and inhibit the activation of NF-κB signalling pathway. This study provided a novel strategy for IDD treatment involving the use of Hi-Exos to deliver miR-221-3p to reduce the senescence of nucleus pulposus cells and repair IDD via epigenetic modifications.
Collapse
Affiliation(s)
- Yongzhao Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Longting Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Shuai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhenquan Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Qian Xiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Jialiang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Shuo Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhuoran Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
2
|
Guo X, Lu Z, Xiao W, Huang H, Wu J, Zou F, Ma X, Chen Z, Wang H, Jiang J. Exploring the Causes of Intervertebral Disc Annulus Fibrosus Impairment. Cell Mol Bioeng 2025; 18:109-121. [PMID: 40290107 PMCID: PMC12018660 DOI: 10.1007/s12195-025-00844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/13/2025] [Indexed: 04/30/2025] Open
Abstract
Scope The annulus fibrosus (AF), as an important component of the intervertebral disc (IVD), contributes to the structural integrity and functional normality of IVD. Degenerative disc diseases (DDD), due to AF impairment, are common problems that could lead to low back pain or neck pain, resulting in considerable disability and financial costs globally. The exact causes and underlying mechanisms of AF impairment, however, remain complex and unclear. Methods A literature search was conducted to identify relevant articles published between 1952 and 2024. We summarize the current literature on the potential etiologies of AF damage, while also providing a brief overview of the basic characteristics of the AF and current therapeutic strategies for AF impairment. Results The findings suggest that several factors could induce or exacerbate AF impairment. We categorize them into distinct groups as physical and chemical stimuli, nutritional or metabolic disorders, immune and inflammatory responses, and genetic abnormalities. Conclusion Various factors could lead to AF impairment, such as particular physical and chemical stimuli, nutritional or metabolic disorders, immune and inflammatory responses, and genetic abnormalities. Meanwhile, enhancing our understanding and management of AF impairment could help discover potential preventive or therapeutic interventions for DDD.
Collapse
Affiliation(s)
- Xingyu Guo
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Zian Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Wenbiao Xiao
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Han Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Jianwei Wu
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Zhenhao Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| |
Collapse
|
3
|
Khatami N, Caraus I, Rahaman M, Nepotchatykh E, Elbakry M, Elremaly W, Franco A, Beauséjour M, Laberge AM, Parent S, Labelle H, Aubin CÉ, Lachaine J, Moreau A. Genome-wide profiling of circulating microRNAs in adolescent idiopathic scoliosis and their relation to spinal deformity severity, and disease pathophysiology. Sci Rep 2025; 15:5305. [PMID: 39939711 PMCID: PMC11822005 DOI: 10.1038/s41598-025-88985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Adolescent Idiopathic Scoliosis (AIS) is the most common orthopedic condition requiring surgery, affecting 4% of adolescents. There is currently no proven method or prognostic test to identify symptomatic patients at risk of developing severe scoliosis who could benefit from growth-guided devices or minimally invasive non-fusion instrumentation surgeries. These innovative treatments must be performed at an early disease stage in younger patients to benefit from their growth potential. In this prospective cross-sectional study, we investigated the clinical utility of circulating microRNAs (miRNAs), an important class of small non-coding RNA, as biomarkers to predict the risk of developing severe scoliosis in AIS. Blood samples and clinical data were collected from 116 AIS patients who were followed until skeletal maturity and stratified according to their clinical outcome. Genome-wide expression profiling of miRNAs was performed with plasma obtained at the time of diagnosis of AIS (mean age of 13.3 ± 1.7 years with a mean Cobb angle of 24.4° ± 12.4°). This approach led to the identification of 15 circulating miRNAs that are upregulated in AIS patients who developed a severe scoliosis (Cobb angle ≥ 45°) at skeletal maturity compared to moderate and mild scoliosis groups (Cobb angle between 25°-44° and < 25° respectively). After optimization and the application of Random Forest Models a panel of six miRNAs (miR-1-3p, miR-19a-3p, miR-19b-3p, miR-133b, miR-143-3p, and miR-148b-3p) out of 15 led us to develop an algorithm predicting the risk of developing a severe scoliosis with great accuracy (100%), sensitivity (100%) and specificity (100%). Having a scoliosis predictive bioassay and decision-making tools to predict curve progression in order to find the best treatment plan will undoubtedly transform the orthopedic care system in the field of pediatric scoliosis by integrating innovative precision medicine approaches. In addition, investigation of genes targeted by these miRNAs could fill our gaps in our understanding of AIS pathogenesis and reveal new actionable targets.
Collapse
Affiliation(s)
- Nasrin Khatami
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Iurie Caraus
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Mahamuda Rahaman
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Evguenia Nepotchatykh
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
- Molecular Biology PhD Program, Faculty of Graduate and Postdoctoral Studies, Université de Montréal, Montreal, QC, Canada
| | - Mohamed Elbakry
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Wesam Elremaly
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Anita Franco
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Marie Beauséjour
- Azrieli Research Center, CHU Sainte-Justine, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Community Health Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Longueuil, QC, Canada
| | - Anne-Marie Laberge
- Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montreal, QC, Canada
| | - Stefan Parent
- Azrieli Research Center, CHU Sainte-Justine, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Orthopedic Division, CHU Sainte-Justine, Montreal, QC, Canada
- Institut TransMedTech Montreal, CHU Sainte-Justine, Montreal, QC, Canada
| | - Hubert Labelle
- Azrieli Research Center, CHU Sainte-Justine, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Orthopedic Division, CHU Sainte-Justine, Montreal, QC, Canada
- Institut TransMedTech Montreal, CHU Sainte-Justine, Montreal, QC, Canada
| | - Carl-Éric Aubin
- Azrieli Research Center, CHU Sainte-Justine, Montreal, QC, Canada
- Institut TransMedTech Montreal, CHU Sainte-Justine, Montreal, QC, Canada
- Polytechnique Montréal, Montreal, QC, Canada
| | - Jean Lachaine
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
- Molecular Biology PhD Program, Faculty of Graduate and Postdoctoral Studies, Université de Montréal, Montreal, QC, Canada.
- Institut TransMedTech Montreal, CHU Sainte-Justine, Montreal, QC, Canada.
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
4
|
Jiang J, Huang Y, He B. Advances in the interaction between lumbar intervertebral disc degeneration and fat infiltration of paraspinal muscles: critical summarization, classification, and perspectives. Front Endocrinol (Lausanne) 2024; 15:1353087. [PMID: 38978618 PMCID: PMC11228240 DOI: 10.3389/fendo.2024.1353087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
More than 619 million people in the world suffer from low back pain (LBP). As two potential inducers of LBP, intervertebral disc degeneration (IVDD) and fat infiltration of paraspinal muscles (PSMs) have attracted extensive attention in recent years. So far, only one review has been presented to summarize their relationship and relevant mechanisms. Nevertheless, it has several noticeable drawbacks, such as incomplete categorization and discussion, lack of practical proposals, etc. Consequently, this paper aims to systematically summarize and classify the interaction between IVDD and fat infiltration of PSMs, thus providing a one-stop search handbook for future studies. As a result, four mechanisms of IVDD leading to fat infiltration of PSMs and three mechanisms of fat infiltration in PSMs causing IVDD are thoroughly analyzed and summarized. The typical reseaches are tabulated and evaluated from four aspects, i.e., methods, conclusions, benefits, and drawbacks. We find that IVDD and fat infiltration of PSMs is a vicious cycle that can promote the occurrence and development of each other, ultimately leading to LBP and disability. Finally, eight perspectives are proposed for future in-depth research.
