1
|
Fernandez Garcia A, Jackson J, Iyer P, Oliver EG, Funato K. MYCN as an oncogene in pediatric brain tumors. Front Oncol 2025; 15:1584978. [PMID: 40365336 PMCID: PMC12069344 DOI: 10.3389/fonc.2025.1584978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
MYCN, or N-Myc, is a member of the MYC family of transcription factors, which plays a key role in tumor formation by regulating genes involved in proliferation, differentiation, and apoptosis. MYCN is essential for neural development, especially for the appropriate growth and differentiation of neural progenitor cells, and its aberrant expression contributes to tumorigenesis. Gene amplification and mutations of this gene have been observed in a wide variety of cancer types, particularly in pediatric brain and non-brain tumors, such as neuroblastoma. Previous studies have provided extensive insights into the complex regulatory network of this transcription factor. Additionally, the presence of MYCN alterations in patient tumors serve as a key factor for risk stratification, as it correlates with poorer outcomes, and presents a significant challenge for treatment. Despite its clinical significance, therapeutic targeting of MYCN is challenging due to its structure, nuclear localization, and complex regulatory pathways. Efforts to target MYCN have focused on destabilizing the protein, modulating epigenetic mechanisms, and disrupting its transcriptional network. This review explores the role of MYCN in different subtypes of pediatric brain tumors and highlights novel ongoing therapeutic approaches. However, further research is necessary to develop more effective therapies and improve survival outcomes for patients with MYCN-driven tumor.
Collapse
Affiliation(s)
- Adriana Fernandez Garcia
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Jayden Jackson
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Poorvi Iyer
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Elissa G. Oliver
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Kosuke Funato
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Pavinato L, Baggiolini A. Oncogenic competence: balancing mutations, cellular state, and microenvironment. Trends Cancer 2025; 11:276-285. [PMID: 39875306 DOI: 10.1016/j.trecan.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Cancer development is driven by mutations, yet tumor-causing mutations only lead to tumor formation within specific cellular contexts. The reasons why certain mutations trigger malignant transformation in some contexts but not others remain often unclear. Both intrinsic and extrinsic factors play a key role in driving carcinogenesis by leading the cells toward a state of 'oncogenic competence'. This state is shaped by the transcriptional and epigenetic programs that define a specific cell in time and space. These programs arise from the interplay between genetic mutations, cellular lineage, differentiation state, and microenvironment. A deeper understanding of oncogenic competence is essential to uncover the mechanisms behind tumor initiation and, ultimately, advance the development of novel targeted therapies for cancer treatment and prevention.
Collapse
Affiliation(s)
- Lisa Pavinato
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Arianna Baggiolini
- Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS+), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
| |
Collapse
|
3
|
Laemmerer A, Lehmann C, Mayr L, Bruckner K, Gabler L, Senfter D, Meyer P, Balber T, Pirker C, Jaunecker CN, Kirchhofer D, Vician P, Griesser M, Spiegl-Kreinecker S, Schmook MT, Traub-Weidinger T, Kuess P, Eckert F, Federico A, Madlener S, Stepien N, Robl B, Baumgartner A, Hainfellner JA, Dieckmann K, Dorfer C, Roessler K, Corsini NS, Holzmann K, Schmidt WM, Peyrl A, Azizi AA, Haberler C, Beck A, Pfister SM, Schueler J, Lötsch-Gojo D, Knoblich JA, Berger W, Gojo J. Alternative lengthening of telomere-based immortalization renders H3G34R-mutant diffuse hemispheric glioma hypersensitive to PARP inhibitor combination regimens. Neuro Oncol 2025; 27:811-827. [PMID: 39556024 PMCID: PMC11889718 DOI: 10.1093/neuonc/noae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Diffuse hemispheric glioma, H3 G34R/V-mutant (DHG-H3G34) is characterized by poor prognosis and lack of effective treatment options. DHG-H3G34R further harbor deactivation of alpha-thalassemia/mental retardation syndrome X-linked protein (ATRX; DHG-H3G34R_ATRX) suggesting a unique interaction of these 2 oncogenic alterations. In this study, we dissect their cell biological interplay, investigate the impact on telomere stabilization, and consequently validate a targeted therapy approach. METHODS We characterized patient-derived primary pediatric high-grade glioma (pHGG) models for telomere-maintenance mechanisms, DNA damage stress (including protein expression, pH2AX/Rad51 foci, cell-cycle arrest) and their sensitivity towards poly-ADP ribose polymerase inhibitor (PARPi) combinations. Human induced pluripotent stem cells (iPSCs) were used for modeling the disease. The anticancer activity of PARPi combinations in vivo was studied in Chorioallantoic Membrane (CAM) and orthotopic in vivo experiments. Finally, we treated a DHG-H3G34R_ATRX patient with PARPi combination therapy. RESULTS We elaborate that alternative lengthening of telomeres (ALT) is a key characteristic of DHG-H3G34R_ATRX. A dominant cooperative effect between H3G34R and ATRX loss in ALT activation also became apparent in iPSCs, which endogenously exert telomerase activity. In both, patient-derived DHG-H3G34R_ATRX models and H3G34R+/ATRX- iPSCs, the ALT-phenotype was associated with increased basal DNA damage stress, mediating synergistic susceptibility towards PARPi (talazoparib, niraparib) combinations with topoisomerase-I inhibitors (topotecan, irinotecan). In a first-of-its-kind case, treatment of a DHG-H3G34R_ATRX patient with the brain-penetrant PARP inhibitor niraparib and topotecan resulted in significant tumor reduction. CONCLUSIONS Our preclinical and clinical data strongly support the further development of PARPi together with DNA damage stress-inducing treatment regimens for DHG-H3G34R_ATRX.
Collapse
Affiliation(s)
- Anna Laemmerer
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian Lehmann
- Vienna BioCenter (VBC), PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Katharina Bruckner
- Department of Neurosurgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Gabler
- Department of Neurosurgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Philipp Meyer
- Charles River Laboratories Germany GmbH, Freiburg, Germany
| | - Theresa Balber
- Joint Applied Medicinal Radiochemistry Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Carola N Jaunecker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Dominik Kirchhofer
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Petra Vician
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Michelle Griesser
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, Linz, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, Linz, Austria
| | - Maria T Schmook
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Kuess
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Franziska Eckert
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Aniello Federico
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Natalia Stepien
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Bernhard Robl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Alicia Baumgartner
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Karin Dieckmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Karl Roessler
- Department of Neurosurgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nina S Corsini
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Klaus Holzmann
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Schmidt
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Alexander Beck
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan M Pfister
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
| | - Julia Schueler
- Charles River Laboratories Germany GmbH, Freiburg, Germany
| | - Daniela Lötsch-Gojo
- Department of Neurosurgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jürgen A Knoblich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Xiang W, Zhang X, Dong M, Wan L, Zhang B, Wan F. Differentiation therapy targeting the stalled epigenetic developmental programs in pediatric high-grade gliomas. Pharmacol Res 2025; 212:107599. [PMID: 39818258 DOI: 10.1016/j.phrs.2025.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/13/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Pediatric high-grade gliomas (pHGGs) are the most common brain malignancies in children and are characterized by blocked differentiation. The epigenetic landscape of pHGGs, particularly the H3K27-altered and H3G34-mutant subtypes, suggests these tumors may be particularly susceptible to strategies that target blocked differentiation. Differentiation therapy aims to overcome this differentiation blockade by promoting glioma cell differentiation into more mature and less malignant cells. Epigenetic modulators, including inhibitors of histone deacetylase (HDAC), enhancer of zeste homolog 2 (EZH2), BRG1/BRM-associated factor (BAF) complex, have shown promise in preclinical studies of pHGGs by altering the differentiation program of glioma cells. Although challenges remain in overcoming tumor cell heterogeneity, induced differentiation therapy holds promise for treating these currently incurable pediatric brain cancers.
Collapse
Affiliation(s)
- Wang Xiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, PR China.
| | - Xiaolin Zhang
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| | - Minhai Dong
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China; Postdoctoral Research Station, School of Basic Medicine Science, Guangxi Medical University, Nanning 530021, PR China.
| | - Lijun Wan
- Department of Neurosurgery, The Second Affiliated Hospital of The Third Army Medical University, Chongqing 404100, PR China.
| | - Bin Zhang
- Department of Physiology, Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, PR China.
| | - Feng Wan
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| |
Collapse
|
5
|
Orr BA. Transcription Factor Fingerprint Provides Clues for Brain Tumor Cell of Origin. Cancer Res 2025; 85:195-196. [PMID: 39810587 DOI: 10.1158/0008-5472.can-24-3599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025]
Abstract
Mouse models that faithfully represent the biology of human brain tumors are critical tools for unraveling the underlying tumor biology and screening for potential precision therapies. This is especially true of rare tumor types, many of which have correspondingly few xenograft or cell lines available. Although our understanding of the specific biological pathways driving cancer has improved significantly, identifying the appropriate progenitor populations to drive oncogenic processes represents a significant barrier to efficient mouse model production. In this issue of Cancer Research, Jessa and colleagues developed an innovative transcription factor fingerprinting method to map the cellular origin of central nervous system neuroblastoma, FOXR2-activated to medial ganglionic eminence-derived interneurons, which could then be efficiently targeted in the developing mouse brain using in utero electroporation. This approach serves as a blueprint for investigating other rare pediatric brain tumors, potentially accelerating progress toward the development of mouse models and identification of effective therapies. See related article by Jessa et al., p. 231.
