1
|
Hammerhøj AD, Boye TL, Yao J, Hausmann A, Kellermann L, Maciag GJ, Sandelin A, Steenholdt C, Jensen KB, Nielsen OH. Inflamed Intestinal Epithelial Cells From Patients With Ulcerative Colitis Restore a Noninflamed Transcriptional Profile Upon In Vitro Expansion. J Transl Med 2025; 105:104172. [PMID: 40210167 DOI: 10.1016/j.labinv.2025.104172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic relapsing inflammation starting from the rectum and distal colon, which in severe disease cases may affect the entire colon. Intestinal stem cells (ISCs) directly isolated from inflamed UC colonic tissue specimens have been found to present an inflammatory gene expression profile. However, a critical issue is whether these cells retain memory of exposure to inflammation and/or therapeutics. Here, we aimed to investigate whether human intestinal epithelial cells retain the inflammatory state observed in vivo when expanded in vitro as 3D cultured organoids to assess their suitability for therapeutic transplantation. ISCs were isolated from noninflammatory bowel disease controls (noninflamed; n = 18), as well as from colonoscopy-obtained biopsies of the sigmoid colon from individuals diagnosed with UC (inflamed), who were glucocorticoid naïve (n = 19). Moreover, ISCs were collected from all patients with inflammatory bowel disease following prednisolone treatment. Epithelial cells were cultured as 3D intestinal organoids in media to support stem cell maintenance and differentiation. Subsequently, the 3D intestinal organoids were harvested at the end of passage 2 for bulk RNA sequencing. The data revealed that the cellular phenotype of in vitro-cultured epithelial cells isolated from inflamed tissue did not maintain the hallmarks of inflammation observed in the ulcerated environment from which the cells were initially obtained. Our findings indicate that the autologous reinsertion of in vitro-expanded ISCs in active stages of UC may aid in intestinal healing, which calls for future clinical studies. Additionally, a link between organoid morphology and the inflammatory state of the tissue of origin was identified, as organoids derived from inflamed colon exhibited a lower degree of circularity.
Collapse
Affiliation(s)
- Alexander Due Hammerhøj
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Theresa Louise Boye
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jiayi Yao
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Annika Hausmann
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Food, Nutrition and Health (D-HEST), ETH Zurich, Switzerland
| | - Lauge Kellermann
- Department of Pathology, Herlev Hospital, University of Copenhagen, Denmark
| | - Grzegorz Jerzy Maciag
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Casper Steenholdt
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Medical Gastroenterology, Odense University Hospital, Denmark
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Özkan A, LoGrande NT, Feitor JF, Goyal G, Ingber DE. Intestinal organ chips for disease modelling and personalized medicine. Nat Rev Gastroenterol Hepatol 2024; 21:751-773. [PMID: 39192055 DOI: 10.1038/s41575-024-00968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Alterations in intestinal structure, mechanics and physiology underlie acute and chronic intestinal conditions, many of which are influenced by dysregulation of microbiome, peristalsis, stroma or immune responses. Studying human intestinal physiology or pathophysiology is difficult in preclinical animal models because their microbiomes and immune systems differ from those of humans. Although advances in organoid culture partially overcome this challenge, intestinal organoids still lack crucial features that are necessary to study functions central to intestinal health and disease, such as digestion or fluid flow, as well as contributions from long-term effects of living microbiome, peristalsis and immune cells. Here, we review developments in organ-on-a-chip (organ chip) microfluidic culture models of the human intestine that are lined by epithelial cells and interfaced with other tissues (such as stroma or endothelium), which can experience both fluid flow and peristalsis-like motions. Organ chips offer powerful ways to model intestinal physiology and disease states for various human populations and individual patients, and can be used to gain new insight into underlying molecular and biophysical mechanisms of disease. They can also be used as preclinical tools to discover new drugs and then validate their therapeutic efficacy and safety in the same human-relevant model.
Collapse
Affiliation(s)
- Alican Özkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Nina Teresa LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jessica F Feitor
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA.
| |
Collapse
|
3
|
Žukauskaitė K, Li M, Horvath A, Jarmalaitė S, Stadlbauer V. Cellular and Microbial In Vitro Modelling of Gastrointestinal Cancer. Cancers (Basel) 2024; 16:3113. [PMID: 39272971 PMCID: PMC11394127 DOI: 10.3390/cancers16173113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Human diseases are multifaceted, starting with alterations at the cellular level, damaging organs and their functions, and disturbing interactions and immune responses. In vitro systems offer clarity and standardisation, which are crucial for effectively modelling disease. These models aim not to replicate every disease aspect but to dissect specific ones with precision. Controlled environments allow researchers to isolate key variables, eliminate confounding factors and elucidate disease mechanisms more clearly. Technological progress has rapidly advanced model systems. Initially, 2D cell culture models explored fundamental cell interactions. The transition to 3D cell cultures and organoids enabled more life-like tissue architecture and enhanced intercellular interactions. Advanced bioreactor-based devices now recreate the physicochemical environments of specific organs, simulating features like perfusion and the gastrointestinal tract's mucus layer, enhancing physiological relevance. These systems have been simplified and adapted for high-throughput research, marking significant progress. This review focuses on in vitro systems for modelling gastrointestinal tract cancer and the side effects of cancer treatment. While cell cultures and in vivo models are invaluable, our main emphasis is on bioreactor-based in vitro modelling systems that include the gut microbiome.