Collapse
Affiliation(s)
- Jiaqiu Jiang
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yilong Huang
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bo He
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Liu Q, Luo J, Wang H, Zhang L, Guo J, Jin G. GAS5, a long noncoding RNA, contributes to annulus fibroblast osteogenic differentiation and apoptosis in intervertebral disk degeneration via the miR-221-3p/SOX11 axis. Aging (Albany NY) 2024; 16:3896-3914. [PMID: 38407972 PMCID: PMC10929823 DOI: 10.18632/aging.205567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
miR-221-3p has been reported to attenuate the osteogenic differentiation of annulus fibrosus cells (AFs), which has been implicated in intervertebral disk degeneration (IVDD) development. This study aimed to elucidate miR-221-3p's role in osteogenic differentiation and apoptosis of AFs in an IVDD model. After successfully establishing an IVDD rat model by annulus fibrosus needle puncture, AFs were isolated. Bioinformatics, dual-luciferase reporter, and AGO2-RNA immunoprecipitation (RIP) assays predicted and confirmed the potential miR-221-3p lncRNA and gene target. Functional analyses were performed after AF transfection to explore the roles of the identified lncRNA and gene. Western blotting, Alkaline phosphatase (ALP), and Alizarin red and TUNEL staining were performed to investigate AF apoptosis and osteogenic differentiation with different transfections. Compared with AFs isolated from sham rats, IVDD-isolated Afs exhibited stronger osteogenic potential and higher apoptosis rates accompanied by miR-221-3p downregulation. The growth arrest-specific transcript 5 (GAS5) was identified as miR-221-3p's target lncRNA, which was highly expressed in IVDD. GAS5 overexpression facilitated AF apoptosis and osteogenic differentiation, whereas silencing GAS5 had the opposite effect. SRY box-related11 (SOX11) was identified as a downstream miR-221-3p target gene in IVDD. GASS silencing-induced suppression of AF apoptosis and osteogenic differentiation could be reversed by SOX11 overexpression. Our findings uncovered a lncRNA GAS5/miR-221-3p/SOX11 axis in Afs under IVDD, which may help implement novel IVDD therapeutic strategies.
Collapse
Affiliation(s)
- Qi Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Jiaying Luo
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang 110000, China
| | - Huan Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Lei Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Jingwen Guo
- Institute of Health Sciences, China Medical University, Shenyang 110000, China
| | - Guoxin Jin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
6
|
Zheng Z, Wu L, Li Z, Tang R, Li H, Huang Y, Wang T, Xu S, Cheng H, Ye Z, Xiao D, Lin X, Wu G, Jaspers RT, Pathak JL. Mir155 regulates osteogenesis and bone mass phenotype via targeting S1pr1 gene. eLife 2023; 12:77742. [PMID: 36598122 PMCID: PMC9839347 DOI: 10.7554/elife.77742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
MicroRNA-155 (miR155) is overexpressed in various inflammatory diseases and cancer, in which bone resorption and osteolysis are frequently observed. However, the role of miR155 on osteogenesis and bone mass phenotype is still unknown. Here, we report a low bone mass phenotype in the long bone of Mir155-Tg mice compared with wild-type mice. In contrast, Mir155-KO mice showed a high bone mass phenotype and protective effect against inflammation-induced bone loss. Mir155-KO mice showed robust bone regeneration in the ectopic and orthotopic model, but Mir155-Tg mice showed compromised bone regeneration compared with the wild-type mice. Similarly, the osteogenic differentiation potential of bone marrow stromal stem cells (BMSCs) from Mir155-KO mice was robust and Mir155-Tg was compromised compared with that of wild-type mice. Moreover, Mir155 knockdown in BMSCs from wild-type mice showed higher osteogenic differentiation potential, supporting the results from Mir155-KO mice. TargetScan analysis predicted sphingosine 1-phosphate receptor-1 (S1pr1) as a target gene of Mir155, which was further confirmed by luciferase assay and Mir155 knockdown. S1pr1 overexpression in BMSCs robustly promoted osteogenic differentiation without affecting cell viability and proliferation. Furthermore, osteoclastogenic differentiation of Mir155-Tg bone marrow-derived macrophages was inhibited compared with that of wild-type mice. Thus, Mir155 showed a catabolic effect on osteogenesis and bone mass phenotype via interaction with the S1pr1 gene, suggesting inhibition of Mir155 as a potential strategy for bone regeneration and bone defect healing.
Collapse
Affiliation(s)
- Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamNetherlands
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhicong Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Ruoshu Tang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Hongtao Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yinyin Huang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Tianqi Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Shaofen Xu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Haoyu Cheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumour Immunology Research, Cancer Research Institute, School of Basic Medical Science, Southern Medical UniversityGuangzhouChina,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical UniversityGuangzhouChina
| | - Xiaolin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumour Immunology Research, Cancer Research Institute, School of Basic Medical Science, Southern Medical UniversityGuangzhouChina,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical UniversityGuangzhouChina
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science, Vrije Universiteit AmsterdamAmsterdamNetherlands,Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Richard T Jaspers
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamNetherlands
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| |
Collapse
|
7
|
Montemurro N, Ricciardi L, Scerrati A, Ippolito G, Lofrese G, Trungu S, Stoccoro A. The Potential Role of Dysregulated miRNAs in Adolescent Idiopathic Scoliosis and 22q11.2 Deletion Syndrome. J Pers Med 2022; 12:1925. [PMID: 36422101 PMCID: PMC9695868 DOI: 10.3390/jpm12111925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 08/29/2023] Open
Abstract
Background: Adolescent idiopathic scoliosis (AIS), affecting 2-4% of adolescents, is a multifactorial spinal disease. Interactions between genetic and environmental factors can influence disease onset through epigenetic mechanisms, including DNA methylation, histone modifications and miRNA expression. Recent evidence reported that, among all clinical features in individuals with 22q11.2 deletion syndrome (DS), scoliosis can occur with a higher incidence than in the general population. Methods: A PubMed and Ovid Medline search was performed for idiopathic scoliosis in the setting of 22q11.2DS and miRNA according to PRISMA guidelines. Results: Four papers, accounting for 2841 individuals, reported clinical data about scoliosis in individuals with 22q11.2DS, showing that approximately 35.1% of the individuals with 22q11.2DS developed scoliosis. Conclusions: 22q11.2DS could be used as a model for the study of AIS. The DGCR8 gene seems to be essential for microRNA biogenesis, which is why we propose that a possible common pathological mechanism between scoliosis and 22q11.2DS could be the dysregulation of microRNA expression. In the current study, we identified two miRNAs that were altered in both 22q11.2DS and AIS, miR-93 and miR-1306, thus, corroborating the hypothesis that the two diseases share common molecular alterations.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| | - Luca Ricciardi
- Department of NESMOS, Sapienza University of Rome, 00185 Roma, Italy
| | - Alba Scerrati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Ippolito