Collapse
Affiliation(s)
- Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
6
|
Jessa S, De Cola A, Chandarana B, McNicholas M, Hébert S, Ptack A, Faury D, Tsai JW, Korshunov A, Phoenix TN, Ellezam B, Jones DT, Taylor MD, Bandopadhayay P, Pathania M, Jabado N, Kleinman CL. FOXR2 Targets LHX6+/DLX+ Neural Lineages to Drive Central Nervous System Neuroblastoma. Cancer Res 2025; 85:231-250. [PMID: 39495206 PMCID: PMC11733536 DOI: 10.1158/0008-5472.can-24-2248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Central nervous system neuroblastoma with forkhead box R2 (FOXR2) activation (NB-FOXR2) is a high-grade tumor of the brain hemispheres and a newly identified molecular entity. Tumors express dual neuronal and glial markers, leading to frequent misdiagnoses, and limited information exists on the role of FOXR2 in their genesis. To identify their cellular origins, we profiled the transcriptomes of NB-FOXR2 tumors at the bulk and single-cell levels and integrated these profiles with large single-cell references of the normal brain. NB-FOXR2 tumors mapped to LHX6+/DLX+ lineages derived from the medial ganglionic eminence, a progenitor domain in the ventral telencephalon. In vivo prenatal Foxr2 targeting to the ganglionic eminences in mice induced postnatal cortical tumors recapitulating human NB-FOXR2-specific molecular signatures. Profiling of FOXR2 binding on chromatin in murine models revealed an association with ETS transcriptional networks, as well as direct binding of FOXR2 at key transcription factors that coordinate initiation of gliogenesis. These data indicate that NB-FOXR2 tumors originate from LHX6+/DLX+ interneuron lineages, a lineage of origin distinct from that of other FOXR2-driven brain tumors, highlight the susceptibility of ventral telencephalon-derived interneurons to FOXR2-driven oncogenesis, and suggest that FOXR2-induced activation of glial programs may explain the mixed neuronal and oligodendroglial features in these tumors. More broadly, this work underscores systematic profiling of brain development as an efficient approach to orient oncogenic targeting for in vivo modeling, critical for the study of rare tumors and development of therapeutics. Significance: Profiling the developing brain enabled rationally guided modeling of FOXR2-activated CNS neuroblastoma, providing a strategy to overcome the heterogeneous origins of pediatric brain tumors that hamper tumor modeling and therapy development. See related commentary by Orr, p. 195.
Collapse
Affiliation(s)
- Selin Jessa
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Canada
- Quantitative Life Sciences, McGill University, Montreal, Canada
| | - Antonella De Cola
- Department of Oncology, Early Cancer Institute, Adrian Way, University of Cambridge, Cambridge, United Kingdom
- CRUK Children’s Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Bhavyaa Chandarana
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Michael McNicholas
- Department of Oncology, Early Cancer Institute, Adrian Way, University of Cambridge, Cambridge, United Kingdom
- CRUK Children’s Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Steven Hébert
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Canada
| | - Adam Ptack
- Department of Experimental Medicine, McGill University, Montreal, Canada
- Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Damien Faury
- Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Jessica W. Tsai
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, California
- Department of Pediatrics, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, California
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Timothy N. Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Canada
| | - David T.W. Jones
- Division of Pediatric Glioma Research, Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael D. Taylor
- Pediatric Neuro-Oncology Research Program, Texas Children’s Hospital, Houston, Texas
- Department of Pediatrics, Hematology/Oncology, Hematology/Oncology Section, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Pratiti Bandopadhayay
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Boston Children’s Cancer and Blood Disorder Center, Boston, Massachusetts
| | - Manav Pathania
- Department of Oncology, Early Cancer Institute, Adrian Way, University of Cambridge, Cambridge, United Kingdom
- CRUK Children’s Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Canada
- Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Pediatrics, McGill University, Montreal, Canada
| | - Claudia L. Kleinman
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Haase S, Carney S, Varela ML, Mukherji D, Zhu Z, Li Y, Nuñez FJ, Lowenstein PR, Castro MG. Epigenetic reprogramming in pediatric gliomas: from molecular mechanisms to therapeutic implications. Trends Cancer 2024; 10:1147-1160. [PMID: 39394009 PMCID: PMC11631670 DOI: 10.1016/j.trecan.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024]
Abstract
Brain tumors in children and adults differ greatly in patient outcomes and responses to radiotherapy and chemotherapy. Moreover, the prevalence of recurrent mutations in histones and chromatin regulatory proteins in pediatric and young adult gliomas suggests that the chromatin landscape is rewired to support oncogenic programs. These early somatic mutations dysregulate widespread genomic loci by altering the distribution of histone post-translational modifications (PTMs) and, in consequence, causing changes in chromatin accessibility and in the histone code, leading to gene transcriptional changes. We review how distinct chromatin imbalances in glioma subtypes impact on oncogenic features such as cellular fate, proliferation, immune landscape, and radio resistance. Understanding these mechanisms of epigenetic dysregulation carries substantial implications for advancing targeted epigenetic therapies.
Collapse
Affiliation(s)
- Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Devarshi Mukherji
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yingxiang Li
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Felipe J Nuñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Ergun P, Samuels TL, Mathison AJ, Plehhova K, Coyle C, Horvath L, Johnston N. Global Transcriptomic Analysis of Topical Sodium Alginate Protection against Peptic Damage in an In Vitro Model of Treatment-Resistant Gastroesophageal Reflux Disease. Int J Mol Sci 2024; 25:10714. [PMID: 39409043 PMCID: PMC11605242 DOI: 10.3390/ijms251910714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
Breakthrough symptoms are thought to occur in roughly half of all gastroesophageal reflux disease (GERD) patients despite maximal acid suppression (proton pump inhibitor, PPI) therapy. Topical alginates have recently been shown to enhance mucosal defense against acid-pepsin insult during GERD. We aimed to examine potential alginate protection of transcriptomic changes in a cell culture model of PPI-recalcitrant GERD. Immortalized normal-derived human esophageal epithelial cells underwent pretreatment with commercial alginate-based anti-reflux medications (Gaviscon Advance or Gaviscon Double Action), a matched-viscosity placebo control, or pH 7.4 buffer (sham) alone for 1 min, followed by exposure to pH 6.0 + pepsin or buffer alone for 3 min. RNA sequencing was conducted, and Ingenuity Pathway Analysis was performed with a false discovery rate of ≤0.01 and absolute fold-change of ≥1.3. Pepsin-acid exposure disrupted gene expressions associated with epithelial barrier function, chromatin structure, carcinogenesis, and inflammation. Alginate formulations demonstrated protection by mitigating these changes and promoting extracellular matrix repair, downregulating proto-oncogenes, and enhancing tumor suppressor expression. These data suggest molecular mechanisms by which alginates provide topical protection against injury during weakly acidic reflux and support a potential role for alginates in the prevention of GERD-related carcinogenesis.
Collapse
Affiliation(s)
- Pelin Ergun
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (P.E.); (T.L.S.)
| | - Tina L. Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (P.E.); (T.L.S.)
| | - Angela J. Mathison
- Mellowes Center for Genomic Science and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Kate Plehhova
- Reckitt Benckiser Healthcare UK Ltd., Slough SL1 3UH, UK; (K.P.); (C.C.); (L.H.)
| | - Cathal Coyle
- Reckitt Benckiser Healthcare UK Ltd., Slough SL1 3UH, UK; (K.P.); (C.C.); (L.H.)
| | - Lizzie Horvath
- Reckitt Benckiser Healthcare UK Ltd., Slough SL1 3UH, UK; (K.P.); (C.C.); (L.H.)
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (P.E.); (T.L.S.)
| |
Collapse
|
9
|
Liu I, Alencastro Veiga Cruzeiro G, Bjerke L, Rogers RF, Grabovska Y, Beck A, Mackay A, Barron T, Hack OA, Quezada MA, Molinari V, Shaw ML, Perez-Somarriba M, Temelso S, Raynaud F, Ruddle R, Panditharatna E, Englinger B, Mire HM, Jiang L, Nascimento A, LaBelle J, Haase R, Rozowsky J, Neyazi S, Baumgartner AC, Castellani S, Hoffman SE, Cameron A, Morrow M, Nguyen QD, Pericoli G, Madlener S, Mayr L, Dorfer C, Geyeregger R, Rota C, Ricken G, Ligon KL, Alexandrescu S, Cartaxo RT, Lau B, Uphadhyaya S, Koschmann C, Braun E, Danan-Gotthold M, Hu L, Siletti K, Sundström E, Hodge R, Lein E, Agnihotri S, Eisenstat DD, Stapleton S, King A, Bleil C, Mastronuzzi A, Cole KA, Waanders AJ, Montero Carcaboso A, Schüller U, Hargrave D, Vinci M, Carceller F, Haberler C, Slavc I, Linnarsson S, Gojo J, Monje M, Jones C, Filbin MG. GABAergic neuronal lineage development determines clinically actionable targets in diffuse hemispheric glioma, H3G34-mutant. Cancer Cell 2024; 42:S1535-6108(24)00305-2. [PMID: 39232581 PMCID: PMC11865364 DOI: 10.1016/j.ccell.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/24/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Diffuse hemispheric gliomas, H3G34R/V-mutant (DHG-H3G34), are lethal brain tumors lacking targeted therapies. They originate from interneuronal precursors; however, leveraging this origin for therapeutic insights remains unexplored. Here, we delineate a cellular hierarchy along the interneuron lineage development continuum, revealing that DHG-H3G34 mirror spatial patterns of progenitor streams surrounding interneuron nests, as seen during human brain development. Integrating these findings with genome-wide CRISPR-Cas9 screens identifies genes upregulated in interneuron lineage progenitors as major dependencies. Among these, CDK6 emerges as a targetable vulnerability: DHG-H3G34 tumor cells show enhanced sensitivity to CDK4/6 inhibitors and a CDK6-specific degrader, promoting a shift toward more mature interneuron-like states, reducing tumor growth, and prolonging xenograft survival. Notably, a patient with progressive DHG-H3G34 treated with a CDK4/6 inhibitor achieved 17 months of stable disease. This study underscores interneuronal progenitor-like states, organized in characteristic niches, as a distinct vulnerability in DHG-H3G34, highlighting CDK6 as a promising clinically actionable target.
