1
|
Li M, Pan L, Ma C, Wu H, Xiang G, Li LF, Wang T, Luo R, Li Y, Liu D, Zhai H, Assad M, Song X, Wang Y, Gallardo F, Qiu HJ, Sun Y. Tracking of single virus: Dual fluorescent labeling of pseudorabies virus for observing entry and replication in the N2a cells. Vet Microbiol 2025; 304:110503. [PMID: 40199056 DOI: 10.1016/j.vetmic.2025.110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Pseudorabies virus (PRV) is a neurotropic herpesvirus. It is not easy to be track the whole replication progress of PRV, especially the nascent viral genome in the host cells. In this study, we developed a dual-fluorescence-labeled PRV (rPRV-Anchor3-mCherry) with the viral genome and the envelope protein gM labeled by ANCHOR DNA labeling system and mCherry, respectively. Through single-virus tracking of rPRV-Anchor3-mCherry, we observed that PRV invaded mouse neuroblastoma Neuro-2a cells via both endocytosis and plasma membrane fusion pathway. During the replication stage, parental and progeny viral genome of rPRV-Anchor3-mCherry in the cell nuclei could be visible, and viral nucleocapsid appeared more specifically than traditional capsid protein labeled PRV particles (rPRV-VP26-EGFP). We found that numerous progeny viral particles were produced in the nuclear, causing the nucleus membrane to break using three-dimensional (3D) live-cell imaging and electron microscopy. Moreover, our findings confirmed that simultaneously targeting of the UL9 and UL54 genes using a CRISPR-Cas9 system led to the complete inhibition PRV replication. rPRV-Anchor3-mCherry can be used to research multiple steps of the viral cycle.
Collapse
Affiliation(s)
- Mingzhi Li
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Caoyuan Ma
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Guangtao Xiang
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Rui Luo
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Di Liu
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Huanjie Zhai
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Moon Assad
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Xin Song
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China.
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China.
| |
Collapse
|
2
|
Ali I, Xu F, Peng Q, Qiu J. The dilemma of nuclear mechanical forces in DNA damage and repair. Biochem Biophys Res Commun 2025; 758:151639. [PMID: 40121966 DOI: 10.1016/j.bbrc.2025.151639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Genomic stability, encompassing DNA damage and repair mechanisms, plays a pivotal role in the onset of diseases and the aging process. The stability of DNA is intricately linked to the chemical and mechanical forces exerted on chromatin, particularly within lamina-associated domains (LADs). Mechanical stress can induce DNA damage through the deformation and rupture of the nuclear envelope, leading to DNA bending and cleavage. However, DNA can evade such mechanical stress-induced damage by relocating away from the nuclear membrane, a process facilitated by the depletion of H3K9me3-marked heterochromatin and its cleavage from the lamina. When DNA double-stranded breaks occur, they prompt the rapid recruitment of Lamin B1 and the deposition of H3K9me3. Despite these insights, the precise mechanisms underlying DNA damage and repair under mechanical stress remain unclear. In this review, we explore the interplay between mechanical forces and the nuclear envelope in the context of DNA damage, elucidate the molecular pathways through which DNA escapes force-induced damage, and discuss the corresponding repair strategies involving the nuclear cytoskeleton. By summarizing the mechanisms of force-induced DNA damage and repair, we aim to underscore the potential for developing targeted therapeutic strategies to bolster genomic stability and alleviate the impacts of aging and disease.