- Istituto Chirurgico Ortopedico Traumatologico (ICOT), DSBMC Sapienza Università di Roma-Polo Pontino, 04100 Latina, Italy
| | - Giorgio Lofrese
- Division of Neurosurgery, Ospedale Bufalini, 47023 Cesena, Italy
| | - Sokol Trungu
- Department of NESMOS, Sapienza University of Rome, 00185 Roma, Italy
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
8
|
Chen CN, Chang HI, Yen CK, Liu WL, Huang KY. Mechanical Stretch Induced Osteogenesis on Human Annulus Fibrosus Cells through Upregulation of BMP-2/6 Heterodimer and Activation of P38 and SMAD1/5/8 Signaling Pathways. Cells 2022; 11:cells11162600. [PMID: 36010676 PMCID: PMC9406707 DOI: 10.3390/cells11162600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022] Open
Abstract
Degenerative disc disease (DDD) is an important cause of low back pain. Repetitive tensile stress from the daily motion of the spine predisposes it to injury of the annulus fibrosus (AF) which causes IVD degeneration. This study aims to determine the causal relationship between mechanical stretch and osteogenesis in the AF cells of IVD as affected by bone morphogenic proteins (BMPs), specifically BMP-2/6 heterodimers. Our results found that 15% tensile stress (high cyclic stretching, HCS) may induce the expression of osteogenesis-related markers (Runx2, osterix) by upregulating BMP-2/6 heterodimeric ligands and their receptors on the human AF cell line. HCS also induced transient phosphorylation of p38 mitogen-activated protein (MAP) kinase and SMAD1/5/8. Neutralizing antibodies to the BMP-2/6 receptor (ALK3) blocked the expression of Runx2 and osterix, as well as the phosphorylation of p38 and SMAD1/5/8. In addition, treatment with a p38 MAPK inhibitor (SB203580) or siRNA to neutralize the effects of SMAD1/5/8 suppressed tensile stress-induced Runx2 and osterix expression. Mechanical stretching induces activation of p38 MAP kinase and SMAD1/5/8 signaling pathways, followed by the upregulation of BMP-2/6 heterodimer expression, thereby stimulating osteogenic Runx2 and osterix expression on AF cells. HCS may accelerate the progression of IVD degeneration by promoting an osteogenic response.
Collapse
Affiliation(s)
- Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 60004, Taiwan
| | - Hsin-I Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 60004, Taiwan
| | - Chia-Kung Yen
- Department of Food Science, National Chiayi University, Chiayi City 60004, Taiwan
| | - Wen-Lung Liu
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Kuo-Yuan Huang
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535 (ext. 5237); Fax: +886-6-2766189
| |
Collapse
|
9
|
Xin J, Wang Y, Zheng Z, Wang S, Na S, Zhang S. Treatment of Intervertebral Disc Degeneration. Orthop Surg 2022; 14:1271-1280. [PMID: 35486489 PMCID: PMC9251272 DOI: 10.1111/os.13254] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IDD) causes a variety of signs and symptoms, such as low back pain (LBP), intervertebral disc herniation, and spinal stenosis, which contribute to high social and economic costs. IDD results from many factors, including genetic factors, aging, mechanical injury, malnutrition, and so on. The pathological changes of IDD are mainly composed of the senescence and apoptosis of nucleus pulposus cells (NPCs), the progressive degeneration of extracellular matrix (ECM), the fibrosis of annulus fibrosus (AF), and the inflammatory response. At present, IDD can be treated by conservative treatment and surgical treatment based on patients' symptoms. However, all of these can only release the pain but cannot reverse IDD and reconstruct the mechanical function of the spine. The latest research is moving towards the field of biotherapy. Mesenchymal stem cells (MSCs) are regard as the potential therapy of IDD because of their ability to self-renew and differentiate into a variety of tissues. Moreover, the non-coding RNAs (ncRNAs) are found to regulate many vital processes in IDD. There have been many successes in the in vitro and animal studies of using biotherapy to treat IDD, but how to transform the experimental data to real therapy which can apply to humans is still a challenge. This article mainly reviews the treatment strategies and research progress of IDD and indicates that there are many problems that need to be solved if the new biotherapy is to be applied to clinical treatment of IDD. This will provide reference and guidance for clinical treatment and research direction of IDD.
Collapse
Affiliation(s)
- Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Shuo Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Shibo Na
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| |
Collapse
|
10
|
Wang C, Cui L, Gu Q, Guo S, Zhu B, Liu X, Li Y, Liu X, Wang D, Li S. The Mechanism and Function of miRNA in Intervertebral Disc Degeneration. Orthop Surg 2022; 14:463-471. [PMID: 35142050 PMCID: PMC8926997 DOI: 10.1111/os.13204] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc degeneration (IDD) disease has been considered as the main cause of low back pain (LBP), which is a very common symptom and the leading cause of disability worldwide today. The pathological mechanism of IDD remains quite complicated, and genetic, developmental, biochemical, and biomechanical factors all contribute to the development of the disease. There exists no effective, non-surgical treatment for IDD nowadays, which is largely related to the lack of knowledge of the specific mechanisms of IDD, and the lack of effective specific targets. Recently, non-coding RNA, including miRNA, has been recognized as an important regulator of gene expression. Current studies on the effects of miRNA in IDD have confirmed that a variety of miRNAs play a crucial role in the process of IDD via nucleus pulposus cells (NPC) apoptosis, abnormal proliferation, inflammatory factors, the extracellular matrix (ECM) degradation, and annulus fibrosus (AF) degeneration. In the past 10 years, research on miRNA has been quite active in IDD. This review summarizes the current research progression of miRNA in the IDD and puts forward some prospects and challenges on non-surgical treatment for IDD.
Collapse
Affiliation(s)
- Chenglong Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Liqiang Cui
- Department of Spine Surgery, Mianyang Orthopaedic Hospital, Mianyang, China
| | - Qinwen Gu
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Guo
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Bin Zhu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xueli Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Yujie Li
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xinyue Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Dingxuan Wang
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Yang F, Wang J, Chen Z, Yang Y, Zhang W, Guo S, Yang Q. Role of microRNAs in intervertebral disc degeneration (Review). Exp Ther Med 2021; 22:860. [PMID: 34178133 PMCID: PMC8220656 DOI: 10.3892/etm.2021.10292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/19/2021] [Indexed: 11/14/2022] Open
Abstract
The incidence of lower back pain caused by intervertebral disc degeneration (IDD) is gradually increasing. IDD not only affects the quality of life of the patients, but also poses a major socioeconomic burden. There is currently no optimal method for delaying or reversing IDD, mainly due to its unknown pathogenesis. MicroRNAs (miRNAs/miRs) participate in the development of a number of diseases, including IDD. Abnormal expression of miRNAs in the intervertebral disc is implicated in various pathological processes underlying the development of IDD, including nucleus pulposus (NP) cell (NPC) proliferation, NPC apoptosis, extracellular matrix remodeling, inflammation and cartilaginous endplate changes, among others. The focus of the present review was the advances in research on the involvement of miRNAs in the mechanism underlying IDD. Further research is expected to identify markers for early diagnosis of IDD and new targets for delaying or reversing IDD.