Collapse
Affiliation(s)
- Kristina Žukauskaitė
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Melissa Li
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Biotech Campus Tulln, Fachhochschule Wiener Neustadt, 3430 Tulln, Austria
| | - Angela Horvath
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| | - Sonata Jarmalaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
- National Cancer Institute, 08406 Vilnius, Lithuania
| | - Vanessa Stadlbauer
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| |
Collapse
|
4
|
Zhang K, Wan P, Wang L, Wang Z, Tan F, Li J, Ma X, Cen J, Yuan X, Liu Y, Sun Z, Cheng X, Liu Y, Liu X, Hu J, Zhong G, Li D, Xia Q, Hui L. Efficient expansion and CRISPR-Cas9-mediated gene correction of patient-derived hepatocytes for treatment of inherited liver diseases. Cell Stem Cell 2024; 31:1187-1202.e8. [PMID: 38772378 DOI: 10.1016/j.stem.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Cell-based ex vivo gene therapy in solid organs, especially the liver, has proven technically challenging. Here, we report a feasible strategy for the clinical application of hepatocyte therapy. We first generated high-quality autologous hepatocytes through the large-scale expansion of patient-derived hepatocytes. Moreover, the proliferating patient-derived hepatocytes, together with the AAV2.7m8 variant identified through screening, enabled CRISPR-Cas9-mediated targeted integration efficiently, achieving functional correction of pathogenic mutations in FAH or OTC. Importantly, these edited hepatocytes repopulated the injured mouse liver at high repopulation levels and underwent maturation, successfully treating mice with tyrosinemia following transplantation. Our study combines ex vivo large-scale cell expansion and gene editing in patient-derived transplantable hepatocytes, which holds potential for treating human liver diseases.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhen Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fangzhi Tan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Jie Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Xiaolong Ma
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Cen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Zhen Sun
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanhua Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuhao Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing 100871, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
| | - Lijian Hui
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
5
|
Hammerhøj A, Chakravarti D, Sato T, Jensen KB, Nielsen OH. Organoids as regenerative medicine for inflammatory bowel disease. iScience 2024; 27:110118. [PMID: 38947526 PMCID: PMC11214415 DOI: 10.1016/j.isci.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder with an increasing global prevalence. Managing disease activity relies on various pharmacological options. However, the effectiveness of current therapeutics is limited and not universally applicable to all patients and circumstances. Consequently, developing new management strategies is necessary. Recent advances in endoscopically obtained intestinal biopsy specimens have highlighted the potential of intestinal epithelial organoid transplantation as a novel therapeutic approach. Experimental studies using murine and human organoid transplantations have shown promising outcomes, including tissue regeneration and functional recovery. Human trials with organoid therapy have commenced; thus, this article provides readers with insights into the necessity and potential of intestinal organoid transplantation as a new regenerative therapeutic option in clinical settings and explores its associated challenges.
Collapse
Affiliation(s)
- Alexander Hammerhøj
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
6
|
Mulero-Russe A, García AJ. Engineered Synthetic Matrices for Human Intestinal Organoid Culture and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307678. [PMID: 37987171 PMCID: PMC10922691 DOI: 10.1002/adma.202307678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Human intestinal organoids (HIOs) derived from pluripotent stem cells or adult stem cell biopsies represent a powerful platform to study human development, drug testing, and disease modeling in vitro, and serve as a cell source for tissue regeneration and therapeutic advances in vivo. Synthetic hydrogels can be engineered to serve as analogs of the extracellular matrix to support HIO growth and differentiation. These hydrogels allow for tuning the mechanical and biochemical properties of the matrix, offering an advantage over biologically derived hydrogels such as Matrigel. Human intestinal organoids have been used for repopulating transplantable intestinal grafts and for in vivo delivery to an injured intestinal site. The use of synthetic hydrogels for in vitro culture and for in vivo delivery is expected to significantly increase the relevance of human intestinal organoids for drug screening, disease modeling, and therapeutic applications.
Collapse
Affiliation(s)
- Adriana Mulero-Russe
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
7
|
Macedo MH, Dias Neto M, Pastrana L, Gonçalves C, Xavier M. Recent Advances in Cell-Based In Vitro Models to Recreate Human Intestinal Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301391. [PMID: 37736674 PMCID: PMC10625086 DOI: 10.1002/advs.202301391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/03/2023] [Indexed: 09/23/2023]
Abstract
Inflammatory bowel disease causes a major burden to patients and healthcare systems, raising the need to develop effective therapies. Technological advances in cell culture, allied with ethical issues, have propelled in vitro models as essential tools to study disease aetiology, its progression, and possible therapies. Several cell-based in vitro models of intestinal inflammation have been used, varying in their complexity and methodology to induce inflammation. Immortalized cell lines are extensively used due to their long-term survival, in contrast to primary cultures that are short-lived but patient-specific. Recently, organoids and organ-chips have demonstrated great potential by being physiologically more relevant. This review aims to shed light on the intricate nature of intestinal inflammation and cover recent works that report cell-based in vitro models of human intestinal inflammation, encompassing diverse approaches and outcomes.