Collapse
Affiliation(s)
- Iqra Ali
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Fangning Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
3
|
Xu S, Hong J, Dongye M, Lin J, Xue R, Huang Z, Xu J, Zhang Y, Leung AYH, Shen J, Zhang W, Liu W. The synergistic effect of c-Myb hyperactivation and Pu.1 deficiency induces Pelger-Huët anomaly and promotes sAML. Proc Natl Acad Sci U S A 2025; 122:e2416121122. [PMID: 40020188 PMCID: PMC11892618 DOI: 10.1073/pnas.2416121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/28/2025] [Indexed: 03/12/2025] Open
Abstract
Approximately 30% of patients with myelodysplastic syndrome (MDS) progress to secondary acute myeloid leukemia (sAML) via accumulating gene mutations. Genomic analyses reveal a complex interplay among mutant genes, with co-occurring and mutually exclusive patterns. Hyperactivation of c-MYB and deficiency of PU.1 have been linked to myeloid disorders. We report a case of AML with concurrent PU.1 and c-MYB mutations, exhibiting early onset, high blast count, chemo-resistance, indicating high-risk features, along with elevated Pelger-Huët anomaly (PHA). However, the synergistic mechanism of c-MYB and PU.1 in sAML remains unclear. Using c-Myb-hyperactivation and Pu.1-deficient double-strain (c-mybhyper;pu.1G242D/G242D) zebrafish, we investigated MDS/sAML progression. Surprisingly, the double mutant exhibited a distinct type of neutrophil resembling clinical PHA cells and demonstrated a higher rate of MDS/sAML transformation. Further expression analysis revealed reduced lmnb1 expression in double-mutant zebrafish. Knockdown of lmnb1 resulted in PHA and increased blast cells, while overexpression of lmnb1 in c-mybhyper;pu.1G242D/G242D reduced PHA cell level. This suggests that c-Myb hyperactivation and Pu.1 deficiency synergistically reduce lmnb1 expression, inducing the development of PHA-like neutrophils and promoting MDS/sAML progression in zebrafish. Moreover, coadministration of cell cycle inhibitor cytarabine (Ara-C) and the differential inducer all-trans retinoic acid (ATRA) could effectively relieve the neutrophil expansion and PHA symptoms in c-mybhyper;pu.1G242D/G242D zebrafish. Our findings revealed that c-Myb hyperactivation and Pu.1 deficiency played a synergistic role in sAML development and suggests a phenotypic association between the emergence of PH-like cells and the transformation to sAML. Furthermore, c-mybhyper;pu.1G242D/G242D zebrafish might serve as a suitable sAML model for drug screening.
Collapse
Affiliation(s)
- Song’en Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| | - Jiaxin Hong
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| | - Meimei Dongye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, China
| | - Jiehao Lin
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| | - Rongtao Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| | - Anskar Yu-Hung Leung
- Division of Hematology, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Special Administrative Region of China
| | - Juan Shen
- Department of Marine Pharmacy, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou510006, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou510006, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| | - Wei Liu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| |
Collapse
|
4
|
Sarchi M, Doulatov S. Understanding Human Oncogene Function and Cooperativity in Myeloid Malignancy Using iPSCs. Exp Hematol 2025; 143:104697. [PMID: 39674361 DOI: 10.1016/j.exphem.2024.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
Myeloid malignancies are a spectrum of clonal disorders driven by genetic alterations that cooperatively confer aberrant self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs). Induced pluripotent stem cells (iPSCs) can be differentiated into HSPCs and have been widely explored for modeling hematologic disorders and cell therapies. More recently, iPSC models have been applied to study the origins and pathophysiology of myeloid malignancies, motivated by the appreciation for the differences in human oncogene function and the need for genetically defined models that recapitulate leukemia development. In this review, we will provide a broad overview of the rationale, the challenges, practical aspects, history, and recent advances of iPSC models for modeling myeloid neoplasms. We will focus on the insights into the previously unknown aspects of human oncogene function and cooperativity gained through the use of these models. It is now safe to say that iPSC models are a mainstay of leukemia modeling "toolbox" alongside primary human cells from normal and patient sources.
Collapse
Affiliation(s)
- Martina Sarchi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sergei Doulatov
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA; Department of Genome Sciences, University of Washington, Seattle, WA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA.
| |
Collapse
|
5
|
Karling T, Weavers H. Immune cells adapt to confined environments in vivo to optimise nuclear plasticity for migration. EMBO Rep 2025; 26:1238-1268. [PMID: 39915297 PMCID: PMC11894099 DOI: 10.1038/s44319-025-00381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 03/12/2025] Open
Abstract
Cells navigating in complex 3D microenvironments frequently encounter narrow spaces that physically challenge migration. While in vitro studies identified nuclear stiffness as a key rate-limiting factor governing the movement of many cell types through artificial constraints, how cells migrating in vivo respond dynamically to confinement imposed by local tissue architecture, and whether these encounters trigger molecular adaptations, is unclear. Here, we establish an innovative in vivo model for mechanistic analysis of nuclear plasticity as Drosophila immune cells transition into increasingly confined microenvironments. Integrating live in vivo imaging with molecular genetic analyses, we demonstrate how rapid molecular adaptation upon environmental confinement (including fine-tuning of the nuclear lamina) primes leukocytes for enhanced nuclear deformation while curbing damage (including rupture and micronucleation), ultimately accelerating movement through complex tissues. We find nuclear dynamics in vivo are further impacted by large organelles (phagosomes) and the plasticity of neighbouring cells, which themselves deform during leukocyte passage. The biomechanics of cell migration in vivo are thus shaped both by factors intrinsic to individual immune cells and the malleability of the surrounding microenvironment.