Collapse
Affiliation(s)
- Fengguang Yang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jizu Wang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhixin Chen
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yuping Yang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Wenhui Zhang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Shifang Guo
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Qingshan Yang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
12
|
Wen B, He C, Zhang Q, Zhang F, Li N, Pan Y, Deng M, Wang Y, Li J, Qiu J. Overexpression of microRNA-221 promotes the differentiation of stem cells from human exfoliated deciduous teeth to neurons through activation of Wnt/β-catenin pathway via inhibition of CHD8. Cell Cycle 2020; 19:3231-3248. [PMID: 33198579 PMCID: PMC7751633 DOI: 10.1080/15384101.2020.1816308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/11/2019] [Accepted: 07/23/2020] [Indexed: 10/23/2022] Open
Abstract
microRNAs have been proved to function in some processes of differentiation and the effect is favorable. At present, the differentiation of stem cells is not so ideal because of the high expenses and inaccessibility. Therefore, we explored the possibility that microRNA-221 (miR-221) affects differentiation from stem cells from human deciduous tooth (SHEDs) to neurons through Wnt/β-catenin pathway via binding to CHD8. After collection of SHEDs, differentiation from SHEDs to neurons was conducted by neurotrophic factor induction method in vitro, followed by gain- and loss-of-function experiments. Expression of neuron-related genes in SHEDs was examined by immunohistochemistry. The relationship between CHD8 and miR-221 was detected by dual luciferase reporter gene assay. RT-qPCR and Western blot analysis were used to determine miR-221 expression, and the mRNA and protein expression of CHD8, Wnt/β-catenin pathway- and neuron-related genes. Cell viability, and cell cycle and apoptosis were investigated by MTT assay and flow cytometry respectively. Dual luciferase reporter assay displayed that miR-221 targeted CHD8 and then affected the differentiation progression. Results of RT-qPCR and Western blot analysis showed that expression of Wnt/β-catenin pathway-related genes increased significantly, CHD8 expression decreased in neuron-induced SHEDs after miR-221 overexpression or CHD8 silencing. In response to miR-221 overexpression and CHD8 silencing, cell viability and cell cycle entry were increased, and apoptosis was reduced. Moreover, overexpression of miR-221 or silencing of CHD8 elevated the expression of neuron-related genes in neuron-induced SHEDs. Taken together, upregulation of miR-221 promotes differentiation from SHEDs to neuron cells through activation of Wnt/β-catenin pathway by binding to CHD8.
Collapse
Affiliation(s)
- Bing Wen
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Chenjiang He
- Undergraduate Class of Stomatology, Grade 2015, Fuzhou Medical College of Nanchang University, Fuzhou, P.R. China
| | - Qin Zhang
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Fanglin Zhang
- College of Pharmacy, Nanchang University School of Medicine, Nanchang, P.R. China
| | - Na Li
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Yan Pan
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Mengting Deng
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Yue Wang
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Jianping Li
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Jiaxuan Qiu
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
13
|
Guo HY, Guo MK, Wan ZY, Song F, Wang HQ. Emerging evidence on noncoding-RNA regulatory machinery in intervertebral disc degeneration: a narrative review. Arthritis Res Ther 2020; 22:270. [PMID: 33198793 PMCID: PMC7667735 DOI: 10.1186/s13075-020-02353-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the most common cause of low-back pain. Accumulating evidence indicates that the expression profiling of noncoding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long noncoding RNAs (lncRNAs), are different between intervertebral disc tissues obtained from healthy individuals and patients with IDD. However, the roles of ncRNAs in IDD are still unclear until now. In this review, we summarize the studies concerning ncRNA interactions and regulatory functions in IDD. Apoptosis, aberrant proliferation, extracellular matrix degradation, and inflammatory abnormality are tetrad fundamental pathologic phenotypes in IDD. We demonstrated that ncRNAs are playing vital roles in apoptosis, proliferation, ECM degeneration, and inflammation process of IDD. The ncRNAs participate in underlying mechanisms of IDD in different ways. MiRNAs downregulate target genes’ expression by directly binding to the 3′-untranslated region of mRNAs. CircRNAs and lncRNAs act as sponges or competing endogenous RNAs by competitively binding to miRNAs and regulating the expression of mRNAs. The lncRNAs, circRNAs, miRNAs, and mRNAs widely crosstalk and form complex regulatory networks in the degenerative processes. The current review presents novel insights into the pathogenesis of IDD and potentially sheds light on the therapeutics in the future.
Collapse
Affiliation(s)
- Hao-Yu Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Ming-Ke Guo
- Department of Orthopaedic Surgery, The Affiliated Hospital of PLA Army Medical University Warrant Officer School, Shijiazhuang, 050000, People's Republic of China
| | - Zhong-Yuan Wan
- Department of Orthopedics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, People's Republic of China
| | - Fang Song
- Department of Stomatology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, People's Republic of China
| | - Hai-Qiang Wang
- Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, Xixian Avenue, Xixian District, Shaanxi Province, 712046, People's Republic of China.
| |
Collapse
|
14
|
Pérez-Machado G, Berenguer-Pascual E, Bovea-Marco M, Rubio-Belmar PA, García-López E, Garzón MJ, Mena-Mollá S, Pallardó FV, Bas T, Viña JR, García-Giménez JL. From genetics to epigenetics to unravel the etiology of adolescent idiopathic scoliosis. Bone 2020; 140:115563. [PMID: 32768685 DOI: 10.1016/j.bone.2020.115563] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
Scoliosis is defined as the three-dimensional (3D) structural deformity of the spine with a radiological lateral Cobb angle (a measure of spinal curvature) of ≥10° that can be caused by congenital, developmental or degenerative problems. However, those cases whose etiology is still unknown, and affect healthy children and adolescents during growth, are the commonest form of spinal deformity, known as adolescent idiopathic scoliosis (AIS). In AIS management, early diagnosis and the accurate prediction of curve progression are most important because they can decrease negative long-term effects of AIS treatment, such as unnecessary bracing, frequent exposure to radiation, as well as saving the high costs of AIS treatment. Despite efforts made to identify a method or technique capable of predicting AIS progression, this challenge still remains unresolved. Genetics and epigenetics, and the application of machine learning and artificial intelligence technologies, open up new avenues to not only clarify AIS etiology, but to also identify potential biomarkers that can substantially improve the clinical management of these patients. This review presents the most relevant biomarkers to help explain the etiopathogenesis of AIS and provide new potential biomarkers to be validated in large clinical trials so they can be finally implemented into clinical settings.