Collapse
Affiliation(s)
- Maria Helena Macedo
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Mafalda Dias Neto
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Lorenzo Pastrana
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Catarina Gonçalves
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Miguel Xavier
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| |
Collapse
|
8
|
Kojima H, Ishii T, Fukumitsu K, Ogiso S, Tomofuji K, Oshima Y, Horie H, Ito T, Wakama S, Makino K, Hatano E. In Vivo Regeneration of Tubular Small Intestine With Motility: A Novel Approach by Orthotopic Transplantation of Decellularized Scaffold. Transplantation 2023; 107:1955-1964. [PMID: 36749289 DOI: 10.1097/tp.0000000000004522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Whole-intestine engineering can provide a therapeutic alternative to bowel transplantation. Intestinal components including the mucosa, muscular layer, enteric nervous system, and vasculature must be reestablished as a tubular organ to generate an artificial small intestine. This study proposes a novel approach to produce a transplantable, well-organized tubular small intestine using a decellularized scaffold. METHODS Male Lewis rat intestines were used to generate decellularized scaffolds. Patch or tubular grafts were prepared from the decellularized intestine and transplanted into the rat intestine orthotopically. Histological analysis of the decellularized intestine was performed up to 12 wk after transplantation. RESULTS Histological examination revealed abundant vascularization into the decellularized patch graft 1 wk after transplantation. Muscular and nervous components, as well as cryptogenesis, were observed in the decellularized patch graft 2 wk after transplantation. Sixteen of the 18 rats survived with normal intake of food and water after the decellularized tubular graft transplantation. Compared with silicone tube grafts, the decellularized tubular grafts significantly promoted the infiltration and growth of intestinal components including the mucosa, muscular layer, and nerve plexus from the recipients. Circular and longitudinal muscle with a well-developed myenteric plexus was regenerated, and intestinal motility was confirmed in the decellularized tubular graft 12 wk after transplantation. CONCLUSIONS Orthotopic transplantation of decellularized intestine enhanced the reconstruction of the well-organized tubular small intestine with an enteric nervous system in vivo. Our method using a decellularized scaffold represents a promising approach toward whole-intestine engineering and provides a therapeutic alternative for the irreversible intestinal failure.
Collapse
Affiliation(s)
- Hidenobu Kojima
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Calà G, Sina B, De Coppi P, Giobbe GG, Gerli MFM. Primary human organoids models: Current progress and key milestones. Front Bioeng Biotechnol 2023; 11:1058970. [PMID: 36959902 PMCID: PMC10029057 DOI: 10.3389/fbioe.2023.1058970] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
During the past 10 years the world has experienced enormous progress in the organoids field. Human organoids have shown huge potential to study organ development, homeostasis and to model diseases in vitro. The organoid technology has been widely and increasingly applied to generate patient-specific in vitro 3D cultures, starting from both primary and reprogrammed stem/progenitor cells. This has consequently fostered the development of innovative disease models and new regenerative therapies. Human primary, or adult stem/progenitor cell-derived, organoids can be derived from both healthy and pathological primary tissue samples spanning from fetal to adult age. The resulting 3D culture can be maintained for several months and even years, while retaining and resembling its original tissue's properties. As the potential of this technology expands, new approaches are emerging to further improve organoid applications in biology and medicine. This review discusses the main organs and tissues which, as of today, have been modelled in vitro using primary organoid culture systems. Moreover, we also discuss the advantages, limitations, and future perspectives of primary human organoids in the fields of developmental biology, disease modelling, drug testing and regenerative medicine.
Collapse
Affiliation(s)
- Giuseppe Calà
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Beatrice Sina
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
- Politecnico di Milano, Milano, Italy
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Giovanni Giuseppe Giobbe
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Mattia Francesco Maria Gerli
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
10
|
Khan RL, Khraibi AA, Dumée LF, Corridon PR. From waste to wealth: Repurposing slaughterhouse waste for xenotransplantation. Front Bioeng Biotechnol 2023; 11:1091554. [PMID: 36815880 PMCID: PMC9935833 DOI: 10.3389/fbioe.2023.1091554] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Slaughterhouses produce large quantities of biological waste, and most of these materials are underutilized. In many published reports, the possibility of repurposing this form of waste to create biomaterials, fertilizers, biogas, and feeds has been discussed. However, the employment of particular offal wastes in xenotransplantation has yet to be extensively uncovered. Overall, viable transplantable tissues and organs are scarce, and developing bioartificial components using such discarded materials may help increase their supply. This perspective manuscript explores the viability and sustainability of readily available and easily sourced slaughterhouse waste, such as blood vessels, eyes, kidneys, and tracheas, as starting materials in xenotransplantation derived from decellularization technologies. The manuscript also examines the innovative use of animal stem cells derived from the excreta to create a bioartificial tissue/organ platform that can be translated to humans. Institutional and governmental regulatory approaches will also be outlined to support this endeavor.
Collapse
Affiliation(s)
- Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ludovic F. Dumée
- Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Meran L, Tullie L, Eaton S, De Coppi P, Li VSW. Bioengineering human intestinal mucosal grafts using patient-derived organoids, fibroblasts and scaffolds. Nat Protoc 2023; 18:108-135. [PMID: 36261633 DOI: 10.1038/s41596-022-00751-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/30/2022] [Indexed: 01/14/2023]
Abstract
Tissue engineering is an interdisciplinary field that combines stem cells and matrices to form functional constructs that can be used to repair damaged tissues or regenerate whole organs. Tissue stem cells can be expanded and functionally differentiated to form 'mini-organs' resembling native tissue architecture and function. The choice of the scaffold is also pivotal to successful tissue reconstruction. Scaffolds may be broadly classified into synthetic or biological depending upon the purpose of the engineered organ. Bioengineered intestinal grafts represent a potential source of transplantable tissue for patients with intestinal failure, a condition resulting from extensive anatomical and functional loss of small intestine and therefore digestive and absorptive capacity. Prior strategies in intestinal bioengineering have predominantly used either murine or pluripotent cells and synthetic or decellularized rodent scaffolds, thus limiting their translation. Microscale models of human intestinal epithelium on shaped hydrogels and synthetic scaffolds are more physiological, but their regenerative potential is limited by scale. Here we present a protocol for bioengineering human intestinal grafts using patient-derived materials in a bioreactor culture system. This includes the isolation, expansion and biobanking of patient-derived intestinal organoids and fibroblasts, the generation of decellularized human intestinal scaffolds from native human tissue and providing a system for recellularization to form transplantable grafts. The duration of this protocol is 12 weeks, and it can be completed by scientists with prior experience of organoid culture. The resulting engineered mucosal grafts comprise physiological intestinal epithelium, matrix and surrounding niche, offering a valuable tool for both regenerative medicine and the study of human gastrointestinal diseases.
Collapse
Affiliation(s)
- Laween Meran
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
- Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Simon Eaton
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK.