Collapse
Affiliation(s)
- Tua Karling
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
6
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
7
|
Wang X, Zhang Y, Ray S, Jha A, Fang T, Hang S, Doulatov S, Noble WS, Wang S. A generalizable Hi-C foundation model for chromatin architecture, single-cell and multi-omics analysis across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628821. [PMID: 39763871 PMCID: PMC11702576 DOI: 10.1101/2024.12.16.628821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Nuclear DNA is organized into a compact three-dimensional (3D) structure that impacts critical cellular processes. High-throughput chromosome conformation capture (Hi-C) is the most widely used method for measuring 3D genome architecture, while linear epigenomic assays, such as ATAC-seq, DNase-seq, and ChIP-seq, are extensively employed to characterize epigenomic regulation. However, the integrative analysis of chromatin interactions and associated epigenomic regulation remains challenging due to the pairwise nature of Hi-C data, mismatched resolution between Hi-C and epigenomic assays, and inconsistencies among analysis tools. Here we propose HiCFoundation, a Hi-C-based foundation model for integrative analysis linking chromatin structure to downstream regulatory function. HiCFoundation is trained from hundreds of Hi-C assays encompassing 118 million contact matrix submatrices. The model achieves state-of-the-art performance on multiple types of 3D genome analysis, including reproducibility analysis, resolution enhancement, and loop detection. We further demonstrate the model's generalizability through genome architecture analysis of 316 species. Notably, by enhancing low-coverage experimental Hi-C data, HiCFoundation reveals genome-wide loop loss during differentiation of hematopoietic stem and progenitor cells (HSPCs) to neutrophils. Additionally, HiCFoundation is able to predict multiple types of epigenomic activity from Hi-C input and further interprets the link between Hi-C input and epigenomic output to reveal the relationship between chromatin conformation and genome function. Finally, HiCFoundation can analyze single-cell Hi-C data, shedding light on genome structure at single-cell resolution. HiCFoundation thus provides a unified, efficient, generalizable, and interpretable foundation for genome architecture, single-cell and multi-omics analysis across species, paving the path for systematically studying genome 3D architecture and its regulatory mechanisms.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Yuanyuan Zhang
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Suhita Ray
- Division of Hematology and Oncology, University of Washington, Seattle, WA, 98105, USA
| | - Anupama Jha
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tangqi Fang
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Shengqi Hang
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Sergei Doulatov
- Division of Hematology and Oncology, University of Washington, Seattle, WA, 98105, USA
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Sheng Wang
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
8
|
Picotto J, Cipressa F, Busso D, Cenci G, Bertrand P, Pennarun G. Lamin B1-dependent regulation of human separase in mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.28.625860. [PMID: 39651205 PMCID: PMC11623671 DOI: 10.1101/2024.11.28.625860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Separase plays a central role in chromosome separation during mitosis and in centrosome cycle. Tight control of separase activity is required to prevent unscheduled resolution of sister chromatid cohesion and centrosome aberrations, thereby preserving genome stability. In mammals, despite their disassembly in early mitosis, some nuclear envelope components possess mitotic roles, but links with separase activity remain unexplored. Here, we uncover a new mechanism of separase regulation involving lamin B1, a key nuclear envelope factor. We show that separase and lamin B1 associate preferentially during early stages of mitosis. Importantly, lamin B1 depletion leads to an increase in separase recruitment on chromosomes together with premature chromatid separation, a phenotype reminiscent of separase overexpression. Conversely, similar to separase depletion, lamin B1 overexpression induces formation of diplochromosomes- resulting from chromatid separation failure-, in association with centrosome amplification. Importantly, increasing separase level prevents lamin B1-induced centrosome aberrations, suggesting a separase defect at their origin. Indeed, we show that overexpression of lamin B1 leads to a decrease in the recruitment of separase to the chromosome and a delay in its activity. Taken together, this study unveils a novel mechanism of separase regulation involving the nuclear envelope factor lamin B1, that is crucial for genome integrity maintenance.