Collapse
Affiliation(s)
| | | | | | - Pedro Antonio Rubio-Belmar
- Institute for Health Research La Fe, IISLaFe, Valencia, Spain; Spine Surgery Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Eva García-López
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain
| | - María José Garzón
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain
| | - Salvador Mena-Mollá
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain; Department of Physiology, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain
| | - Federico V Pallardó
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain; Department of Physiology, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain; Consortium Center for Biomedical Network Research ISCIII. Instituto de Salud Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Teresa Bas
- Institute for Health Research La Fe, IISLaFe, Valencia, Spain; Spine Surgery Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Juan R Viña
- INCLIVA Health Research Institute, Valencia, Spain; Department of Biochemistry, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain
| | - José Luis García-Giménez
- EpiDisease S.L., University of Valencia. Scientific Park. Paterna, Valencia, Spain; Department of Physiology, University of Valencia, Faculty of Medicine and Dentistry, Valencia, Spain; Consortium Center for Biomedical Network Research ISCIII. Instituto de Salud Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain.
| |
Collapse
|
15
|
Wang XQ, Tu WZ, Guo JB, Song G, Zhang J, Chen CC, Chen PJ. A Bioinformatic Analysis of MicroRNAs' Role in Human Intervertebral Disc Degeneration. PAIN MEDICINE 2020; 20:2459-2471. [PMID: 30953590 DOI: 10.1093/pm/pnz015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objectives The aim of our study was to ascertain the underlying role of microRNAs (miRNAs) in human intervertebral disc degeneration (IDD). Design Bioinformatic analysis from multiple databases. Methods Studies of the association of miRNAs and IDD were identified in multiple electronic databases. All potential studies were assessed by the same inclusion and exclusion criteria. We recorded whether miRNA expression was commonly increased or suppressed in the intervertebral disc tissues and cells of IDD subjects. We used String to identify biological process and cellular component pathways of differentially expressed genes. Results We included fifty-seven articles from 1,277 records in this study. This report identified 40 different dysregulated miRNAs in 53 studies, including studies examining cell apoptosis (26 studies, 49.06%), cell proliferation (15 studies, 28.3%), extracellular matrix (ECM) degradation (10 studies, 18.86%), and inflammation (five studies, 9.43%) in IDD patients. Three upregulated miRNAs (miR-19b, miR-32, miR-130b) and three downregulated miRNAs (miR-31, miR-124a, miR-127-5p) were considered common miRNAs in IDD tissues. The top three biological process pathways for upregulated miRNAs were positive regulation of biological process, nervous system development, and negative regulation of biological process, and the top three biological process pathways for downregulated miRNAs were negative regulation of gene expression, intracellular signal transduction, and negative regulation of biological process. Conclusions This study revealed that miRNAs could be novel targets for preventing IDD and treating patients with IDD by regulating their target genes. These results provide valuable information for medical professionals, IDD patients, and health care policy makers.
Collapse
Affiliation(s)
- Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Equal contribution
| | - Wen-Zhan Tu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Equal contribution
| | - Jia-Bao Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Juan Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chang-Cheng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; †Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China; ‡Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Wang K, Wang Y, Hu Z, Zhang L, Li G, Dang L, Tan Y, Cao X, Shi F, Zhang S, Zhang G. Bone-targeted lncRNA OGRU alleviates unloading-induced bone loss via miR-320-3p/Hoxa10 axis. Cell Death Dis 2020; 11:382. [PMID: 32427900 PMCID: PMC7237470 DOI: 10.1038/s41419-020-2574-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/13/2023]
Abstract
Unloading-induced bone loss is a threat to human health and can eventually result in osteoporotic fractures. Although the underlying molecular mechanism of unloading-induced bone loss has been broadly elucidated, the pathophysiological role of long noncoding RNAs (lncRNAs) in this process is unknown. Here, we identified a novel lncRNA, OGRU, a 1816-nucleotide transcript with significantly decreased levels in bone specimens from hindlimb-unloaded mice and in MC3T3-E1 cells under clinorotation-unloading conditions. OGRU overexpression promoted osteoblast activity and matrix mineralization under normal loading conditions, and attenuated the suppression of MC3T3-E1 cell differentiation induced by clinorotation unloading. Furthermore, this study found that supplementation of pcDNA3.1(+)–OGRU via (DSS)6–liposome delivery to the bone-formation surfaces of hindlimb-unloaded (HLU) mice partially alleviated unloading-induced bone loss. Mechanistic investigations demonstrated that OGRU functions as a competing endogenous RNA (ceRNA) to facilitate the protein expression of Hoxa10 by competitively binding miR-320-3p and subsequently promote osteoblast differentiation and bone formation. Taken together, the results of our study provide the first clarification of the role of lncRNA OGRU in unloading-induced bone loss through the miR-320-3p/Hoxa10 axis, suggesting an efficient anabolic strategy for osteoporosis treatment.
Collapse
Affiliation(s)
- Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Lei Dang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
17
|
Abstract
Intervertebral disc (IVD) degeneration is associated with low back pain. In IVDs, a high mechanical load, high osmotic pressure and hypoxic conditions create a hostile microenvironment for resident cells. How IVD homeostasis and function are maintained under stress remains to be understood; however, several research groups have reported isolating native endogenous progenitor-like or otherwise proliferative cells from the IVD. The isolation of such cells implies that the IVD might contain a quiescent progenitor-like population that could be activated for IVD repair and regeneration. Increased understanding of endogenous disc progenitor cells will improve our knowledge of IVD homeostasis and, when combined with tissue engineering techniques, might hold promise for future therapeutic applications. In this Review, the characteristics of progenitor cells in different IVD compartments are discussed, as well as the potency of different cell populations within the IVD. The stem cell characteristics of these cells are also compared with those of mesenchymal stromal cells. On the basis of existing evidence, whether and how IVD degeneration and the hostile microenvironment might affect endogenous progenitor cell function are considered, and ways to channel the potential of these cells for IVD repair are suggested.
Collapse
|
18
|
Penolazzi L, Lambertini E, Bergamin LS, Roncada T, De Bonis P, Cavallo M, Piva R. MicroRNA-221 silencing attenuates the degenerated phenotype of intervertebral disc cells. Aging (Albany NY) 2019; 10:2001-2015. [PMID: 30130742 PMCID: PMC6128426 DOI: 10.18632/aging.101525] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the role of an antichondrogenic factor, MIR221 (miR-221), in intervertebral disc degeneration (IDD), and provide basic information for the development of a therapeutic strategy for the disc repair based on specific nucleic acid based drugs, such as miR-221 silencing. We established a relatively quick protocol to minimize artifacts from extended in vitro culture, without selecting the different types of cells from intervertebral disc (IVD) or completely disrupting extracellular matrix (ECM), but by using the whole cell population with a part of resident ECM. During the de-differentiation process miR-221 expression significantly increased. We demonstrated the effectiveness of miR-221 silencing in driving the cells towards chondrogenic lineage. AntagomiR-221 treated cells showed in fact a significant increase of expression of typical chondrogenic markers including COL2A1, ACAN and SOX9, whose loss is associated with IDD. Moreover, antagomiR-221 treatment restored FOXO3 expression and increased TRPS1 expression levels attenuating the severity grade of degeneration, and demonstrating in a context of tissue degeneration and inflammation not investigated before, that FOXO3 is target of miR-221. Data of present study are promising in the definition of new molecules useful as potential intradiscal injectable biological agents.