Collapse
Affiliation(s)
- Ilon Liu
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, 10117 Berlin, Germany
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Lynn Bjerke
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Rebecca F Rogers
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Yura Grabovska
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Alexander Beck
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Alan Mackay
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Tara Barron
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivia A Hack
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael A Quezada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Valeria Molinari
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - McKenzie L Shaw
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Marta Perez-Somarriba
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, Surrey SM2 5 NG, UK
| | - Sara Temelso
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Florence Raynaud
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RK, UK
| | - Ruth Ruddle
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RK, UK
| | - Eshini Panditharatna
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bernhard Englinger
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Hafsa M Mire
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrezza Nascimento
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jenna LaBelle
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Rebecca Haase
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jacob Rozowsky
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sina Neyazi
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Alicia-Christina Baumgartner
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sophia Castellani
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Samantha E Hoffman
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Amy Cameron
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Murry Morrow
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Giulia Pericoli
- Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Rene Geyeregger
- Clinical Cell Biology, Children's Cancer Research Institute (CCRI), Vienna 1090, Austria
| | - Christopher Rota
- Department of Neurobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Gerda Ricken
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Keith L Ligon
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rodrigo T Cartaxo
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benison Lau
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Carl Koschmann
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emelie Braun
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Miri Danan-Gotthold
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Lijuan Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Kimberly Siletti
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Erik Sundström
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 17177 Stockholm, Sweden
| | - Rebecca Hodge
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Sameer Agnihotri
- Departments of Neurosurgery and Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - David D Eisenstat
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Simon Stapleton
- Department of Neurosurgery, St George's Hospital NHS Trust, London SW17 0QT, UK
| | - Andrew King
- Department of Neuropathology, King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Cristina Bleil
- Department of Neurosurgery, King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Angela Mastronuzzi
- Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Kristina A Cole
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Angela J Waanders
- Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | | | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Darren Hargrave
- University College London Great Ormond Street Institute for Child Health, London WC1N 1EH, UK
| | - Maria Vinci
- Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Fernando Carceller
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, Surrey SM2 5 NG, UK; Division of Clinical Studies, The Institute of Cancer Research, London SW7 3RK, UK
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Johannes Gojo
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA, USA
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK.
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
10
|
Bonada M, Pittarello M, De Fazio E, Gans A, Alimonti P, Slika H, Legnani F, Di Meco F, Tyler B. Pediatric Hemispheric High-Grade Gliomas and H3.3-G34 Mutation: A Review of the Literature on Biological Features and New Therapeutic Strategies. Genes (Basel) 2024; 15:1038. [PMID: 39202398 PMCID: PMC11353413 DOI: 10.3390/genes15081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Pediatric high-grade glioma (pHGG) encompasses a wide range of gliomas with different genomic, epigenomic, and transcriptomic features. Almost 50% of pHGGs present a mutation in genes coding for histone 3, including the subtype harboring the H3.3-G34 mutation. In this context, histone mutations are frequently associated with mutations in TP53 and ATRX, along with PDGFRA and NOTCH2NL amplifications. Moreover, the H3.3-G34 histone mutation induces epigenetic changes in immune-related genes and exerts modulatory functions on the microenvironment. Also, the functionality of the blood-brain barrier (BBB) has an impact on treatment response. The prognosis remains poor with conventional treatments, thus eliciting the investigation of additional and alternative therapies. Promising molecular targets include PDGFRA amplification, BRAF mutation, EGFR amplification, NF1 loss, and IDH mutation. Considering that pHGGs harboring the H3.3-G34R mutation appear to be more susceptible to immunotherapies (ITs), different options have been recently explored, including immune checkpoint inhibitors, antibody mediated IT, and Car-T cells. This review aims to summarize the knowledge concerning cancer biology and cancer-immune cell interaction in this set of pediatric gliomas, with a focus on possible therapeutic options.
Collapse
Affiliation(s)
- Marta Bonada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Matilde Pittarello
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
| | - Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy;
| | - Alessandro Gans
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- ASST Ovest Milanese, Neurology and Stroke Unit, Neuroscience Department, 20025 Legnano, Italy
| | - Paolo Alimonti
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02120, USA;
| | - Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Federico Legnani
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
11
|
Roach JT, Riviere-Cazaux C, Wells BA, Boop FA, Daniels DJ. Epigenetics to clinicopathological features: a bibliometric analysis of H3 G34-mutant diffuse hemispheric glioma literature. Childs Nerv Syst 2024; 40:2009-2017. [PMID: 38613587 PMCID: PMC11771222 DOI: 10.1007/s00381-024-06395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE Pediatric-type diffuse high-grade gliomas are the leading cause of cancer-related morbidity and mortality in children. More than 30% of diffuse hemispheric gliomas (DHG) in adolescents harbor histone H3 G34 mutations and are recognized by the World Health Organization as a distinct tumor entity. By reporting bibliometric characteristics of the most cited publications on H3 G34-mutant DHG (H3 G34 DHG), we provide an overview of emerging literature and speculate where future research efforts may lead. METHODS One hundred fourteen publications discussing H3 G34 DHG were identified, categorized as basic science (BSc), clinical (CL), or review (R), and ranked by citation number. Various bibliometric parameters were summarized, and a comparison between article types was performed. RESULTS Articles within this study represent principal investigators from 15 countries and were published across 63 journals between 2012 and 2024, with 36.84% of articles originating in the United States. Overall median values were as follows: citation count, 20 (range, 0-2591), number of authors, 9 (range, 2-78), and year of publication, 2020 (range, 2012-2024). Among the top ten most cited articles, BSc articles accounted for all ten reports. Compared to CL and R articles, BSc articles were published in journals with higher impact factors. CONCLUSION We establish variability in bibliometric parameters for the most cited publications on H3 G34 DHG. Our findings demonstrate a paucity of high-impact and highly cited CL reports and acknowledge an unmet need to intersect basic mechanism with clinical data to inform novel therapeutic approaches.
Collapse
Affiliation(s)
- Jordan T Roach
- Department of Developmental Neurobiology, Division of Brain Tumor Research, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Cecile Riviere-Cazaux
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | | | - Frederick A Boop
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - David J Daniels
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Van Lent J, Baggiolini A. Harmony in chaos: understanding cancer through the lenses of developmental biology. Mol Oncol 2024; 18:793-796. [PMID: 38282579 PMCID: PMC10994237 DOI: 10.1002/1878-0261.13594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
When we think about cancer, the link to development might not immediately spring to mind. Yet, many foundational concepts in cancer biology trace their roots back to developmental processes. Several defining traits of cancer were indeed initially observed and studied within developing embryos. As our comprehension of embryonic mechanisms deepens, it not only illuminates how and why cancer cells hijack these processes but also spearheads the emergence of innovative technologies for modeling and comprehending tumor biology. Among these technologies are stem cell-based models, made feasible through our grasp of fundamental mechanisms related to embryonic development. The intersection between cancer and stem cell research is evolving into a tangible synergy that extends beyond the concepts of cancer stem cells and cell-of-origin, offering novel tools to unravel the mechanisms of cancer initiation and progression.
Collapse
Affiliation(s)
- Jonas Van Lent
- Institute of Oncology Research (IOR)Bellinzona Institutes of Science (BIOS+)Switzerland
- Faculty of Biomedical SciencesUniversità della Svizzera ItalianaLuganoSwitzerland
| | - Arianna Baggiolini
- Institute of Oncology Research (IOR)Bellinzona Institutes of Science (BIOS+)Switzerland
- Faculty of Biomedical SciencesUniversità della Svizzera ItalianaLuganoSwitzerland
| |
Collapse
|
13
|
Tang K, Cesaire M, McDonald T, Cimino PJ, Castro MG, Jackson S. A scoping review of diffuse hemispheric glioma, H3 G34-mutant: Epigenetic and molecular profiles, clinicopathology, and treatment avenues. Neurooncol Adv 2024; 6:vdae208. [PMID: 39759262 PMCID: PMC11697104 DOI: 10.1093/noajnl/vdae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Background Survival of pediatric and young adults with malignant glioma remains poor despite progress in treatment. This is especially true for diffuse hemispheric glioma (DHG), H3 G34-mutant, which is often present in adolescent and young adult patients. This scoping review consolidates existing knowledge of DHG H3 G34-mutant and identifies future targets and therapeutic options. By streamlining this information, we aim to elucidate knowledge gaps in the field to better inform the community and motivate future research efforts. Methods In October 2024, MEDLINE, Embase, Cochrane Library, and Web of Science Core Collection were searched. Two reviewers screened all articles by title and abstract review and 3 independent reviewers extracted all studies meeting inclusion criteria relevant to H3G34R/V tumors (preclinical and clinical studies). Results Of the 2203 articles screened, 220 were deemed eligible (79 literature reviews, 7 systematic reviews, 63 preclinical studies, and 71 clinically oriented studies). We found that the United States and Acta Neuropathologica were the top country and journal contributors, respectively. Conclusion For this disease, it is critical to the field to conduct further research related to complexities of the tumor microenvironment, translation of preclinical studies to therapeutic early phase trials, and determining the role of targeted central nervous system drug delivery, so as to improve disease prognosis and survival.
Collapse
Affiliation(s)
- Kayen Tang
- Developmental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Bethesda, Maryland 20892, USA
| | - Melissa Cesaire
- Developmental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Bethesda, Maryland 20892, USA
| | - Taylor McDonald
- Developmental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Bethesda, Maryland 20892, USA
| | - Patrick J Cimino
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Bethesda, Maryland 20892, USA
| | - Maria G Castro
- Brain Tumor Research and Translational Neuro-Oncology Lab, Department of Neurosurgery, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sadhana Jackson
- Developmental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
14
|
Clairmont CD, Gell JJ, Lau CC. Pediatric Tumors as Disorders of Development: The Case for In Vitro Modeling Based on Human Stem Cells. Cancer Control 2024; 31:10732748241270564. [PMID: 39118322 PMCID: PMC11311176 DOI: 10.1177/10732748241270564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Despite improvements in patient outcomes, pediatric cancer remains a leading cause of non-accidental death in children. Recent genetic analysis of patients with pediatric cancers indicates an important role for both germline genetic predisposition and cancer-specific somatic driver mutations. Increasingly, evidence demonstrates that the developmental timepoint at which the cancer cell-of-origin transforms is critical to tumor identity and therapeutic response. Therefore, future therapeutic development would be bolstered by the use of disease models that faithfully recapitulate the genetic context, cell-of-origin, and developmental window of vulnerability in pediatric cancers. Human stem cells have the potential to incorporate all of these characteristics into a pediatric cancer model, while serving as a platform for rapid genetic and pharmacological testing. In this review, we describe how human stem cells have been used to model pediatric cancers and how these models compare to other pediatric cancer model modalities.