Collapse
|
9
|
Nishijima Y, Inoue N, Iwase A, Ikota H, Kobayashi S, Yokoo H, Saio M. Lamin A and Emerin Protein Expression Remains Consistently Low and Nuclear Size is Unchanged in Normal Endometrium, Precancerous Lesions, and Endometrioid Carcinoma. Int J Gynecol Pathol 2024:00004347-990000000-00203. [PMID: 39479965 DOI: 10.1097/pgp.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Nuclear laminar or inner nuclear membrane proteins, including lamin A, B1, and B2 and emerin, are involved in maintaining nuclear morphology. However, their expression patterns vary among tumors and remain incompletely understood. Endometrioid carcinoma (EC) exhibits mild nuclear atypia, although the underlying reasons have not been thoroughly explored. In this study, we quantitatively analyzed emerin and lamin A, B1, and B2 expression levels in normal endometrium (NE), precancerous lesions, and EC using computer-assisted image analysis to assess the proteins' roles in nuclear morphologic change during tumorigenesis. From NE to EC, nuclear size remained unchanged, and lamin A and emerin were consistently expressed at low levels, whereas lamin B1 and B2 expression gradually decreased. Given the association between lamin A and emerin as well as their roles in nuclear morphology, these results indicate that their consistent low expression may underlie the preservation of nuclear size and shape in EC relative to NE. Conversely, lamin B1 and B2 are implicated in tumor progression rather than nuclear morphology maintenance. As lamin A and emerin are expressed in many organs and tumors, the consistently low expression of these proteins from NE to EC highlights a notable feature of the endometrium and endometrial carcinogenesis.
Collapse
Affiliation(s)
- Yoshimi Nishijima
- Laboratory of Histopathology and Cytopathology, Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences
| | - Naoki Inoue
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine
| | - Hayato Ikota
- Clinical Department of Pathology, Gunma University Hospital
| | - Sayaka Kobayashi
- Laboratory of Histopathology and Cytopathology, Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masanao Saio
- Laboratory of Histopathology and Cytopathology, Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences
| |
Collapse
|
10
|
Zhou W, Su M, Jiang T, Xie Y, Shi J, Ma Y, Xu K, Xu G, Li Y, Xu J. Cancer Stemness Online: A Resource for Investigating Cancer Stemness and Associations with Immune Response. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae058. [PMID: 39141443 PMCID: PMC11522875 DOI: 10.1093/gpbjnl/qzae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Cancer progression involves the gradual loss of a differentiated phenotype and the acquisition of progenitor and stem cell-like features, which are potential culprits of immunotherapy resistance. Although the state-of-the-art predictive computational methods have facilitated the prediction of cancer stemness, there remains a lack of efficient resources to accommodate various usage requirements. Here, we present the Cancer Stemness Online, an integrated resource for efficiently scoring cancer stemness potential at both bulk and single-cell levels. This resource integrates eight robust predictive algorithms as well as 27 signature gene sets associated with cancer stemness for predicting stemness scores. Downstream analyses were performed from five distinct aspects: identifying the signature genes of cancer stemness; exploring the associations with cancer hallmarks and cellular states; exploring the associations with immune response and the communications with immune cells; investigating the contributions to patient survival; and performing a robustness analysis of cancer stemness among different methods. Moreover, the pre-calculated cancer stemness atlas for more than 40 cancer types can be accessed by users. Both the tables and diverse visualizations of the analytical results are available for download. Together, Cancer Stemness Online is a powerful resource for scoring cancer stemness and expanding downstream functional interpretation, including immune response and cancer hallmarks. Cancer Stemness Online is freely accessible at http://bio-bigdata.hrbmu.edu.cn/CancerStemnessOnline.