Collapse
Affiliation(s)
- Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Tosca Roncada
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Pasquale De Bonis
- Department of Neurosurgery, S. Anna University Hospital, Ferrara, Italy
| | - Michele Cavallo
- Department of Neurosurgery, S. Anna University Hospital, Ferrara, Italy
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.,Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
19
|
Jin Y, Long D, Li J, Yu R, Song Y, Fang J, Yang X, Zhou S, Huang S, Zhao Z. Extracellular vesicles in bone and tooth: A state-of-art paradigm in skeletal regeneration. J Cell Physiol 2019; 234:14838-14851. [PMID: 30847902 DOI: 10.1002/jcp.28303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/05/2023]
Abstract
Bone and tooth, fundamental parts of the craniofacial skeleton, are anatomically and developmentally interconnected structures. Notably, pathological processes in these tissues underwent together and progressed in multilevels. Extracellular vesicles (EVs) are cell-released small organelles and transfer proteins and genetic information into cells and tissues. Although EVs have been identified in bone and tooth, particularly EVs have been identified in the bone formation and resorption, the concrete roles of EVs in bone and tooth development and diseases remain elusive. As such, we review the recent progress of EVs in bone and tooth to highlight the novel findings of EVs in cellular communication, tissue homeostasis, and interventions. This will enhance our comprehension on the skeletal biology and shed new light on the modulation of skeletal disorders and the potential of genetic treatment.
Collapse
Affiliation(s)
- Ying Jin
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Juan Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Ruichao Yu
- Department of Pulmonary, Brigham and Women's Hospital, Harvard Medical School, Massachusetts
| | - Yueming Song
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xi Yang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shu Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Shishu Huang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
20
|
Fan Y, Zhao L, Xie W, Yi D, He S, Chen D, Huang J. Serum miRNAs are potential biomarkers for the detection of disc degeneration, among which miR-26a-5p suppresses Smad1 to regulate disc homeostasis. J Cell Mol Med 2019; 23:6679-6689. [PMID: 31338931 PMCID: PMC6787501 DOI: 10.1111/jcmm.14544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022] Open
Abstract
Disc degeneration is a common clinical condition in which damaged discs cause chronic pain; however, a laboratory diagnosis method for its detection is not available. As circulating miRNAs have potential as biomarkers, their application in disc degeneration has not been explored. Here, we prepared serum miRNAs from a mouse disc degeneration model and performed miRNA‐Seq and quantitative PCR to characterize disc degeneration–associated miRNAs. We identified three miRNAs, including miR‐26a‐5p, miR‐122‐5p and miR‐215‐5p, undergoing perturbation during the pathogenesis of disc degeneration. Specifically, the levels of miR‐26a‐5p in the serum demonstrated steady increases in the model of disc degeneration, compared with those in the pre‐injury samples of younger age or compared with normal controls of the same age but without disc degeneration, whereas the miRNAs miR‐122‐5p and miR‐215‐5p exhibited lower expression in post‐injury samples than in their counterparts without the surgery. Moreover, we found that miR‐26a‐5p targets Smad1 expression, and Smad1 negatively regulates Vegfa expression in disc cells, and thus, miR‐26a‐5p promotes disc degeneration. In summary, we established a method that consistently profiles circulating miRNAs and identified multiple miRNAs as promising biomarkers for disc degeneration, among which miR‐26a‐5p enhances VEGF expression during disc degeneration through targeting Smad1 signalling.
Collapse
Affiliation(s)
- Yunshan Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Wanqing Xie
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Dan Yi
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Shisheng He
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
21
|
Wildman BJ, Godfrey TC, Rehan M, Chen Y, Afreen LH, Hassan Q. MICROmanagement of Runx2 Function in Skeletal Cells. ACTA ACUST UNITED AC 2019; 5:55-64. [PMID: 31289715 DOI: 10.1007/s40610-019-0115-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of Review- Precise and temporal expression of Runx2 and its regulatory transcriptional network is a key determinant for the intricate cellular and developmental processes in adult bone tissue formation. This review analyzes how microRNA functions to regulate this network, and how dysregulation results in bone disorders. Recent Findings- Similar to other biologic processes, microRNA (miRNA/miR) regulation is undeniably indispensable to bone synthesis and maintenance. There exists a miRNA-RUNX2 network where RUNX2 regulates the transcription of miRs, or is post transcriptionally regulated by a class of miRs, forming a variety of miR-RUNX2 regulatory pathways which regulate osteogenesis. Summary- The current review provides insights to understand transcriptional-post transcriptional regulatory network governed by Runx2 and osteogenic miRs, and is based largely from in vitro and in vivo studies. When taken together, this article discusses a new regulatory layer of bone tissue specific gene expression by RUNX2 influenced via miRNA.
Collapse
Affiliation(s)
- Benjamin J Wildman
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| | - Tanner C Godfrey
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| | - Mohammad Rehan
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| | - Yuechuan Chen
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| | - Lubana H Afreen
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| | - Quamarul Hassan
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| |
Collapse
|
22
|
Arriaga MA, Ding MH, Gutierrez AS, Chew SA. The Application of microRNAs in Biomaterial Scaffold-Based Therapies for Bone Tissue Engineering. Biotechnol J 2019; 14:e1900084. [PMID: 31166084 DOI: 10.1002/biot.201900084] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/28/2019] [Indexed: 12/13/2022]
Abstract
In recent years, the application of microRNAs (miRNAs) or anti-microRNAs (anti-miRNAs) that can induce expression of the runt-related transcription factor 2 (RUNX2), a master regulator of osteogenesis, has been investigated as a promising alternative bone tissue engineering strategy. In this review, biomaterial scaffold-based applications that have been used to deliver cells expressing miRNAs or anti-miRNAs that induce expression of RUNX2 for bone tissue engineering are discussed. An overview of the components of the scaffold-based therapies including the miRNAs/anti-miRNAs, cell types, gene delivery vectors, and scaffolds that have been applied are provided. To date, there have been nine miRNAs/anti-miRNAs (i.e., miRNA-26a, anti-miRNA-31, anti-miRNA-34a, miRNA-135, anti-miRNA-138, anti-miRNA-146a, miRNA-148b, anti-miRNA-221, and anti-miRNA-335) that have been incorporated into scaffold-based bone tissue engineering applications and investigated in an in vivo bone critical-sized defect model. For all of the biomaterial scaffold-based miRNA therapies that have been developed thus far, cells that are transfected or transduced with the miRNA/anti-miRNA are loaded into the scaffolds and implanted at the site of interest instead of locally delivering the miRNA/anti-miRNAs directly from the scaffolds. Thus, future work may focus on developing biomaterial scaffolds to deliver miRNAs or anti-miRNAs into cells in vivo.