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
12
|
Elia E, Brownell D, Chabaud S, Bolduc S. Tissue Engineering for Gastrointestinal and Genitourinary Tracts. Int J Mol Sci 2022; 24:ijms24010009. [PMID: 36613452 PMCID: PMC9820091 DOI: 10.3390/ijms24010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The gastrointestinal and genitourinary tracts share several similarities. Primarily, these tissues are composed of hollow structures lined by an epithelium through which materials need to flow with the help of peristalsis brought by muscle contraction. In the case of the gastrointestinal tract, solid or liquid food must circulate to be digested and absorbed and the waste products eliminated. In the case of the urinary tract, the urine produced by the kidneys must flow to the bladder, where it is stored until its elimination from the body. Finally, in the case of the vagina, it must allow the evacuation of blood during menstruation, accommodate the male sexual organ during coitus, and is the natural way to birth a child. The present review describes the anatomy, pathologies, and treatments of such organs, emphasizing tissue engineering strategies.
Collapse
Affiliation(s)
- Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - David Brownell
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 42282)
| |
Collapse
|
13
|
Suda K, Matsumoto Y, Ochi T, Koga H, Lane GJ, Hattori N, Nakamura T, Yamataka A. Successful engraftment of bladder organoids in de-epithelialized mouse colon. Pediatr Surg Int 2022; 39:14. [PMID: 36449180 DOI: 10.1007/s00383-022-05294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE To engraft bladder organoids (BO) on de-epithelialized mouse colon using an epithelial replacement technique. METHODS BO cultured using bladder specimens from enhanced green fluorescent protein (EGFP) transgenic mice were engrafted to replace proximal colon epithelium stripped from an approximately 1 cm long target site in syngeneic wild-type recipient mice (n = 9) by exposure to ethylenediaminetetraacetic acid by infusion and flushing with phosphate buffered saline. Target sites were harvested on postoperative days 2, 7, and 28 for hematoxylin-eosin staining and immunofluorescence. RESULTS Histology on postoperative days 7 and 28 showed BO derived EGFP + cells forming multiple layers on the luminal surface of the colon. Immunohistochemistry showed that EGFP + areas were positive for CK5 and CK14, markers for basal and immature subtype urothelium, respectively, but negative for CA2, a marker for colonic epithelium. Ki67 was detected predominantly in the basal parts of EGFP + areas on postoperative day 7 and day 28. CONCLUSIONS This is the first report of successful engraftment of BO in de-epithelialized colon with urothelial tissue reconstituted by actively proliferating cells. This technique could be developed for augmentation cystoplasty to prevent bladder calculi formation and malignant transformation.
Collapse
Affiliation(s)
- Kazuto Suda
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
- Department of Research and Development for Organoids, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Yuka Matsumoto
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Research and Development for Organoids, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Takanori Ochi
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Hiroyuki Koga
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Research and Development for Organoids, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Geoffrey J Lane
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Tetsuya Nakamura
- Department of Research and Development for Organoids, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| |
Collapse
|
14
|
Tam PKH, Wong KKY, Atala A, Giobbe GG, Booth C, Gruber PJ, Monone M, Rafii S, Rando TA, Vacanti J, Comer CD, Elvassore N, Grikscheit T, de Coppi P. Regenerative medicine: postnatal approaches. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:654-666. [PMID: 35963270 DOI: 10.1016/s2352-4642(22)00193-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Paper 2 of the paediatric regenerative medicine Series focuses on recent advances in postnatal approaches. New gene, cell, and niche-based technologies and their combinations allow structural and functional reconstitution and simulation of complex postnatal cell, tissue, and organ hierarchies. Organoid and tissue engineering advances provide human disease models and novel treatments for both rare paediatric diseases and common diseases affecting all ages, such as COVID-19. Preclinical studies for gastrointestinal disorders are directed towards oesophageal replacement, short bowel syndrome, enteric neuropathy, biliary atresia, and chronic end-stage liver failure. For respiratory diseases, beside the first human tracheal replacement, more complex tissue engineering represents a promising solution to generate transplantable lungs. Genitourinary tissue replacement and expansion usually involve application of biocompatible scaffolds seeded with patient-derived cells. Gene and cell therapy approaches seem appropriate for rare paediatric diseases of the musculoskeletal system such as spinal muscular dystrophy, whereas congenital diseases of complex organs, such as the heart, continue to challenge new frontiers of regenerative medicine.
Collapse
Affiliation(s)
- Paul Kwong Hang Tam
- Faculty of Medicine, Macau University of Science and Technology, Macau Special Administrative Region, China; Division of Paediatric Surgery, Department of Surgery, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Kenneth Kak Yuen Wong
- Division of Paediatric Surgery, Department of Surgery, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Giovanni Giuseppe Giobbe
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Claire Booth
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Peter J Gruber
- Department of Surgery, Yale University, New Haven, CT, USA
| | - Mimmi Monone
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Shahin Rafii
- Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Thomas A Rando
- Paul F Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph Vacanti
- Department of Pediatric Surgery, Laboratory for Tissue Engineering and Organ Fabrication, Harvard Medical School, Massachusetts General Hospital, Mass General Hospital for Children, Boston, MA, USA
| | - Carly D Comer
- Department of Pediatric Surgery, Laboratory for Tissue Engineering and Organ Fabrication, Harvard Medical School, Massachusetts General Hospital, Mass General Hospital for Children, Boston, MA, USA
| | - Nicola Elvassore
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Tracy Grikscheit
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paolo de Coppi
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
15
|
Tullie L, Jones BC, De Coppi P, Li VSW. Building gut from scratch - progress and update of intestinal tissue engineering. Nat Rev Gastroenterol Hepatol 2022; 19:417-431. [PMID: 35241800 DOI: 10.1038/s41575-022-00586-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Short bowel syndrome (SBS), a condition defined by insufficient absorptive intestinal epithelium, is a rare disease, with an estimated prevalence up to 0.4 in 10,000 people. However, it has substantial morbidity and mortality for affected patients. The mainstay of treatment in SBS is supportive, in the form of intravenous parenteral nutrition, with the aim of achieving intestinal autonomy. The lack of a definitive curative therapy has led to attempts to harness innate developmental and regenerative mechanisms to engineer neo-intestine as an alternative approach to addressing this unmet clinical need. Exciting advances have been made in the field of intestinal tissue engineering (ITE) over the past decade, making a review in this field timely. In this Review, we discuss the latest advances in the components required to engineer intestinal grafts and summarize the progress of ITE. We also explore some key factors to consider and challenges to overcome when transitioning tissue-engineered intestine towards clinical translation, and provide the future outlook of ITE in therapeutic applications and beyond.