Collapse
Affiliation(s)
- Weiwei Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Minghai Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Tiantongfei Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yunjin Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jingyi Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yingying Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Kang Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Gang Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
11
|
Liu J, Yang H, Li P, Zhou Y, Zhang Z, Zeng Q, Zhang X, Sun Y. Microarray analysis points to LMNB1 and JUN as potential target genes for predicting metastasis promotion by etoposide in colorectal cancer. Sci Rep 2024; 14:23661. [PMID: 39390002 PMCID: PMC11467296 DOI: 10.1038/s41598-024-72674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Etoposide is a second-line chemotherapy agent widely used for metastatic colorectal cancer. However, we discovered that etoposide treatment induced greater motility potential in four colorectal cancer cell lines. Therefore, we used microarrays to test the mRNA of these cancer cell lines to investigate the mechanisms of etoposide promoting colorectal cancer metastasis. Differentially expressed genes (DEGs) were identified by comparing the gene expression profiles in samples from etoposide-treated cells and untreated cells in all four colorectal cancer cell lines. Next, these genes went through the Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analysis. Among the top 10 genes including the upregulated and downregulated, eight genes had close interaction according to the STRING database: FAS, HMMR, JUN, LMNB1, MLL3, PLK2, STAG1 and TBL1X. After etoposide treatment, the cell cycle, metabolism-related and senescence signaling pathways in the colorectal cancer cell lines were significantly downregulated, whereas necroptosis and oncogene pathways were significantly upregulated. We suggest that the differentially expressed genes LMNB1 and JUN are potential targets for predicting colorectal cancer metastasis. These results provide clinical guidance in chemotherapy, and offer direction for further research in the mechanism of colorectal cancer metastasis.
Collapse
Affiliation(s)
- Jiafei Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Hongjie Yang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Peng Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Yuanda Zhou
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Zhichun Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Qingsheng Zeng
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China
| | - Yi Sun
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China.
- Tianjin Institute of Coloproctology, Tianjin, People's Republic of China.
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
12
|
Chauhan R, Gupta A, Dagar G, Sharma S, Sadida HQ, Hashem S, Verghese AM, Tanwar M, Macha MA, Uddin S, Al-Shabeeb Akil AS, Pandita TK, Bhat AA, Singh M. Role of lamins in cellular physiology and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:119-153. [PMID: 39843134 DOI: 10.1016/bs.apcsb.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Lamins, which are crucial type V intermediate filament proteins found in the nuclear lamina, are essential for maintaining the stability and function of the nucleus in higher vertebrates. They are classified into A- and B-types, and their distinct expression patterns contribute to cellular survival, development, and functionality. Lamins emerged during the transition from open to closed mitosis, with their complexity increasing alongside organism evolution. Derived from the LMNA, LMNB1, and LMNB2 genes, lamins undergo alternative splicing to produce seven variants, influencing cellular processes such as stiffness, chromatin condensation, and cell cycle regulation. The lamin network interacts with the cytoskeleton via Linkers of the nucleoskeleton to the cytoskeleton (LINC) complexes, playing a critical role in cellular stability and mechanotransduction. Lamins also regulate active transport into and out of the nucleus, affecting nuclear integrity, positioning, DNA maintenance, and gene expression. Genetic mutations in lamin genes lead to laminopathies, highlighting their functional significance and organizational roles. Changes in lamin subtype composition within the nuclear lamina have significant implications for cancer development, impacting cellular stiffness, mobility, and the Epithelial-to-Mesenchymal Transition (EMT). Lamin A/C, in particular, plays multifaceted roles in cancer biology, influencing progression, metastasis, and therapy response through interactions with various proteins and pathways. Dysregulated lamin expression is commonly observed in cancers, suggesting their potential as diagnostic and prognostic markers. This chapter underscores the pivotal roles of lamins in nuclear architecture and cancer biology, emphasizing their impact on cellular functions and disease pathology. Understanding lamin behavior and regulation mechanisms holds promise for developing novel diagnostic tools and targeted therapies in cancer treatment.