Collapse
Affiliation(s)
- Marco A Arriaga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - May-Hui Ding
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Astrid S Gutierrez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| |
Collapse
|
23
|
Zheng X, Dai J, Zhang H, Ge Z. MicroRNA-221 promotes cell proliferation, migration, and differentiation by regulation of ZFPM2 in osteoblasts. ACTA ACUST UNITED AC 2018; 51:e7574. [PMID: 30365725 PMCID: PMC6207289 DOI: 10.1590/1414-431x20187574] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
Abstract
Bone fracture is a common medical condition, which may occur due to traumatic injury or disease-related conditions. Evidence suggests that microRNAs (miRNAs) can regulate osteoblast differentiation and function. In this study, we explored the effects and mechanism of miR-221 on the growth and migration of osteoblasts using MC3T3-E1 cells. The expression levels of miR-221 in the different groups were measured by qRT-PCR. Then, miR-221 mimic and inhibitor were transfected into MC3T3-E1 cells, and cell viability and migration were measured using the CCK-8 assay and the Transwell migration assay. Additionally, the expression levels of differentiation-related factors (Runx2 and Ocn) and ZFPM2 were measured by qRT-PCR. Western blot was used to measure the expression of cell cycle-related proteins, epithelial-mesenchymal transition (EMT)-related proteins, ZFPM2, and Wnt/Notch, and Smad signaling pathway proteins. miR-221 was significantly up-regulated in the patients with lumbar compression fracture (LCM) and trochanteric fracture (TF). miR-221 promoted ALP, Runx2, and OPN expressions in MC3T3-E1 cells. miR-221 overexpression significantly increased cell proliferation, migration, differentiation, and matrix mineralization, whereas suppression of miR-221 reversed these effects. Additionally, the results displayed that ZFPM2 was a direct target gene of miR-221, and overexpression of ZFPM2 reversed the promoting effects of miR-221 overexpression on osteoblasts. Mechanistic study revealed that overexpression of miR-221 inactivated the Wnt/Notch and Smad signaling pathways by regulating ZFPM2 expression. We drew the conclusions that miR-221 overexpression promoted osteoblast proliferation, migration, and differentiation by regulation of ZFPM2 expression and deactivating the Wnt/Notch and Smad signaling pathways.
Collapse
Affiliation(s)
- Xingguo Zheng
- Department of Orthopaedics, Ningbo No. 2 Hospital, Ningbo, China
| | - Jinhua Dai
- Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo, China
| | - Haijun Zhang
- Department of Orthopaedics, Ningbo No. 2 Hospital, Ningbo, China
| | - Zhibin Ge
- Department of Orthopaedics, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
24
|
Sheng B, Yuan Y, Liu X, Zhang Y, Liu H, Shen X, Liu B, Chang L. Protective effect of estrogen against intervertebral disc degeneration is attenuated by miR-221 through targeting estrogen receptor α. Acta Biochim Biophys Sin (Shanghai) 2018. [PMID: 29529124 DOI: 10.1093/abbs/gmy017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dysfunction of cartilaginous endplates (CEP) is an important etiologic aspect of intervertebral disc degeneration (IDD) because the endplate has nutritional and biomechanical functions in maintaining proper disc health. In this study, we investigated the regulatory effects of estrogen on degenerated human CEP cells and the involvement of miR-221 in these effects. Normal and degenerated human CEP tissues were collected from patients with idiopathic scoliosis and IDD, respectively. CEP cells were isolated from these tissues. Polymerase chain reaction (PCR) and western blot analysis were performed to detect the expression of specific genes and proteins, respectively. Apoptosis and cell cycle were analyzed by flow cytometry. The results showed that the levels of aggrecan, collagen II, TGF-β and estrogen receptor α (ERα) were decreased in degenerated CEP tissues, while the levels of MMP-3, adamts-5, IL-1β, TNF-α, IL-6, and miR-221 were increased. Treatment of degenerated CEP cells with 17beta-estradiol (E2) increased the expressions of aggrecan and collagen II, as well as the secretion of TGF-β, but decreased IL-6 secretion. Moreover, E2 inhibited the apoptosis, resumed cell-cycle progression in G0/G1 phase, and improved the cell viability. These data indicate that estrogen has protective effect against degeneration of CEP cells. Furthermore, ERα was confirmed to be a target of miR-221 by the luciferase assay. The synthetic miR-221 mimics or knockdown of ERα attenuated the protective effects of E2, but miR-221 inhibitors promoted the protective effects of E2. These results suggest that miR-221 may impair the protective effect of estrogen in degenerated CEP cells through targeting ERα. This study reveals an important mechanism underlying the degeneration of CEP cells.
Collapse
Affiliation(s)
- Bin Sheng
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Youchao Yuan
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Xiangyang Liu
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Yi Zhang
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Hongzhe Liu
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Xiongjie Shen
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Bin Liu
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Lei Chang
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| |
Collapse
|
25
|
Sloan SR, Lintz M, Hussain I, Hartl R, Bonassar LJ. Biologic Annulus Fibrosus Repair: A Review of Preclinical In Vivo Investigations. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:179-190. [PMID: 29105592 DOI: 10.1089/ten.teb.2017.0351] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lower back pain, the leading cause of workplace absences and disability, is often attributed to intervertebral disc degeneration, in which nucleus pulposus (NP) herniates through lesions in the annulus fibrosus (AF) and impinges on the spinal cord and surrounding nerves. Surgeons remove extruded NP via discectomy when indicated by local/radicular pain supported by radiographic evidence; however, current interventions do not alter the underlying disease or seal the AF. The reported rates of recurrent herniation or pain following discectomy cases range from 5% to 25%, which has pushed spine research in recent years toward annular repair and closure strategies. Synthetic implants designed to mechanically seal the AF have been subject to large animal and clinical trials, with limited success in preventing recurrent herniation. Like gold standard interventions, purely mechanical devices fail to promote tissue integration, long-term healing, or restore native biomechanical function to the spine. Biological repair strategies utilizing principles of tissue engineering have demonstrated success in overcoming the inadequacies of current interventions and mechanical implants, yet, none has reached clinical or proof-of-concept trials in humans. In this review, we will discuss annular repair strategies promoting biological healing that have been implemented in small and large animal models in vivo, and ways to enhance the efficacy of these treatments.
Collapse
Affiliation(s)
- Stephen R Sloan
- 1 Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York
| | - Marianne Lintz
- 1 Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York
| | - Ibrahim Hussain
- 2 Department of Neurological Surgery, Weill Cornell Brain and Spine Center , New York-Presbyterian Hospital, New York, New York
| | - Roger Hartl
- 2 Department of Neurological Surgery, Weill Cornell Brain and Spine Center , New York-Presbyterian Hospital, New York, New York
| | - Lawrence J Bonassar
- 1 Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York.,3 Sibley School of Mechanical and Aerospace Engineering, Cornell University , Ithaca, New York
| |
Collapse
|
26
|
Long non-coding HCG18 promotes intervertebral disc degeneration by sponging miR-146a-5p and regulating TRAF6 expression. Sci Rep 2017; 7:13234. [PMID: 29038477 PMCID: PMC5643303 DOI: 10.1038/s41598-017-13364-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is associated with the deterioration of nucleus pulposus (NP) cells due to hypertrophic differentiation and calcification. Emerging studies have shown that long noncoding RNAs (lncRNAs) play critical roles in the development of IDD. Using bioinformatics prediction, we hereby sought to identify the lncRNAs that regulate the expression of microRNA-146a-5p (miR-146a-5p), an IDD-related inflammatory factor. Our study demonstrated that lncRNA HCG18 acted as an endogenous sponge to down-regulate miR-146a-5p expression in the NP cells by directly binding to miR-146a-5p. In addition, HCG18 expression was up-regulated in the patients with IDD, bulging or herniated discs, and its level was positively correlated with the disc degeneration grade. In vitro, miR-146a-5p up-regulation HCG18 retarded the growth of NP cells by decreasing S phase of cell cycle, inducing cell apoptosis, recruitment of macrophages and hypercalcification. Conversely, down-regulation of miR-146a-5p exerted opposite effects. Furthermore, we elucidated that TRAF6, a target gene by miR-146a-5p, was modulated by HCG18 expression. Restore of TRAF6 expression by virus infection reserved the effect of HCG18 on the NP cells. Altogether, our data indicated that HCG18 suppressed the growth of NP cells and promoted the IDD development via the miR-146a-5p/TRAF6/NFκB axis.