Collapse
Affiliation(s)
- Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.,Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Brendan C Jones
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK. .,Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK.
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
16
|
Collier CA, Mendiondo C, Raghavan S. Tissue engineering of the gastrointestinal tract: the historic path to translation. J Biol Eng 2022; 16:9. [PMID: 35379299 PMCID: PMC8981633 DOI: 10.1186/s13036-022-00289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
The gastrointestinal (GI) tract is imperative for multiple functions including digestion, nutrient absorption, and timely waste disposal. The central feature of the gut is peristalsis, intestinal motility, which facilitates all of its functions. Disruptions in GI motility lead to sub-optimal GI function, resulting in a lower quality of life in many functional GI disorders. Over the last two decades, tissue engineering research directed towards the intestine has progressed rapidly due to advances in cell and stem-cell biology, integrative physiology, bioengineering and biomaterials. Newer biomedical tools (including optical tools, machine learning, and nuanced regenerative engineering approaches) have expanded our understanding of the complex cellular communication within the GI tract that lead to its orchestrated physiological function. Bioengineering therefore can be utilized towards several translational aspects: (i) regenerative medicine to remedy/restore GI physiological function; (ii) in vitro model building to mimic the complex physiology for drug and pharmacology testing; (iii) tool development to continue to unravel multi-cell communication networks to integrate cell and organ-level physiology. Despite the significant strides made historically in GI tissue engineering, fundamental challenges remain including the quest for identifying autologous human cell sources, enhanced scaffolding biomaterials to increase biocompatibility while matching viscoelastic properties of the underlying tissue, and overall biomanufacturing. This review provides historic perspectives for how bioengineering has advanced over time, highlights newer advances in bioengineering strategies, and provides a realistic perspective on the path to translation.
Collapse
Affiliation(s)
- Claudia A Collier
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA
| | - Christian Mendiondo
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA.
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
17
|
Jones BC, O'Sullivan B, Amin SP, Hill S, Eaton S, De Coppi P. Patient-level costing analysis of paediatric short bowel syndrome care in a specialist tertiary centre. Pediatr Surg Int 2022; 38:533-539. [PMID: 35211770 PMCID: PMC8913464 DOI: 10.1007/s00383-022-05074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/24/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To undertake a pilot study estimating patient-level costs of care for paediatric short bowel syndrome (SBS) from the healthcare provider perspective. METHODS A pilot group of patients with anatomical SBS was selected at a single specialist tertiary centre in the United Kingdom. The Patient Level Information and Costing System (PLICS) was used to extract costing data for all hospital-based activities related to SBS, from the implementation of PLICS in 2016 to April 2021. Patient-specific and pooled data were reported descriptively in per patient-year terms. RESULTS Five patients had full PLICS data available for the 5-year study period and 2 patients had 4 years of data. The median cost for hospital care of SBS was £52,834 per patient-year (range £1804-£331,489). The key cost drivers were inpatient beds, pharmacy, and staffing costs, which made up > 60% of annual costs. In the first 3 years following index admission (n = 2), there was a steady decline in the annual cost of care to a level comparable with patients with established SBS. CONCLUSION Patient-level cost of care analysis for SBS is feasible using PLICS. Hospital-related costs vary widely between and within individual patients over time. Key drivers of cost are related to complications of SBS.
Collapse
Affiliation(s)
- Brendan C Jones
- Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK
| | - Benjamin O'Sullivan
- Department of Paediatric Surgery, Bristol Royal Hospital for Children, Bristol, UK
| | | | - Susan Hill
- Department of Gastroenterology, Great Ormond Street Hospital, London, UK
| | - Simon Eaton
- Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paolo De Coppi
- Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
18
|
Boye TL, Steenholdt C, Jensen KB, Nielsen OH. Molecular manipulations and intestinal stem cell-derived organoids in inflammatory bowel disease. Stem Cells 2022; 40:447-457. [DOI: 10.1093/stmcls/sxac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Abstract
The pathogenesis of inflammatory bowel diseases (IBD) involves genetic predisposition, environmental factors, and a broadly dysregulated intestinal immune response to the commensal intestinal microflora. The interface between genetic predisposition and environmental factors is reflected in the epigenetic regulation at the transcriptional level. Treatment targets now involve mucosal and histological healing, but the future might additionally include normalization of intestinal cellular functions also at the molecular level, for example comprising complete restoration of phenotypic, genotypic, and epigenetic states. Recent developments in patient-derived epithelial intestinal stem cell (ISC) organoid technologies have opened exciting new therapeutic opportunities to potentially attain molecular healing by combining stem cell therapy with molecular manipulations using (epi)drugs and/or CRISPR/Cas9 genome editing. Here, we are the first to discuss the possibility for phenotypic, genotypic, and epigenetic restoration via molecular manipulations and stem cell therapy in IBD from a clinical perspective.