Collapse
Affiliation(s)
- Cullen D. Clairmont
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joanna J. Gell
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Connecticut Children’s Medical Center, Center for Cancer and Blood Disorders, Hartford, CT, USA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UConn Health, Farmington, CT, USA
| | - Ching C. Lau
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Connecticut Children’s Medical Center, Center for Cancer and Blood Disorders, Hartford, CT, USA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UConn Health, Farmington, CT, USA
| |
Collapse
|
15
|
Royston HN, Hampton AB, Bhagat D, Pinto EF, Emerson MD, Funato K. A human embryonic stem cell-based model reveals the cell of origin of FOXR2-activated CNS neuroblastoma. Neurooncol Adv 2024; 6:vdae144. [PMID: 39220247 PMCID: PMC11364937 DOI: 10.1093/noajnl/vdae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Background FOXR2-activated central nervous system (CNS) neuroblastoma (CNS NB-FOXR2) is a recently identified subtype of brain tumor characterized by the elevated expression of the transcription factor FOXR2 mainly due to genomic rearrangements. However, the precise pathogenic mechanisms, including the cell type of origin, remain elusive. Methods A gene expression analysis of patient tumors was performed to identify putative cell types of origin. Based on this prediction, a new human embryonic stem cell-based model was developed to validate the origin and to examine the molecular and cellular mechanisms underlying the formation of CNS NB-FOXR2. Results Our data showed that CNS NB-FOXR2 tumors express a high level of lineage marker genes associated with the medial ganglionic eminence (MGE), a transient structure located in the developing ventral forebrain. Our model confirmed the cell-type-specific effect of FOXR2 on the proliferation and in vivo tumorigenicity. Additionally, we found that FOXR2 overexpression activated the MEK/ERK signaling pathway through a suppression of the endogenous RAS inhibitor DIRAS3. The MEK inhibitor trametinib suppressed the proliferation of FOXR2-expressing MGE progenitors more than nonexpressing cells. Conclusions Our study collectively demonstrates that MGE progenitors are the cell of origin of CNS NB-FOXR2 and that FOXR2 activates the MEK/ERK signaling pathway, providing a potential therapeutic target.
Collapse
Affiliation(s)
- Hitomi N Royston
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
| | - Autumn B Hampton
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
| | - Dhruv Bhagat
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
| | - Evonne F Pinto
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
| | - Miriam D Emerson
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
| | - Kosuke Funato
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
16
|
Nguyen AV, Soto JM, Gonzalez SM, Murillo J, Trumble ER, Shan FY, Huang JH. H3G34-Mutant Gliomas-A Review of Molecular Pathogenesis and Therapeutic Options. Biomedicines 2023; 11:2002. [PMID: 37509641 PMCID: PMC10377039 DOI: 10.3390/biomedicines11072002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The 2021 World Health Organization Classification of Tumors of the Central Nervous System reflected advances in understanding of the roles of oncohistones in gliomagenesis with the introduction of the H3.3-G34R/V mutant glioma to the already recognized H3-K27M altered glioma, which represent the diagnoses of pediatric-type diffuse hemispheric glioma and diffuse midline glioma, respectively. Despite advances in research regarding these disease entities, the prognosis remains poor. While many studies and clinical trials focus on H3-K27M-altered-glioma patients, those with H3.3-G34R/V mutant gliomas represent a particularly understudied population. Thus, we sought to review the current knowledge regarding the molecular mechanisms underpinning the gliomagenesis of H3.3-G34R/V mutant gliomas and the diagnosis, treatment, long-term outcomes, and possible future therapeutics.
Collapse
Affiliation(s)
- Anthony V Nguyen
- Department of Neurosurgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA
| | - Jose M Soto
- Department of Neurosurgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA
| | - Sarah-Marie Gonzalez
- Department of Neurosurgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA
| | - Jennifer Murillo
- Department of Neurosurgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA
- Department of Neurology, Baylor Scott and White Medical Center, Temple, TX 76508, USA
| | - Eric R Trumble
- Department of Neurosurgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA
| | - Frank Y Shan
- Department of Neurosurgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA
- Department of Pathology, Baylor Scott and White Medical Center, Temple, TX 76508, USA
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX 76508, USA
| |
Collapse
|
17
|
McNicholas M, De Cola A, Bashardanesh Z, Foss A, Lloyd CB, Hébert S, Faury D, Andrade AF, Jabado N, Kleinman CL, Pathania M. A Compendium of Syngeneic, Transplantable Pediatric High-Grade Glioma Models Reveals Subtype-Specific Therapeutic Vulnerabilities. Cancer Discov 2023; 13:1592-1615. [PMID: 37011011 PMCID: PMC10326601 DOI: 10.1158/2159-8290.cd-23-0004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Pediatric high-grade gliomas (pHGG) are lethal, incurable brain tumors frequently driven by clonal mutations in histone genes. They often harbor a range of additional genetic alterations that correlate with different ages, anatomic locations, and tumor subtypes. We developed models representing 16 pHGG subtypes driven by different combinations of alterations targeted to specific brain regions. Tumors developed with varying latencies and cell lines derived from these models engrafted in syngeneic, immunocompetent mice with high penetrance. Targeted drug screening revealed unexpected selective vulnerabilities-H3.3G34R/PDGFRAC235Y to FGFR inhibition, H3.3K27M/PDGFRAWT to PDGFRA inhibition, and H3.3K27M/PDGFRAWT and H3.3K27M/PPM1DΔC/PIK3CAE545K to combined inhibition of MEK and PIK3CA. Moreover, H3.3K27M tumors with PIK3CA, NF1, and FGFR1 mutations were more invasive and harbored distinct additional phenotypes, such as exophytic spread, cranial nerve invasion, and spinal dissemination. Collectively, these models reveal that different partner alterations produce distinct effects on pHGG cellular composition, latency, invasiveness, and treatment sensitivity. SIGNIFICANCE Histone-mutant pediatric gliomas are a highly heterogeneous tumor entity. Different histone mutations correlate with different ages of onset, survival outcomes, brain regions, and partner alterations. We have developed models of histone-mutant gliomas that reflect this anatomic and genetic heterogeneity and provide evidence of subtype-specific biology and therapeutic targeting. See related commentary by Lubanszky and Hawkins, p. 1516. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Michael McNicholas
- Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Antonella De Cola
- Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Zahedeh Bashardanesh
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Amelia Foss
- Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Cameron B. Lloyd
- Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Steven Hébert
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Damien Faury
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Claudia L. Kleinman
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Manav Pathania
- Department of Oncology and Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Schloo C, Kutscher LM. Modeling brain and neural crest neoplasms with human pluripotent stem cells. Neuro Oncol 2023; 25:1225-1235. [PMID: 36757217 PMCID: PMC10326493 DOI: 10.1093/neuonc/noad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 02/10/2023] Open
Abstract
Pluripotent stem cells offer unique avenues to study human-specific aspects of disease and are a highly versatile tool in cancer research. Oncogenic processes and developmental programs often share overlapping transcriptomic and epigenetic signatures, which can be reactivated in induced pluripotent stem cells. With the emergence of brain organoids, the ability to recapitulate brain development and structure has vastly improved, making in vitro models more realistic and hence more suitable for biomedical modeling. This review highlights recent research and current challenges in human pluripotent stem cell modeling of brain and neural crest neoplasms, and concludes with a call for more rigorous quality control and for the development of models for rare tumor subtypes.
Collapse
Affiliation(s)
- Cedar Schloo
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena M Kutscher
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
19
|
Ocasio JK, Budd KM, Roach JT, Andrews JM, Baker SJ. Oncohistones and disrupted development in pediatric-type diffuse high-grade glioma. Cancer Metastasis Rev 2023; 42:367-388. [PMID: 37119408 PMCID: PMC10441521 DOI: 10.1007/s10555-023-10105-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
Recurrent, clonal somatic mutations in histone H3 are molecular hallmarks that distinguish the genetic mechanisms underlying pediatric and adult high-grade glioma (HGG), define biological subgroups of diffuse glioma, and highlight connections between cancer, development, and epigenetics. These oncogenic mutations in histones, now termed "oncohistones", were discovered through genome-wide sequencing of pediatric diffuse high-grade glioma. Up to 80% of diffuse midline glioma (DMG), including diffuse intrinsic pontine glioma (DIPG) and diffuse glioma arising in other midline structures including thalamus or spinal cord, contain histone H3 lysine 27 to methionine (K27M) mutations or, rarely, other alterations that result in a depletion of H3K27me3 similar to that induced by H3 K27M. This subgroup of glioma is now defined as diffuse midline glioma, H3K27-altered. In contrast, histone H3 Gly34Arg/Val (G34R/V) mutations are found in approximately 30% of diffuse glioma arising in the cerebral hemispheres of older adolescents and young adults, now classified as diffuse hemispheric glioma, H3G34-mutant. Here, we review how oncohistones modulate the epigenome and discuss the mutational landscape and invasive properties of histone mutant HGGs of childhood. The distinct mechanisms through which oncohistones and other mutations rewrite the epigenetic landscape provide novel insights into development and tumorigenesis and may present unique vulnerabilities for pHGGs. Lessons learned from these rare incurable brain tumors of childhood may have broader implications for cancer, as additional high- and low-frequency oncohistone mutations have been identified in other tumor types.