Collapse
Affiliation(s)
- Ravi Chauhan
- Department of Medical Oncology (Lab), Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab), Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Gunjan Dagar
- Department of Medical Oncology (Lab), Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Shalini Sharma
- Department of Medical Oncology (Lab), Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ann M Verghese
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Mukesh Tanwar
- Department of Genetics, Maharishi Dayanand University Rohtak, Haryana, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Jammu and Kashmir, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, United States
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
13
|
Xu JJ, Viny AD. Chromatin organization in myelodysplastic syndrome. Exp Hematol 2024; 134:104216. [PMID: 38582293 DOI: 10.1016/j.exphem.2024.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Disordered chromatin organization has emerged as a new aspect of the pathogenesis of myelodysplastic syndrome (MDS). Characterized by lineage dysplasia and a high transformation rate to acute myeloid leukemia (AML), the genetic determinant of MDS is thought to be the main driver of the disease's progression. Among the recurrently mutated pathways, alterations in chromatin organization, such as the cohesin complex, have a profound impact on hematopoietic stem cell (HSC) function and lineage commitment. The cohesin complex is a ring-like structure comprised of structural maintenance of chromosomes (SMC), RAD21, and STAG proteins that involve three-dimensional (3D) genome organization via loop extrusion in mammalian cells. The partial loss of the functional cohesin ring leads to altered chromatin accessibility specific to key hematopoietic transcription factors, which is thought to be the molecular mechanism of cohesin dysfunction. Currently, there are no specific targeting agents for cohesin mutant MDS/AML. Potential therapeutic strategies have been proposed based on the current understanding of cohesin mutant leukemogenesis. Here, we will review the recent advances in investigation and targeting approaches against cohesin mutant MDS/AML.
Collapse
Affiliation(s)
- Jane Jialu Xu
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York City, New York
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York City, New York.
| |
Collapse
|
14
|
Frett B, Stephens KE, Koss B, Melnyk S, Farrar J, Saha D, Roy Choudhury S. Enhancer-activated RET confers protection against oxidative stress to KMT2A-rearranged acute myeloid leukemia. Cancer Sci 2024; 115:963-973. [PMID: 38226414 PMCID: PMC10920984 DOI: 10.1111/cas.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024] Open
Abstract
Ectopic activation of rearranged during transfection (RET) has been reported to facilitate lineage differentiation and cell proliferation in different cytogenetic subtypes of acute myeloid leukemia (AML). Herein, we demonstrate that RET is significantly (p < 0.01) upregulated in AML subtypes containing rearrangements of the lysine methyltransferase 2A gene (KMT2A), commonly referred to as KMT2A-rearranged (KMT2A-r) AML. Integrating multi-epigenomics data, we show that the KMT2A-MLLT3 fusion induces the development of CCCTC-binding (CTCF)-guided de novo extrusion enhancer loop to upregulate RET expression in KMT2A-r AML. Based on the finding that RET expression is tightly correlated with the selective chromatin remodeler and mediator (MED) proteins, we used a small-molecule inhibitor having dual inhibition against RET and MED12-associated cyclin-dependent kinase 8 (CDK8) in KMT2A-r AML cells. Dual inhibition of RET and CDK8 restricted cell proliferation by producing multimodal oxidative stress responses in treated cells. Our data suggest that epigenetically enhanced RET protects KMT2A-r AML cells from oxidative stresses, which could be exploited as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Brendan Frett
- Department of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Kimberly E. Stephens
- Arkansas Children's Research InstituteLittle RockArkansasUSA
- Division of Infectious Diseases, Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Brian Koss
- Department of Biochemistry & Molecular BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Stepan Melnyk
- Arkansas Children's Research InstituteLittle RockArkansasUSA
| | - Jason Farrar
- Arkansas Children's Research InstituteLittle RockArkansasUSA
- Division of Hematology/Oncology, Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Debasmita Saha
- Sanford Burnham Presbys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Samrat Roy Choudhury
- Arkansas Children's Research InstituteLittle RockArkansasUSA
- Division of Hematology/Oncology, Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
15
|
Sobo JM, Alagna NS, Sun SX, Wilson KL, Reddy KL. Lamins: The backbone of the nucleocytoskeleton interface. Curr Opin Cell Biol 2024; 86:102313. [PMID: 38262116 DOI: 10.1016/j.ceb.2023.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
The nuclear lamina (NL) is a crucial component of the inner nuclear membrane (INM) and consists of lamin filaments and associated proteins. Lamins are type V intermediate filament proteins essential for maintaining the integrity and mechanical properties of the nucleus. In human cells, 'B-type' lamins (lamin B1 and lamin B2) are ubiquitously expressed, while 'A-type' lamins (lamin A, lamin C, and minor isoforms) are expressed in a tissue- and development-specific manner. Lamins homopolymerize to form filaments that localize primarily near the INM, but A-type lamins also localize to and function in the nucleoplasm. Lamins play central roles in the assembly, structure, positioning, and mechanics of the nucleus, modulating cell signaling and influencing development, differentiation, and other activities. This review highlights recent findings on the structure and regulation of lamin filaments, providing insights into their multifaceted functions, including their role as "mechanosensors", delving into the emerging significance of lamin filaments as vital links between cytoskeletal and nuclear structures, chromatin organization, and the genome.