Collapse
Affiliation(s)
- Theresa Louise Boye
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Casper Steenholdt
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| |
Collapse
|
19
|
Watanabe S, Kobayashi S, Ogasawara N, Okamoto R, Nakamura T, Watanabe M, Jensen KB, Yui S. Transplantation of intestinal organoids into a mouse model of colitis. Nat Protoc 2022; 17:649-671. [PMID: 35110738 DOI: 10.1038/s41596-021-00658-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
Intestinal organoids are fundamental in vitro tools that have enabled new research opportunities in intestinal stem cell research. Organoids can also be transplanted in vivo, which enables them to probe stem cell potential and be used for disease modeling and as a preclinical tool in regenerative medicine. Here we describe in detail how to orthotopically transplant epithelial organoids into the colon of recipient mice. In this assay, epithelial injury is initiated at the distal part of colon by the administration of dextran sulfate sodium, and organoids are infused into the luminal space via the anus. The infused organoids subsequently attach to the injured region and rebuild a donor-derived epithelium. The steps for cell infusion can be completed in 10 min. The assay has been applied successfully to organoids derived from both wild-type and genetically altered epithelial cells from adult colonic and small intestinal epithelium, as well as fetal small intestine. This is a versatile protocol, providing the technical basis for transplantation following alternative colonic injury models. It has been used previously for functional assays to probe cellular potential, and formed the basis for the first in-human clinical trial using colonic organoid transplantation therapy for intractable cases of ulcerative colitis.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sakurako Kobayashi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuhiko Ogasawara
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Nakamura
- Department of Research and Development for Organoids, Juntendo University School of Medicine, Tokyo, Japan
| | - Mamoru Watanabe
- Advanced Research Institute (IBD Lab), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kim B Jensen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
20
|
Jones BC, Shibuya S, Durkin N, De Coppi P. Regenerative medicine for childhood gastrointestinal diseases. Best Pract Res Clin Gastroenterol 2021; 56-57:101769. [PMID: 35331401 DOI: 10.1016/j.bpg.2021.101769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 01/31/2023]
Abstract
Several paediatric gastrointestinal diseases result in life-shortening organ failure. For many of these conditions, current therapeutic options are suboptimal and may not offer a cure. Regenerative medicine is an inter-disciplinary field involving biologists, engineers, and clinicians that aims to produce cell and tissue-based therapies to overcome organ failure. Exciting advances in stem cell biology, materials science, and bioengineering bring engineered gastrointestinal cell and tissue therapies to the verge of clinical trial. In this review, we summarise the requirements for bioengineered therapies, the possible sources of the various cellular and non-cellular components, and the progress towards clinical translation of oesophageal and intestinal tissue engineering to date.
Collapse
Affiliation(s)
- Brendan C Jones
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom
| | - Soichi Shibuya
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Natalie Durkin
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom.
| |
Collapse
|
21
|
Intestinal immunoregulation: lessons from human mendelian diseases. Mucosal Immunol 2021; 14:1017-1037. [PMID: 33859369 DOI: 10.1038/s41385-021-00398-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/04/2023]
Abstract
The mechanisms that maintain intestinal homeostasis despite constant exposure of the gut surface to multiple environmental antigens and to billions of microbes have been scrutinized over the past 20 years with the goals to gain basic knowledge, but also to elucidate the pathogenesis of inflammatory bowel diseases (IBD) and to identify therapeutic targets for these severe diseases. Considerable insight has been obtained from studies based on gene inactivation in mice as well as from genome wide screens for genetic variants predisposing to human IBD. These studies are, however, not sufficient to delineate which pathways play key nonredundant role in the human intestinal barrier and to hierarchize their respective contribution. Here, we intend to illustrate how such insight can be derived from the study of human Mendelian diseases, in which severe intestinal pathology results from single gene defects that impair epithelial and or hematopoietic immune cell functions. We suggest that these diseases offer the unique opportunity to study in depth the pathogenic mechanisms leading to perturbation of intestinal homeostasis in humans. Furthermore, molecular dissection of monogenic intestinal diseases highlights key pathways that might be druggable and therapeutically targeted in common forms of IBD.
Collapse
|
22
|
Shafiei M, Ansari MNM, Razak SIA, Khan MUA. A Comprehensive Review on the Applications of Exosomes and Liposomes in Regenerative Medicine and Tissue Engineering. Polymers (Basel) 2021; 13:2529. [PMID: 34372132 PMCID: PMC8347192 DOI: 10.3390/polym13152529] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.
Collapse
Affiliation(s)
- Mojtaba Shafiei
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | | | - Saiful Izwan Abd Razak
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | - Muhammad Umar Aslam Khan
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| |
Collapse
|
23
|
Speer AL, Ren X, McNeill EP, Aziz JM, Muir SM, Marino DI, Dadhich P, Sawant K, Ciccocioppo R, Asthana A, Bitar KN, Orlando G. Bioengineering of the digestive tract: approaching the clinic. Cytotherapy 2021; 23:381-389. [PMID: 33840629 DOI: 10.1016/j.jcyt.2021.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
The field of regenerative medicine is developing technologies that, in the near future, will offer alternative approaches to either cure diseases affecting the gastrointestinal tract or slow their progression by leveraging the intrinsic ability of our tissues and organs to repair after damage. This article will succinctly illustrate the three technologies that are closer to clinical translation-namely, human intestinal organoids, sphincter bioengineering and decellularization, whereby the cellular compartment of a given segment of the digestive tract is removed to obtain a scaffold consisting of the extracellular matrix. The latter will be used as a template for the regeneration of a functional organ, whereby the newly generated cellular compartment will be obtained from the patient's own cells. Although clinical application of this technology is approaching, product development challenges are being tackled to warrant safety and efficacy.