Collapse
Affiliation(s)
- Jennifer K Ocasio
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kaitlin M Budd
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Jordan T Roach
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
- College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Jared M Andrews
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA.
| |
Collapse
|
20
|
Foss A, Pathania M. Pediatric Glioma Models Provide Insights into Tumor Development and Future Therapeutic Strategies. Dev Neurosci 2023; 46:22-43. [PMID: 37231843 DOI: 10.1159/000531040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
In depth study of pediatric gliomas has been hampered due to difficulties in accessing patient tissue and a lack of clinically representative tumor models. Over the last decade, however, profiling of carefully curated cohorts of pediatric tumors has identified genetic drivers that molecularly segregate pediatric gliomas from adult gliomas. This information has inspired the development of a new set of powerful in vitro and in vivo tumor models that can aid in identifying pediatric-specific oncogenic mechanisms and tumor microenvironment interactions. Single-cell analyses of both human tumors and these newly developed models have revealed that pediatric gliomas arise from spatiotemporally discrete neural progenitor populations in which developmental programs have become dysregulated. Pediatric high-grade gliomas also harbor distinct sets of co-segregating genetic and epigenetic alterations, often accompanied by unique features within the tumor microenvironment. The development of these novel tools and data resources has led to insights into the biology and heterogeneity of these tumors, including identification of distinctive sets of driver mutations, developmentally restricted cells of origin, recognizable patterns of tumor progression, characteristic immune environments, and tumor hijacking of normal microenvironmental and neural programs. As concerted efforts have broadened our understanding of these tumors, new therapeutic vulnerabilities have been identified, and for the first time, promising new strategies are being evaluated in the preclinical and clinical settings. Even so, dedicated and sustained collaborative efforts are necessary to refine our knowledge and bring these new strategies into general clinical use. In this review, we will discuss the range of currently available glioma models, the way in which they have each contributed to recent developments in the field, their benefits and drawbacks for addressing specific research questions, and their future utility in advancing biological understanding and treatment of pediatric glioma.
Collapse
Affiliation(s)
- Amelia Foss
- Department of Oncology and the Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, UK
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Manav Pathania
- Department of Oncology and the Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Andrade AF, Chen CCL, Jabado N. Oncohistones in brain tumors: the soil and seed. Trends Cancer 2023; 9:444-455. [PMID: 36933956 PMCID: PMC11075889 DOI: 10.1016/j.trecan.2023.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Recurrent somatic mutations in histone 3 (H3) variants (termed 'oncohistones') have been identified in high-grade gliomas (HGGs) in children and young adults and induce tumorigenesis through disruption of chromatin states. Oncohistones occur with exquisite neuroanatomical specificity and are associated with specific age distribution and epigenome landscapes. Here, we review the known intrinsic ('seed') and the extrinsic ('soil') factors needed for their optimal oncogenic effect and highlight the many unresolved questions regarding their effects on development and crosstalk with the tumor microenvironment. The 'seed and soil' analogy, used to explain tumor metastatic niches, also applies to oncohistones, which mainly thrive and flourish in specific chromatin states during very narrow windows of development, creating exquisite vulnerabilities, which could provide effective therapies for these deadly cancers.
Collapse
Affiliation(s)
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada; Department of Pediatrics, McGill University, Montreal, QC, H3A 0C7, Canada; The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
22
|
Duan J, Wang Y. Modeling nervous system tumors with human stem cells and organoids. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:4. [PMID: 36854987 PMCID: PMC9975125 DOI: 10.1186/s13619-022-00150-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/05/2022] [Indexed: 03/02/2023]
Abstract
Nervous system cancers are the 10th leading cause of death worldwide, many of which are difficult to diagnose and exhibit varying degrees of treatment resistance. The limitations of existing cancer models, such as patient-derived xenograft (PDX) models and genetically engineered mouse (GEM) models, call for the development of novel preclinical cancer models to more faithfully mimic the patient's cancer and offer additional insights. Recent advances in human stem cell biology, organoid, and genome-editing techniques allow us to model nervous system tumors in three types of next-generation tumor models: cell-of-origin models, tumor organoids, and 3D multicellular coculture models. In this review, we introduced and compared different human stem cell/organoid-derived models, and comprehensively summarized and discussed the recently developed models for various primary tumors in the central and peripheral nervous systems, including glioblastoma (GBM), H3K27M-mutant Diffuse Midline Glioma (DMG) and H3G34R-mutant High-grade Glioma (HGG), Low-grade Glioma (LGG), Neurofibromatosis Type 1 (NF1), Neurofibromatosis Type 2 (NF2), Medulloblastoma (MB), Atypical Teratoid/rhabdoid Tumor (AT/RT), and meningioma. We further compared these models with PDX and GEM models, and discussed the opportunities and challenges of precision nervous cancer modeling with human stem cells and organoids.
Collapse
Affiliation(s)
- Jie Duan
- grid.412901.f0000 0004 1770 1022Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041 China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
23
|
Vanderhaeghen P, Polleux F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat Rev Neurosci 2023; 24:213-232. [PMID: 36792753 PMCID: PMC10064077 DOI: 10.1038/s41583-023-00675-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
The brain of modern humans has evolved remarkable computational abilities that enable higher cognitive functions. These capacities are tightly linked to an increase in the size and connectivity of the cerebral cortex, which is thought to have resulted from evolutionary changes in the mechanisms of cortical development. Convergent progress in evolutionary genomics, developmental biology and neuroscience has recently enabled the identification of genomic changes that act as human-specific modifiers of cortical development. These modifiers influence most aspects of corticogenesis, from the timing and complexity of cortical neurogenesis to synaptogenesis and the assembly of cortical circuits. Mutations of human-specific genetic modifiers of corticogenesis have started to be linked to neurodevelopmental disorders, providing evidence for their physiological relevance and suggesting potential relationships between the evolution of the human brain and its sensitivity to specific diseases.
Collapse
Affiliation(s)
- Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
24
|
Grigore FN, Yang SJ, Chen CC, Koga T. Pioneering models of pediatric brain tumors. Neoplasia 2023; 36:100859. [PMID: 36599191 PMCID: PMC9823239 DOI: 10.1016/j.neo.2022.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023]
Abstract
Among children and adolescents in the United States (0 to 19 years old), brain and other central nervous system tumors are the second most common types of cancers, surpassed in incidence only by leukemias. Despite significant progress in the diagnosis and treatment modalities, brain cancer remains the leading cause of death in the pediatric population. There is an obvious unfulfilled need to streamline the therapeutic strategies and improve survival for these patients. For that purpose, preclinical models play a pivotal role. Numerous models are currently used in pediatric brain tumor research, including genetically engineered mouse models, patient-derived xenografts and cell lines, and newer models that utilize novel technologies such as genome engineering and organoids. Furthermore, extensive studies by the Children's Brain Tumor Network (CBTN) researchers and others have revealed multiomic landscapes of variable pediatric brain tumors. Combined with such integrative data, these novel technologies have enabled numerous applicable models. Genome engineering, including CRISPR/Cas9, expanded the flexibility of modeling. Models generated through genome engineering enabled studying particular genetic alterations in clean isogenic backgrounds, facilitating the dissection of functional mechanisms of those mutations in tumor biology. Organoids have been applied to study tumor-to-tumor-microenvironment interactions and to address developmental aspects of tumorigenesis, which is essential in some pediatric brain tumors. Other modalities, such as humanized mouse models, could potentially be applied to pediatric brain tumors. In addition to current valuable models, such novel models are anticipated to expedite functional tumor biology study and establish effective therapeutics for pediatric brain tumors.
Collapse
Affiliation(s)
- Florina-Nicoleta Grigore
- Department of Neurosurgery, University of Minnesota, MMC96, Room D-429, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Serena Johanna Yang
- Department of Neurosurgery, University of Minnesota, MMC96, Room D-429, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, MMC96, Room D-429, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Tomoyuki Koga
- Department of Neurosurgery, University of Minnesota, MMC96, Room D-429, 420 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Voon HPJ, Wong LH. Chromatin mutations in pediatric high grade gliomas. Front Oncol 2023; 12:1104129. [PMID: 36686810 PMCID: PMC9853562 DOI: 10.3389/fonc.2022.1104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Pediatric high grade gliomas (HGG) are lethal tumors which are currently untreatable. A number of recent studies have provided much needed insights into the mutations and mechanisms which drive oncogenesis in pediatric HGGs. It is now clear that mutations in chromatin proteins, particularly H3.3 and its associated chaperone complex (ATRX), are a hallmark feature of pediatric HGGs. We review the current literature on the normal roles of the ATRX/H3.3 complex and how these functions are disrupted by oncogenic mutations. We discuss the current clinical trials and pre-clinical models that target chromatin and DNA, and how these agents fit into the ATRX/H3.3 mutation model. As chromatin mutations are a relatively new discovery in pediatric HGGs, developing clear mechanistic insights are a key step to improving therapies for these tumors.
Collapse
|
26
|
Abdallah AS, Cardona HJ, Gadd SL, Brat DJ, Powla PP, Alruwalli WS, Shen C, Picketts DJ, Li XN, Becher OJ. Novel genetically engineered H3.3G34R model reveals cooperation with ATRX loss in upregulation of Hoxa cluster genes and promotion of neuronal lineage. Neurooncol Adv 2023; 5:vdad003. [PMID: 36845293 PMCID: PMC9950856 DOI: 10.1093/noajnl/vdad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Pediatric high-grade gliomas (pHGGs) are aggressive pediatric CNS tumors and an important subset are characterized by mutations in H3F3A, the gene that encodes Histone H3.3 (H3.3). Substitution of Glycine at position 34 of H3.3 with either Arginine or Valine (H3.3G34R/V), was recently described and characterized in a large cohort of pHGG samples as occurring in 5-20% of pHGGs. Attempts to study the mechanism of H3.3G34R have proven difficult due to the lack of knowledge regarding the cell-of-origin and the requirement for co-occurring mutations for model development. We sought to develop a biologically relevant animal model of pHGG to probe the downstream effects of the H3.3G34R mutation in the context of vital co-occurring mutations. Methods We developed a genetically engineered mouse model (GEMM) that incorporates PDGF-A activation, TP53 loss and the H3.3G34R mutation both in the presence and loss of Alpha thalassemia/mental retardation syndrome X-linked (ATRX), which is commonly mutated in H3.3G34 mutant pHGGs. Results We demonstrated that ATRX loss significantly increases tumor latency in the absence of H3.3G34R and inhibits ependymal differentiation in the presence of H3.3G34R. Transcriptomic analysis revealed that ATRX loss in the context of H3.3G34R upregulates Hoxa cluster genes. We also found that the H3.3G34R overexpression leads to enrichment of neuronal markers but only in the context of ATRX loss. Conclusions This study proposes a mechanism in which ATRX loss is the major contributor to many key transcriptomic changes in H3.3G34R pHGGs. Accession number GSE197988.