Collapse
|
27
|
Yin J, Zhuang G, Zhu Y, Hu X, Zhao H, Zhang R, Guo H, Fan X, Cao Y. MiR-615-3p inhibits the osteogenic differentiation of human lumbar ligamentum flavum cells via suppression of osteogenic regulators GDF5 and FOXO1. Cell Biol Int 2017; 41:779-786. [PMID: 28460412 DOI: 10.1002/cbin.10780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/23/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Jichao Yin
- Department of Epidemiology and Biostatistics; School of Public Health; Xi'an Jiaotong University Health Science Center; No. 76 West Yanta Road Xi'an Shaanxi 710061 China
- Department of Orthopedics and Traumatology; Xi'an Hospital of Traditional Chinese Medicine; Xi'an China
| | - Guihua Zhuang
- Department of Epidemiology and Biostatistics; School of Public Health; Xi'an Jiaotong University Health Science Center; No. 76 West Yanta Road Xi'an Shaanxi 710061 China
| | - Yi Zhu
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Xinglv Hu
- Department of Orthopedics and Traumatology; Xi'an Hospital of Traditional Chinese Medicine; Xi'an China
| | - Hongmou Zhao
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Rongqiang Zhang
- Department of Public Health; Shaanxi University of Chinese Medicine; Xi'an China
| | - Hao Guo
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Xiaochen Fan
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| | - Yi Cao
- Department of Traditional Chinese Medicine Orthopedics Diagnosis and Treatment Center; Xi'an Honghui Hospital; Xi'an China
| |
Collapse
|
28
|
Song J, Ouyang Y, Che J, Li X, Zhao Y, Yang K, Zhao X, Chen Y, Fan C, Yuan W. Potential Value of miR-221/222 as Diagnostic, Prognostic, and Therapeutic Biomarkers for Diseases. Front Immunol 2017; 8:56. [PMID: 28261196 PMCID: PMC5311065 DOI: 10.3389/fimmu.2017.00056] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by base pairing with their target messenger RNAs. Dysregulation of miRNAs is involved in the pathological initiation and progression of many human diseases. miR-221 and miR-222 (miR-221/222) are two highly homologous miRNAs, and they are significantly overexpressed in several types of human diseases. Silencing miR-221/222 could represent a promising approach for therapeutic studies. In the present review, we will describe the potential value of miR-221/222 as diagnostic, prognostic, and therapeutic biomarkers in various diseases including cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Jialin Song
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai University of Medicine & Health, Shanghai Sixth People's Hospital East Campus, Shanghai, China
| | - Yuanming Ouyang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai University of Medicine & Health, Shanghai Sixth People's Hospital East Campus, Shanghai, China
| | - Junyi Che
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai , China
| | - Xiaoming Li
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai , China
| | - Yi Zhao
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai , China
| | - Kejia Yang
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai , China
| | - Xiaotian Zhao
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai , China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University , Shanghai , China
| | - Cunyi Fan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
29
|
Xiao L, Ding M, Saadoon O, Vess E, Fernandez A, Zhao P, Jin L, Li X. A novel culture platform for fast proliferation of human annulus fibrosus cells. Cell Tissue Res 2017; 367:339-350. [PMID: 27623803 PMCID: PMC5269443 DOI: 10.1007/s00441-016-2497-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
Tissue engineering provides a promising approach to treat degenerative disc disease, which usually requires a large quantity of seed cells. A simple and reliable in vitro culture system to expand seed cells in a timely fashion is necessary to implement the application clinically. Here, we sought to establish a cost-effective culture system for expanding human annulus fibrosus cells using extracellular matrix (ECM) proteins as culture substrates. Cells were cultured onto a plastic surface coated with various types of ECMs, including fibronectin, vitronectin, collagen type I, gelatin and cell-free matrix deposited by human nucleus pulposus cells. AF cell morphology, growth, adhesion and phenotype (anabolic and catabolic markers) were assessed by microscopy, real-time RT-PCR, western blotting, zymography, immunofluorescence staining and biochemical assays. Fibronectin, collagen and gelatin promoted cell proliferation and adhesion in a dose-dependent manner. Fibronectin elevated mRNA expression of proteoglycan and enhanced glycosaminoglycan production. Both collagen and gelatin increased protein expression of type II collagen. Consistent with increased cell adhesion, collagen and fibronectin promoted formation of focal adhesion complexes in the cell-matrix junction, suggesting enhanced binding of the actin network with both ECM substrates. On the other hand, fibronectin, collagen and gelatin decreased expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 in media. Finally, a mixture of fibronectin (1.7 μg/mL) and collagen (1.3 μg/mL) was identified as the most promising in vitro culture substrate system in promoting proliferation and maintaining anabolic-catabolic balance. Our method provides a simple and cost-effective platform for tissue engineering applications in intervertebral disc research.
Collapse
Affiliation(s)
- Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, Cobb Hall, 135 Hospital Dr., Charlottesville, VA 22908
| | - Mengmeng Ding
- Department of Orthopaedic Surgery, University of Virginia, Cobb Hall, 135 Hospital Dr., Charlottesville, VA 22908
- Department of Anesthesiology, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, China 110004
| | - Osama Saadoon
- Department of Orthopaedic Surgery, University of Virginia, Cobb Hall, 135 Hospital Dr., Charlottesville, VA 22908
| | - Eric Vess
- Department of Orthopaedic Surgery, University of Virginia, Cobb Hall, 135 Hospital Dr., Charlottesville, VA 22908
| | - Andrew Fernandez
- Department of Orthopaedic Surgery, University of Virginia, Cobb Hall, 135 Hospital Dr., Charlottesville, VA 22908
| | - Ping Zhao
- Department of Anesthesiology, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, China 110004
| | - Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Cobb Hall, 135 Hospital Dr., Charlottesville, VA 22908
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, Cobb Hall, 135 Hospital Dr., Charlottesville, VA 22908
| |
Collapse
|
30
|
Li Y, Zhu Y, Prochownik EV. MicroRNA-based screens for synthetic lethal interactions with c-Myc. RNA & DISEASE 2016; 3:e1330. [PMID: 27975083 PMCID: PMC5152767 DOI: 10.14800/rd.1330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRs) are small, non-coding RNAs, which play crucial roles in the development and progression of human cancer. Given that miRs are stable, easy to synthetize and readily introduced into cells, they have been viewed as having potential therapeutic benefit in cancer. c-Myc (Myc) is one of the most commonly deregulated oncogenic transcription factors and has important roles in the pathogenesis of cancer, thus making it an important, albeit elusive therapeutic target. Here we review the miRs that have been identified as being both positive and negative targets for Myc and how these participate in the complex phenotypes that arise as a result of Myc-driven transformation. We also discussseveral recent reports of Myc-synthetic lethal interactions with miRs.These highlight the importance and complexity of miRs in Myc-mediated biological functions and the opportunities for Myc-driven human cancer therapies.
Collapse
Affiliation(s)
- Youjun Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yahui Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Edward V. Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC and The Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224, USA
| |
Collapse
|