Collapse
Affiliation(s)
- Allison L Speer
- McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Eoin P McNeill
- McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Justine M Aziz
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sean M Muir
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Domenica I Marino
- College of Arts and Sciences, Ohio State University, Columbus, Ohio, USA
| | | | - Ketki Sawant
- Cellf Bio LLC, Winston-Salem, North Carolina, USA
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Giambattista Rossi University Hospital, University Hospital Integrated Trust of Verona, University of Verona, Verona, Italy
| | - Amish Asthana
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Khalil N Bitar
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Cellf Bio LLC, Winston-Salem, North Carolina, USA
| | - Giuseppe Orlando
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
24
|
Sugimoto S, Kobayashi E, Fujii M, Ohta Y, Arai K, Matano M, Ishikawa K, Miyamoto K, Toshimitsu K, Takahashi S, Nanki K, Hakamata Y, Kanai T, Sato T. An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature 2021; 592:99-104. [PMID: 33627870 DOI: 10.1038/s41586-021-03247-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 01/18/2021] [Indexed: 12/19/2022]
Abstract
The small intestine is the main organ for nutrient absorption, and its extensive resection leads to malabsorption and wasting conditions referred to as short bowel syndrome (SBS). Organoid technology enables an efficient expansion of intestinal epithelium tissue in vitro1, but reconstruction of the whole small intestine, including the complex lymphovascular system, has remained challenging2. Here we generate a functional small intestinalized colon (SIC) by replacing the native colonic epithelium with ileum-derived organoids. We first find that xenotransplanted human ileum organoids maintain their regional identity and form nascent villus structures in the mouse colon. In vitro culture of an organoid monolayer further reveals an essential role for luminal mechanistic flow in the formation of villi. We then develop a rat SIC model by repositioning the SIC at the ileocaecal junction, where the epithelium is exposed to a constant luminal stream of intestinal juice. This anatomical relocation provides the SIC with organ structures of the small intestine, including intact vasculature and innervation, villous structures, and the lacteal (a fat-absorbing lymphatic structure specific to the small intestine). The SIC has absorptive functions and markedly ameliorates intestinal failure in a rat model of SBS, whereas transplantation of colon organoids instead of ileum organoids invariably leads to mortality. These data provide a proof of principle for the use of intestinal organoids for regenerative purposes, and offer a feasible strategy for SBS treatment.
Collapse
Affiliation(s)
- Shinya Sugimoto
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan.
| | - Masayuki Fujii
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Yuki Ohta
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuya Arai
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.,JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ishikawa
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Miyamoto
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan.,Miyarisan Pharmaceutical Co. Ltd, Tokyo, Japan
| | - Kohta Toshimitsu
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Sirirat Takahashi
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kosaku Nanki
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Yoji Hakamata
- School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan.,Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan. .,Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
25
|
Chung PHY, Tam PKH. Academic leadership in and beyond pediatric surgery - A view from Hong Kong. Semin Pediatr Surg 2021; 30:151024. [PMID: 33648713 DOI: 10.1016/j.sempedsurg.2021.151024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Leadership is required in all professions and pediatric surgery is no exception. It includes but is more than 'management'. Specific qualities in personal traits, performance and collaboration are also required. Owing to our professional training and job nature, pediatric surgeons are inherently potential leaders. Academic leadership opportunities exist in our clinical practice, research activities, educational programme and administrative duties. While leadership positions are often taken up by the senior team members, these positions should not be monopolized by a single person. Junior surgeons are encouraged to take up some leadership roles in their early career. This does not only help to bring in new ideas and energy to an organization but also prepares them to become great leaders in future. In this article, we discuss leadership in and beyond our specialty based on the experience from two academic surgeons in Hong Kong.
Collapse
Affiliation(s)
- Patrick Ho Yu Chung
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Paul Kwong Hang Tam
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
26
|
Kjar A, McFarland B, Mecham K, Harward N, Huang Y. Engineering of tissue constructs using coaxial bioprinting. Bioact Mater 2021; 6:460-471. [PMID: 32995673 PMCID: PMC7490764 DOI: 10.1016/j.bioactmat.2020.08.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022] Open
Abstract
Bioprinting is a rapidly developing technology for the precise design and manufacture of tissues in various biological systems or organs. Coaxial extrusion bioprinting, an emergent branch, has demonstrated a strong potential to enhance bioprinting's engineering versatility. Coaxial bioprinting assists in the fabrication of complex tissue constructs, by enabling concentric deposition of biomaterials. The fabricated tissue constructs started with simple, tubular vasculature but have been substantially developed to integrate complex cell composition and self-assembly, ECM patterning, controlled release, and multi-material gradient profiles. This review article begins with a brief overview of coaxial printing history, followed by an introduction of crucial engineering components. Afterward, we review the recent progress and untapped potential in each specific organ or biological system, and demonstrate how coaxial bioprinting facilitates the creation of tissue constructs. Ultimately, we conclude that this growing technology will contribute significantly to capabilities in the fields of in vitro modeling, pharmaceutical development, and clinical regenerative medicine.
Collapse
Affiliation(s)
- Andrew Kjar
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Bailey McFarland
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Keetch Mecham
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Nathan Harward
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Yu Huang
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
27
|
Antfolk M, Jensen KB. A bioengineering perspective on modelling the intestinal epithelial physiology in vitro. Nat Commun 2020; 11:6244. [PMID: 33288759 PMCID: PMC7721730 DOI: 10.1038/s41467-020-20052-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
The small intestine is a specialised organ, essential for nutrient digestion and absorption. It is lined with a complex epithelial cell layer. Intestinal epithelial cells can be cultured in three-dimensional (3D) scaffolds as self-organising entities with distinct domains containing stem cells and differentiated cells. Recent developments in bioengineering provide new possibilities for directing the organisation of cells in vitro. In this Perspective, focusing on the small intestine, we discuss how studies at the interface between bioengineering and intestinal biology provide new insights into organ function. Specifically, we focus on engineered biomaterials, complex 3D structures resembling the intestinal architecture, and micro-physiological systems.