Collapse
Affiliation(s)
- Aalaa S Abdallah
- Department of Pediatrics, Northwestern University, Chicago, Illinois, USA
- Stanley Manne Children’s Research Institute, Molecular and Translational Cancer Biology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Herminio J Cardona
- Stanley Manne Children’s Research Institute, Molecular and Translational Cancer Biology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Samantha L Gadd
- Department of Pathology, Northwestern University, Chicago, Illinois, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University, Chicago, Illinois, USA
| | - Plamena P Powla
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, Illinois, USA
| | - Waleed S Alruwalli
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, Illinois, USA
| | - Chen Shen
- Stanley Manne Children’s Research Institute, Molecular and Translational Cancer Biology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Xiao-Nan Li
- Department of Pediatrics, Northwestern University, Chicago, Illinois, USA
- Stanley Manne Children’s Research Institute, Molecular and Translational Cancer Biology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Developmental Therapeutic Core, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Oren J Becher
- Department of Pediatrics, Northwestern University, Chicago, Illinois, USA
- Stanley Manne Children’s Research Institute, Molecular and Translational Cancer Biology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
27
|
Zhang J, Wang Z, Wang K, Xin D, Wang L, Fan Y, Xu Y. Increased Expression of SRSF1 Predicts Poor Prognosis in Multiple Myeloma. JOURNAL OF ONCOLOGY 2023; 2023:9998927. [PMID: 37206090 PMCID: PMC10191755 DOI: 10.1155/2023/9998927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/11/2022] [Accepted: 01/19/2023] [Indexed: 05/21/2023]
Abstract
Background Multiple myeloma (MM) is a clonal plasma cell disorder which still lacks sufficient prognostic factors. The serine/arginine-rich splicing factor (SRSF) family serves as an important splicing regulator in organ development. Among all members, SRSF1 plays an important role in cell proliferation and renewal. However, the role of SRSF1 in MM is still unknown. Methods SRSF1 was selected from the primary bioinformatics analysis of SRSF family members, and then we integrated 11 independent datasets and analyzed the relationship between SRSF1 expression and MM clinical characteristics. Gene set enrichment analysis (GSEA) was conducted to explore the potential mechanism of SRSF1 in MM progression. ImmuCellAI was used to estimate the abundance of immune infiltrating cells between the SRSF1high and SRSF1low groups. The ESTIMATE algorithm was used to evaluate the tumor microenvironment in MM. The expression of immune-related genes was compared between the groups. Additionally, SRSF1 expression was validated in clinical samples. SRSF1 knockdown was conducted to explore the role of SRSF1 in MM development. Results SRSF1 expression showed an increasing trend with the progression of myeloma. Besides, SRSF1 expression increased as the age, ISS stage, 1q21 amplification level, and relapse times increased. MM patients with higher SRSF1 expression had worse clinical features and poorer outcomes. Univariate and multivariate analysis indicated that upregulated SRSF1 expression was an independent poor prognostic factor for MM. Enrichment pathway analysis confirmed that SRSF1 takes part in the myeloma progression via tumor-associated and immune-related pathways. Several checkpoints and immune-activating genes were significantly downregulated in the SRSF1high groups. Furthermore, we detected that SRSF1 expression was significantly higher in MM patients than that in control donors. SRSF1 knockdown resulted in proliferation arrest in MM cell lines. Conclusion The expression value of SRSF1 is positively associated with myeloma progression, and high SRSF1 expression might be a poor prognostic biomarker in MM patients.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zanzan Wang
- Department of Hematology, Ningbo First Hospital, Ningbo 315010, China
| | - Kailai Wang
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Dijia Xin
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Luyao Wang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yili Fan
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
28
|
Ma C, Li C, Ma H, Yu D, Zhang Y, Zhang D, Su T, Wu J, Wang X, Zhang L, Chen CL, Zhang YE. Pan-cancer surveys indicate cell cycle-related roles of primate-specific genes in tumors and embryonic cerebrum. Genome Biol 2022; 23:251. [PMID: 36474250 PMCID: PMC9724437 DOI: 10.1186/s13059-022-02821-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite having been extensively studied, it remains largely unclear why humans bear a particularly high risk of cancer. The antagonistic pleiotropy hypothesis predicts that primate-specific genes (PSGs) tend to promote tumorigenesis, while the molecular atavism hypothesis predicts that PSGs involved in tumors may represent recently derived duplicates of unicellular genes. However, these predictions have not been tested. RESULTS By taking advantage of pan-cancer genomic data, we find the upregulation of PSGs across 13 cancer types, which is facilitated by copy-number gain and promoter hypomethylation. Meta-analyses indicate that upregulated PSGs (uPSGs) tend to promote tumorigenesis and to play cell cycle-related roles. The cell cycle-related uPSGs predominantly represent derived duplicates of unicellular genes. We prioritize 15 uPSGs and perform an in-depth analysis of one unicellular gene-derived duplicate involved in the cell cycle, DDX11. Genome-wide screening data and knockdown experiments demonstrate that DDX11 is broadly essential across cancer cell lines. Importantly, non-neutral amino acid substitution patterns and increased expression indicate that DDX11 has been under positive selection. Finally, we find that cell cycle-related uPSGs are also preferentially upregulated in the highly proliferative embryonic cerebrum. CONCLUSIONS Consistent with the predictions of the atavism and antagonistic pleiotropy hypotheses, primate-specific genes, especially those PSGs derived from cell cycle-related genes that emerged in unicellular ancestors, contribute to the early proliferation of the human cerebrum at the cost of hitchhiking by similarly highly proliferative cancer cells.
Collapse
Affiliation(s)
- Chenyu Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Li
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianhan Su
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, 75005, Paris, France
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
29
|
K27M in canonical and noncanonical H3 variants occurs in distinct oligodendroglial cell lineages in brain midline gliomas. Nat Genet 2022; 54:1865-1880. [PMID: 36471070 PMCID: PMC9742294 DOI: 10.1038/s41588-022-01205-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/16/2022] [Indexed: 12/12/2022]
Abstract
Canonical (H3.1/H3.2) and noncanonical (H3.3) histone 3 K27M-mutant gliomas have unique spatiotemporal distributions, partner alterations and molecular profiles. The contribution of the cell of origin to these differences has been challenging to uncouple from the oncogenic reprogramming induced by the mutation. Here, we perform an integrated analysis of 116 tumors, including single-cell transcriptome and chromatin accessibility, 3D chromatin architecture and epigenomic profiles, and show that K27M-mutant gliomas faithfully maintain chromatin configuration at developmental genes consistent with anatomically distinct oligodendrocyte precursor cells (OPCs). H3.3K27M thalamic gliomas map to prosomere 2-derived lineages. In turn, H3.1K27M ACVR1-mutant pontine gliomas uniformly mirror early ventral NKX6-1+/SHH-dependent brainstem OPCs, whereas H3.3K27M gliomas frequently resemble dorsal PAX3+/BMP-dependent progenitors. Our data suggest a context-specific vulnerability in H3.1K27M-mutant SHH-dependent ventral OPCs, which rely on acquisition of ACVR1 mutations to drive aberrant BMP signaling required for oncogenesis. The unifying action of K27M mutations is to restrict H3K27me3 at PRC2 landing sites, whereas other epigenetic changes are mainly contingent on the cell of origin chromatin state and cycling rate.
Collapse
|
30
|
Gonzalez Castro LN, Liu I, Filbin M. Characterizing the biology of primary brain tumors and their microenvironment via single-cell profiling methods. Neuro Oncol 2022; 25:234-247. [PMID: 36197833 PMCID: PMC9925698 DOI: 10.1093/neuonc/noac211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic and transcriptional heterogeneity is prevalent among the most common and aggressive primary brain tumors in children and adults. Over the past 20 years, advances in bioengineering, biochemistry and bioinformatics have enabled the development of an array of techniques to study tumor biology at single-cell resolution. The application of these techniques to study primary brain tumors has helped advance our understanding of their intra-tumoral heterogeneity and uncover new insights regarding their co-option of developmental programs and signaling from their microenvironment to promote tumor proliferation and invasion. These insights are currently being harnessed to develop new therapeutic approaches. Here we provide an overview of current single-cell techniques and discuss relevant biology and therapeutic insights uncovered by their application to primary brain tumors in children and adults.
Collapse
Affiliation(s)
- L Nicolas Gonzalez Castro
- Corresponding Author: L. Nicolas Gonzalez Castro, MD, PhD, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA ()
| | | | - Mariella Filbin
- Pediatric Neuro-Oncology Program, Dana-Farber/Boston Children’s and Blood Disorders Center, Boston, MA, USA
| |
Collapse
|
31
|
Gimple RC, Yang K, Halbert ME, Agnihotri S, Rich JN. Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. Nat Rev Cancer 2022; 22:497-514. [PMID: 35710946 DOI: 10.1038/s41568-022-00486-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Malignant brain tumours are complex ecosystems containing neoplastic and stromal components that generate adaptive and evolutionarily driven aberrant tissues in the central nervous system. Brain cancers are cultivated by a dynamic population of stem-like cells that enforce intratumoural heterogeneity and respond to intrinsic microenvironment or therapeutically guided insults through proliferation, plasticity and restructuring of neoplastic and stromal components. Far from a rigid hierarchy, heterogeneous neoplastic populations transition between cellular states with differential self-renewal capacities, endowing them with powerful resilience. Here we review the biological machinery used by brain tumour stem cells to commandeer tissues in the intracranial space, evade immune responses and resist chemoradiotherapy. Through recent advances in single-cell sequencing, improved models to investigate the role of the tumour microenvironment and a deeper understanding of the fundamental role of the immune system in cancer biology, we are now better equipped to explore mechanisms by which these processes can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Ryan C Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew E Halbert
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Mitchener MM, Muir TW. Oncohistones: Exposing the nuances and vulnerabilities of epigenetic regulation. Mol Cell 2022; 82:2925-2938. [PMID: 35985302 PMCID: PMC9482148 DOI: 10.1016/j.molcel.2022.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022]
Abstract
Work over the last decade has uncovered a new layer of epigenetic dysregulation. It is now appreciated that somatic missense mutations in histones, the packaging agents of genomic DNA, are often associated with human pathologies, especially cancer. Although some of these "oncohistone" mutations are thought to be key drivers of cancer, the impacts of the majority of them on disease onset and progression remain to be elucidated. Here, we survey this rapidly expanding research field with particular emphasis on how histone mutants, even at low dosage, can corrupt chromatin states. This work is unveiling the remarkable intricacies of epigenetic control mechanisms. Throughout, we highlight how studies of oncohistones have leveraged, and in some cases fueled, the advances in our ability to manipulate and interrogate chromatin at the molecular level.
Collapse
Affiliation(s)
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
33
|
Parmigiani E, Ivanek R, Rolando C, Hafen K, Turchinovich G, Lehmann FM, Gerber A, Brkic S, Frank S, Meyer SC, Wakimoto H, Günel M, Louvi A, Mariani L, Finke D, Holländer G, Hutter G, Tussiwand R, Taylor V, Giachino C. Interferon-γ resistance and immune evasion in glioma develop via Notch-regulated co-evolution of malignant and immune cells. Dev Cell 2022; 57:1847-1865.e9. [PMID: 35803280 DOI: 10.1016/j.devcel.2022.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/04/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Immune surveillance is critical to prevent tumorigenesis. Gliomas evade immune attack, but the underlying mechanisms remain poorly understood. We show that glioma cells can sustain growth independent of immune system constraint by reducing Notch signaling. Loss of Notch activity in a mouse model of glioma impairs MHC-I and cytokine expression and curtails the recruitment of anti-tumor immune cell populations in favor of immunosuppressive tumor-associated microglia/macrophages (TAMs). Depletion of T cells simulates Notch inhibition and facilitates tumor initiation. Furthermore, Notch-depleted glioma cells acquire resistance to interferon-γ and TAMs re-educating therapy. Decreased interferon response and cytokine expression by human and mouse glioma cells correlate with low Notch activity. These effects are paralleled by upregulation of oncogenes and downregulation of quiescence genes. Hence, suppression of Notch signaling enables gliomas to evade immune surveillance and increases aggressiveness. Our findings provide insights into how brain tumor cells shape their microenvironment to evade immune niche control.
Collapse
Affiliation(s)
- Elena Parmigiani
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Robert Ivanek
- Swiss Institute of Bioinformatics, Hebelstrasse 20, 4031 Basel, Switzerland; Bioinformatics Core Facility, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Chiara Rolando
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Katrin Hafen
- Pediatric Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Gleb Turchinovich
- Developmental Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland; University Children's Hospital of Basel, University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Frank Michael Lehmann
- Developmental Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland; University Children's Hospital of Basel, University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Alexandra Gerber
- Brain Tumor Immunotherapy, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Sime Brkic
- Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University of Basel, Schoenbeinstrasse 40, 4031 Basel, Switzerland
| | - Sara C Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; Division of Hematology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520-8082, USA
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520-8082, USA
| | - Luigi Mariani
- Department of Neurosurgery, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Daniela Finke
- Developmental Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland; University Children's Hospital of Basel, University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Georg Holländer
- Pediatric Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland; Weatherall Institute of Molecular Medicine and Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK; Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Gregor Hutter
- Brain Tumor Immunotherapy, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; Department of Neurosurgery, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Roxane Tussiwand
- Immune Regulation, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Verdon Taylor
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Claudio Giachino
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.
| |
Collapse
|
34
|
The Intricate Epigenetic and Transcriptional Alterations in Pediatric High-Grade Gliomas: Targeting the Crosstalk as the Oncogenic Achilles’ Heel. Biomedicines 2022; 10:biomedicines10061311. [PMID: 35740334 PMCID: PMC9219798 DOI: 10.3390/biomedicines10061311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are a deadly and heterogenous subgroup of gliomas for which the development of innovative treatments is urgent. Advances in high-throughput molecular techniques have shed light on key epigenetic components of these diseases, such as K27M and G34R/V mutations on histone 3. However, modification of DNA compaction is not sufficient by itself to drive those tumors. Here, we review molecular specificities of pHGGs subcategories in the context of epigenomic rewiring caused by H3 mutations and the subsequent oncogenic interplay with transcriptional signaling pathways co-opted from developmental programs that ultimately leads to gliomagenesis. Understanding how transcriptional and epigenetic alterations synergize in each cellular context in these tumors could allow the identification of new Achilles’ heels, thereby highlighting new levers to improve their therapeutic management.
Collapse
|
35
|
Abstract
Chromatin dysfunction has been implicated in a growing number of cancers especially in children and young adults. In addition to chromatin modifying and remodeling enzymes, mutations in histone genes are linked to human cancers. Since the first reports of hotspot missense mutations affecting key residues at histone H3 tail, studies have revealed how these so-called "oncohistones" dominantly (H3K27M and H3K36M) or locally (H3.3G34R/W) inhibit corresponding histone methyltransferases and misregulate epigenome and transcriptome to promote tumorigenesis. More recently, widespread mutations in all four core histones are identified in diverse cancer types. Furthermore, an "oncohistone-like" protein EZHIP has been implicated in driving childhood ependymomas through a mechanism highly reminiscent of H3K27M mutation. We will review recent progresses on understanding the biochemical, molecular and biological mechanisms underlying the canonical and novel histone mutations. Importantly, these mechanistic insights have identified therapeutic opportunities for oncohistone-driven tumors.
Collapse
Affiliation(s)
- Varun Sahu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA,Corresponding author: Chao Lu:
| |
Collapse
|
36
|
Deshmukh S, Ptack A, Krug B, Jabado N. Oncohistones: a roadmap to stalled development. FEBS J 2022; 289:1315-1328. [PMID: 33969633 PMCID: PMC9990449 DOI: 10.1111/febs.15963] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/17/2021] [Accepted: 05/07/2021] [Indexed: 01/18/2023]
Abstract
Since the discovery of recurrent mutations in histone H3 variants in paediatric brain tumours, so-called 'oncohistones' have been identified in various cancers. While their mechanism of action remains under active investigation, several studies have shed light on how they promote genome-wide epigenetic perturbations. These findings converge on altered post-translational modifications on two key lysine (K) residues of the H3 tail, K27 and K36, which regulate several cellular processes, including those linked to cell differentiation during development. We will review how these oncohistones affect the methylation of cognate residues, but also disrupt the distribution of opposing chromatin marks, creating genome-wide epigenetic changes which participate in the oncogenic process. Ultimately, tumorigenesis is promoted through the maintenance of a progenitor state at the expense of differentiation in defined cellular and developmental contexts. As these epigenetic disruptions are reversible, improved understanding of oncohistone pathogenicity can result in needed alternative therapies.
Collapse
Affiliation(s)
- Shriya Deshmukh
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Adam Ptack
- Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Nada Jabado
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
37
|
Oncohistone interactome profiling uncovers contrasting oncogenic mechanisms and identifies potential therapeutic targets in high grade glioma. Acta Neuropathol 2022; 144:1027-1048. [PMID: 36070144 PMCID: PMC9547787 DOI: 10.1007/s00401-022-02489-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 01/26/2023]
Abstract
Histone H3 mutations at amino acids 27 (H3K27M) and 34 (H3G34R) are recurrent drivers of pediatric-type high-grade glioma (pHGG). H3K27M mutations lead to global disruption of H3K27me3 through dominant negative PRC2 inhibition, while H3G34R mutations lead to local losses of H3K36me3 through inhibition of SETD2. However, their broader oncogenic mechanisms remain unclear. We characterized the H3.1K27M, H3.3K27M and H3.3G34R interactomes, finding that H3K27M is associated with epigenetic and transcription factor changes; in contrast H3G34R removes a break on cryptic transcription, limits DNA methyltransferase access, and alters mitochondrial metabolism. All 3 mutants had altered interactions with DNA repair proteins and H3K9 methyltransferases. H3K9me3 was reduced in H3K27M-containing nucleosomes, and cis-H3K9 methylation was required for H3K27M to exert its effect on global H3K27me3. H3K9 methyltransferase inhibition was lethal to H3.1K27M, H3.3K27M and H3.3G34R pHGG cells, underscoring the importance of H3K9 methylation for oncohistone-mutant gliomas and suggesting it as an attractive therapeutic target.
Collapse
|
38
|
Arakaki AKS, Szulzewsky F, Gilbert MR, Gujral TS, Holland EC. Utilizing preclinical models to develop targeted therapies for rare central nervous system cancers. Neuro Oncol 2021; 23:S4-S15. [PMID: 34725698 PMCID: PMC8561121 DOI: 10.1093/neuonc/noab183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patients with rare central nervous system (CNS) tumors typically have a poor prognosis and limited therapeutic options. Historically, these cancers have been difficult to study due to small number of patients. Recent technological advances have identified molecular drivers of some of these rare cancers which we can now use to generate representative preclinical models of these diseases. In this review, we outline the advantages and disadvantages of different models, emphasizing the utility of various in vitro and ex vivo models for target discovery and mechanistic inquiry and multiple in vivo models for therapeutic validation. We also highlight recent literature on preclinical model generation and screening approaches for ependymomas, histone mutated high-grade gliomas, and atypical teratoid rhabdoid tumors, all of which are rare CNS cancers that have recently established genetic or epigenetic drivers. These preclinical models are critical to advancing targeted therapeutics for these rare CNS cancers that currently rely on conventional treatments.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Taranjit S Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
39
|
Sweha SR, Chung C, Natarajan SK, Panwalkar P, Pun M, Ghali A, Bayliss J, Pratt D, Shankar A, Ravikumar V, Rao A, Cieslik M, Wilder-Romans K, Scott AJ, Wahl DR, Jessa S, Kleinman CL, Jabado N, Mackay A, Jones C, Martinez D, Santi M, Judkins AR, Yadav VN, Qin T, Phoenix TN, Koschmann CJ, Baker SJ, Chinnaiyan AM, Venneti S. Epigenetically defined therapeutic targeting in H3.3G34R/V high-grade gliomas. Sci Transl Med 2021; 13:eabf7860. [PMID: 34644147 DOI: 10.1126/scitranslmed.abf7860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High-grade gliomas with arginine or valine substitutions of the histone H3.3 glycine-34 residue (H3.3G34R/V) carry a dismal prognosis, and current treatments, including radiotherapy and chemotherapy, are not curative. Because H3.3G34R/V mutations reprogram epigenetic modifications, we undertook a comprehensive epigenetic approach using ChIP sequencing and ChromHMM computational analysis to define therapeutic dependencies in H3.3G34R/V gliomas. Our analyses revealed a convergence of epigenetic alterations, including (i) activating epigenetic modifications on histone H3 lysine (K) residues such as H3K36 trimethylation (H3K36me3), H3K27 acetylation (H3K27ac), and H3K4 trimethylation (H3K4me3); (ii) DNA promoter hypomethylation; and (iii) redistribution of repressive histone H3K27 trimethylation (H3K27me3) to intergenic regions at the leukemia inhibitory factor (LIF) locus to drive increased LIF abundance and secretion by H3.3G34R/V cells. LIF activated signal transducer and activator of transcription 3 (STAT3) signaling in an autocrine/paracrine manner to promote survival of H3.3G34R/V glioma cells. Moreover, immunohistochemistry and single-cell RNA sequencing from H3.3G34R/V patient tumors revealed high STAT3 protein and RNA expression, respectively, in tumor cells with both inter- and intratumor heterogeneity. We targeted STAT3 using a blood-brain barrier–penetrable small-molecule inhibitor, WP1066, currently in clinical trials for adult gliomas. WP1066 treatment resulted in H3.3G34R/V tumor cell toxicity in vitro and tumor suppression in preclinical mouse models established with KNS42 cells, SJ-HGGx42-c cells, or in utero electroporation techniques. Our studies identify the LIF/STAT3 pathway as a key epigenetically driven and druggable vulnerability in H3.3G34R/V gliomas. This finding could inform development of targeted, combination therapies for these lethal brain tumors.