Collapse
Affiliation(s)
- Maria Antfolk
- BRIC - Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Kim B Jensen
- BRIC - Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
28
|
Fujii M, Sugimoto S, Sato T. Linking human intestinal scaffolds and organoids to combat intestinal failure. Nat Med 2020; 26:1517-1518. [PMID: 32968235 DOI: 10.1038/s41591-020-1096-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Masayuki Fujii
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shinya Sugimoto
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
29
|
Aydin A, Cebi G, Demirtas ZE, Erkus H, Kucukay A, Ok M, Sakalli L, Alpdagtas S, Gunduz O, Ustundag CB. Combating COVID-19 with tissue engineering: a review. EMERGENT MATERIALS 2020; 4:329-349. [PMID: 33235976 PMCID: PMC7677604 DOI: 10.1007/s42247-020-00138-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 05/04/2023]
Abstract
The ongoing COVID-19 pandemic triggered by SARS-CoV-2 emerged from Wuhan, China, firstly in December 2019, as well spread to almost all around the world rapidly. The main reason why this disease spreads so many people in a short time is that the virus could be transmitted from an infected person to another by infected droplets. The new emergence of diseases usually may affect multiple organs; moreover, this disease is such an example. Numerous reported studies focus on acute or chronic organ damage caused by the virus. At this point, tissue engineering (TE) strategies can be used to treat the damages with its interdisciplinary approaches. Tissue engineers could design drug delivery systems, scaffolds, and especially biomaterials for the damaged tissue and organs. In this review, brief information about SARS-CoV-2, COVID-19, and epidemiology of the disease will be given at first. After that, the symptoms, the tissue damages in specific organs, and cytokine effect caused by COVID-19 will be described in detail. Finally, it will be attempted to summarize and suggest the appropriate treatments with suitable biomaterials for the damages via TE approaches. The aim of this review is to serve as a summary of currently available tissue damage treatments after COVID-19.
Collapse
Affiliation(s)
- Ayca Aydin
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Gizem Cebi
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Zeynep Ezgi Demirtas
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Huseyin Erkus
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Aleyna Kucukay
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Merve Ok
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Latife Sakalli
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Saadet Alpdagtas
- Department of Biology, Van Yuzuncu Yil University, 65080 Van, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| |
Collapse
|
30
|
Das S, Gordián-Vélez WJ, Ledebur HC, Mourkioti F, Rompolas P, Chen HI, Serruya MD, Cullen DK. Innervation: the missing link for biofabricated tissues and organs. NPJ Regen Med 2020; 5:11. [PMID: 32550009 PMCID: PMC7275031 DOI: 10.1038/s41536-020-0096-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Innervation plays a pivotal role as a driver of tissue and organ development as well as a means for their functional control and modulation. Therefore, innervation should be carefully considered throughout the process of biofabrication of engineered tissues and organs. Unfortunately, innervation has generally been overlooked in most non-neural tissue engineering applications, in part due to the intrinsic complexity of building organs containing heterogeneous native cell types and structures. To achieve proper innervation of engineered tissues and organs, specific host axon populations typically need to be precisely driven to appropriate location(s) within the construct, often over long distances. As such, neural tissue engineering and/or axon guidance strategies should be a necessary adjunct to most organogenesis endeavors across multiple tissue and organ systems. To address this challenge, our team is actively building axon-based "living scaffolds" that may physically wire in during organ development in bioreactors and/or serve as a substrate to effectively drive targeted long-distance growth and integration of host axons after implantation. This article reviews the neuroanatomy and the role of innervation in the functional regulation of cardiac, skeletal, and smooth muscle tissue and highlights potential strategies to promote innervation of biofabricated engineered muscles, as well as the use of "living scaffolds" in this endeavor for both in vitro and in vivo applications. We assert that innervation should be included as a necessary component for tissue and organ biofabrication, and that strategies to orchestrate host axonal integration are advantageous to ensure proper function, tolerance, assimilation, and bio-regulation with the recipient post-implant.
Collapse
Affiliation(s)
- Suradip Das
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Wisberty J. Gordián-Vélez
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | | | - Foteini Mourkioti
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Panteleimon Rompolas
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Mijail D. Serruya
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
- Axonova Medical, LLC., Philadelphia, PA USA
| |
Collapse
|
31
|
Qi D, Shi W, Black AR, Kuss MA, Pang X, He Y, Liu B, Duan B. Repair and regeneration of small intestine: A review of current engineering approaches. Biomaterials 2020; 240:119832. [PMID: 32113114 DOI: 10.1016/j.biomaterials.2020.119832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023]
Abstract
The small intestine (SI) is difficult to regenerate or reconstruct due to its complex structure and functions. Recent developments in stem cell research, advanced engineering technologies, and regenerative medicine strategies bring new hope of solving clinical problems of the SI. This review will first summarize the structure, function, development, cell types, and matrix components of the SI. Then, the major cell sources for SI regeneration are introduced, and state-of-the-art biofabrication technologies for generating engineered SI tissues or models are overviewed. Furthermore, in vitro models and in vivo transplantation, based on intestinal organoids and tissue engineering, are highlighted. Finally, current challenges and future perspectives are discussed to help direct future applications for SI repair and regeneration.
Collapse
Affiliation(s)
- Dianjun Qi
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xining Pang
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Academician Expert Workstation and Liaoning Province Human Amniotic Membrane Dressings Stem Cells and Regenerative Medicine Engineering Research Center, Shenyang Amnion Biological Engineering Technology Research and Development Center Co., Ltd, Shenyang, Liaoning, China
| | - Yini He
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bing Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|