Collapse
Affiliation(s)
- Stefan R Sweha
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chan Chung
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Siva Kumar Natarajan
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Molecular and Cellular Pathology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pooja Panwalkar
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew Pun
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Amer Ghali
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jill Bayliss
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Drew Pratt
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anand Shankar
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Visweswaran Ravikumar
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Andrew J Scott
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Selin Jessa
- Quantitative Life Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada.,Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Claudia L Kleinman
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada.,Department of Pediatrics, McGill University, and Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Alan Mackay
- Division of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London SM2 5NG, UK
| | - Chris Jones
- Division of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London SM2 5NG, UK
| | - Daniel Martinez
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mariarita Santi
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexander R Judkins
- Department of Pathology, Children's Hospital of Los Angeles, Los Angeles, CA 90027, USA
| | - Viveka Nand Yadav
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, College of Pharmacy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Carl J Koschmann
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Michigan Center for Translational Pathology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
40
|
Libé-Philippot B, Vanderhaeghen P. Cellular and Molecular Mechanisms Linking Human Cortical Development and Evolution. Annu Rev Genet 2021; 55:555-581. [PMID: 34535062 DOI: 10.1146/annurev-genet-071719-020705] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cerebral cortex is at the core of brain functions that are thought to be particularly developed in the human species. Human cortex specificities stem from divergent features of corticogenesis, leading to increased cortical size and complexity. Underlying cellular mechanisms include prolonged patterns of neuronal generation and maturation, as well as the amplification of specific types of stem/progenitor cells. While the gene regulatory networks of corticogenesis appear to be largely conserved among all mammals including humans, they have evolved in primates, particularly in the human species, through the emergence of rapidly divergent transcriptional regulatory elements, as well as recently duplicated novel genes. These human-specific molecular features together control key cellular milestones of human corticogenesis and are often affected in neurodevelopmental disorders, thus linking human neural development, evolution, and diseases. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; .,Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; .,Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
41
|
Comba A, Faisal SM, Varela ML, Hollon T, Al-Holou WN, Umemura Y, Nunez FJ, Motsch S, Castro MG, Lowenstein PR. Uncovering Spatiotemporal Heterogeneity of High-Grade Gliomas: From Disease Biology to Therapeutic Implications. Front Oncol 2021; 11:703764. [PMID: 34422657 PMCID: PMC8377724 DOI: 10.3389/fonc.2021.703764] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastomas (GBM) are the most common and aggressive tumors of the central nervous system. Rapid tumor growth and diffuse infiltration into healthy brain tissue, along with high intratumoral heterogeneity, challenge therapeutic efficacy and prognosis. A better understanding of spatiotemporal tumor heterogeneity at the histological, cellular, molecular, and dynamic levels would accelerate the development of novel treatments for this devastating brain cancer. Histologically, GBM is characterized by nuclear atypia, cellular pleomorphism, necrosis, microvascular proliferation, and pseudopalisades. At the cellular level, the glioma microenvironment comprises a heterogeneous landscape of cell populations, including tumor cells, non-transformed/reactive glial and neural cells, immune cells, mesenchymal cells, and stem cells, which support tumor growth and invasion through complex network crosstalk. Genomic and transcriptomic analyses of gliomas have revealed significant inter and intratumoral heterogeneity and insights into their molecular pathogenesis. Moreover, recent evidence suggests that diverse dynamics of collective motion patterns exist in glioma tumors, which correlate with histological features. We hypothesize that glioma heterogeneity is not stochastic, but rather arises from organized and dynamic attributes, which favor glioma malignancy and influences treatment regimens. This review highlights the importance of an integrative approach of glioma histopathological features, single-cell and spatially resolved transcriptomic and cellular dynamics to understand tumor heterogeneity and maximize therapeutic effects.
Collapse
Affiliation(s)
- Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Todd Hollon
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yoshie Umemura
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Felipe J Nunez
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sebastien Motsch
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, United States
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
42
|
Krug B, Harutyunyan AS, Deshmukh S, Jabado N. Polycomb repressive complex 2 in the driver's seat of childhood and young adult brain tumours. Trends Cell Biol 2021; 31:814-828. [PMID: 34092471 DOI: 10.1016/j.tcb.2021.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Deregulation of the epigenome underlies oncogenesis in numerous primary brain tumours in children and young adults. In this review, we describe how recurrent mutations in isocitrate dehydrogenases or histone 3 variants (oncohistones) in gliomas, expression of the oncohistone mimic enhancer of Zeste homologs inhibiting protein (EZHIP) in a subgroup of ependymoma, and epigenetic alterations in other embryonal tumours promote oncogenicity. We review the proposed mechanisms of cellular transformation, current tumorigenesis models and their link to development. We further stress the narrow developmental windows permissive to their oncogenic potential and how this may stem from converging effects deregulating polycomb repressive complex (PRC)2 function and targets. As altered chromatin states may be reversible, improved understanding of aberrant cancer epigenomes could orient the design of effective therapies.
Collapse
Affiliation(s)
- Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Shriya Deshmukh
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Department of Pediatrics, McGill University, Montreal, QC, Canada; The Research Institute of the McGill University Health Center, Montreal, H4A 3J, Canada.
| |
Collapse
|
43
|
Pinson A, Huttner WB. Neocortex expansion in development and evolution-from genes to progenitor cell biology. Curr Opin Cell Biol 2021; 73:9-18. [PMID: 34098196 DOI: 10.1016/j.ceb.2021.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
The evolutionary expansion of the neocortex, the seat of higher cognitive functions in humans, is primarily due to an increased and prolonged proliferation of neural progenitor cells during development. Basal progenitors, and in particular basal radial glial cells, are thought to have a key role in the increased generation of neurons that constitutes a foundation of neocortex expansion. Recent studies have identified primate-specific and human-specific genes and changes in gene expression that promote increased proliferative capacity of cortical progenitors. In many cases, the cell biological basis underlying this increase has been uncovered. Model systems such as mouse, ferret, nonhuman primates, and cerebral organoids have been used to establish the relevance of these genes for neocortex expansion.
Collapse
Affiliation(s)
- Anneline Pinson
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
44
|
Stem cell models help crack regional oncohistone codes driving childhood gliomas. Cell Stem Cell 2021; 28:785-787. [PMID: 33961758 DOI: 10.1016/j.stem.2021.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this issue of Cell Stem Cell, Funato et al. (2021) and Bressan et al. (2021) use stem cells as models to define functions of the histone H3.3 G34R mutation in childhood gliomas. Both studies find strong regional specificity to oncohistone activity and implicate specific elements of an aberrantly locked-in neural progenitor transcriptional circuitry.
Collapse
|
45
|
Metselaar DS, du Chatinier A, Stuiver I, Kaspers GJL, Hulleman E. Radiosensitization in Pediatric High-Grade Glioma: Targets, Resistance and Developments. Front Oncol 2021; 11:662209. [PMID: 33869066 PMCID: PMC8047603 DOI: 10.3389/fonc.2021.662209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
Pediatric high-grade gliomas (pHGG) are the leading cause of cancer-related death in children. These epigenetically dysregulated tumors often harbor mutations in genes encoding histone 3, which contributes to a stem cell-like, therapy-resistant phenotype. Furthermore, pHGG are characterized by a diffuse growth pattern, which, together with their delicate location, makes complete surgical resection often impossible. Radiation therapy (RT) is part of the standard therapy against pHGG and generally the only modality, apart from surgery, to provide symptom relief and a delay in tumor progression. However, as a single treatment modality, RT still offers no chance for a cure. As with most therapeutic approaches, irradiated cancer cells often acquire resistance mechanisms that permit survival or stimulate regrowth after treatment, thereby limiting the efficacy of RT. Various preclinical studies have investigated radiosensitizers in pHGG models, without leading to an improved clinical outcome for these patients. However, our recently improved molecular understanding of pHGG generates new opportunities to (re-)evaluate radiosensitizers in these malignancies. Furthermore, the use of radio-enhancing agents has several benefits in pHGG compared to other cancers, which will be discussed here. This review provides an overview and a critical evaluation of the radiosensitization strategies that have been studied to date in pHGG, thereby providing a framework for improving radiosensitivity of these rapidly fatal brain tumors.
Collapse
Affiliation(s)
- Dennis S Metselaar
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Aimée du Chatinier
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Iris Stuiver
- Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Esther Hulleman
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|