Collapse
Affiliation(s)
- Joan M Sobo
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nicholas S Alagna
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katherine L Wilson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Karen L Reddy
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Kim Y. The impact of altered lamin B1 levels on nuclear lamina structure and function in aging and human diseases. Curr Opin Cell Biol 2023; 85:102257. [PMID: 37806292 DOI: 10.1016/j.ceb.2023.102257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023]
Abstract
The role of lamin B1 in human health and aging has attracted increasing attention as mounting evidence reveals its significance in diverse cellular processes. Both upregulation and downregulation of lamin B1 have been implicated in age-associated organ dysfunctions and various human diseases, including central nervous system disorders. Additionally, lamin B1 levels undergo alterations in cancer cells, and a tumor-specific association exists between lamin B1 abundance and cancer aggressiveness. Investigating the connectivity between lamin B1 abundance and human health is of utmost importance for further research. This review presents recent advancements in understanding lamin B1's role in nuclear lamina function and its implications for human health.
Collapse
Affiliation(s)
- Youngjo Kim
- Department of Integrated Biomedical Science and Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheon-an 31151, Republic of Korea.
| |
Collapse
|
17
|
Dong J, Ru Y, Zhai L, Gao Y, Guo X, Chen B, Lv X. LMNB1 deletion in ovarian cancer inhibits the proliferation and metastasis of tumor cells through PI3K/Akt pathway. Exp Cell Res 2023; 426:113573. [PMID: 37003558 DOI: 10.1016/j.yexcr.2023.113573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Ovarian cancer (OC) is a common malignant tumor in gynecology. LMNB1 is an important component of the nuclear skeleton. The expression of LMNB1 in ovarian cancer is significantly higher than that in normal tissues, but its role in tumor still needs comprehensive investigation. In this study, we overexpressed and knocked down LMNB1 in ovarian cancer cells and explore the effect of LMNB1 on the cell proliferation, migration and the underlying mechanism. We analyzed the expression levels of LMNB1 in ovarian cancer and their clinical relevance by using bioinformatics methods, qRT-PCR, Western blot and immunohistochemistry. To state the effect and mechanism of LMNB1 on OC in vitro and in vivo, we performed mouse xenograft studies, CCK8, cloning formation, Edu incorporation, wound healing, transwell and flow cytometry assay in stable LMNB1 knockdown OC cells, following by RNA-seq. Overexpression of LMNB1 indicates the progression of OC. LMNB1 knockdown inhibited the proliferation and migration of OC cells by suppressing the FGF1-mediated PI3K-Akt signaling pathway. Our study shows LMNB1 as a novel prognostic factor and therapeutic target in OC.
Collapse
Affiliation(s)
- Jian Dong
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China.
| | - Yi Ru
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China
| | - Lianghao Zhai
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China
| | - Yunge Gao
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China
| | - Xin Guo
- Department of Endoscopic Surgery, Chinese People's Liberation Army 986th Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710054, China.
| | - Biliang Chen
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China.
| | - Xiaohui Lv
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Shaanxi, Xi'an, 710032, China.
| |
Collapse
|
18
|
Liu X, Luo T, Fan Z, Li J, Zhang Y, Lu G, Lv M, Lin S, Cai Z, Zhang J, Zhou K, Guo J, Hua Y, Zhang Y, Li Y. Single cell RNA-seq resolution revealed CCR1+/SELL+/XAF+ CD14 monocytes mediated vascular endothelial cell injuries in Kawasaki disease and COVID-19. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166707. [PMID: 37001702 PMCID: PMC10052884 DOI: 10.1016/j.bbadis.2023.166707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
INTRODUCTION The COVID-19 pandemic provide the opportunities to explore the numerous similarities in clinical symptoms with Kawasaki disease (KD), including severe vasculitis. Despite this, the underlying mechanisms of vascular injury in both KD and COVID-19 remain elusive. To identify these mechanisms, this study employs single-cell RNA sequencing to explore the molecular mechanisms of immune responses in vasculitis, and validate the results through in vitro experiments. METHOD The single-cell RNA sequencing (scRNA-seq) analysis of peripheral blood mononuclear cells (PBMCs) was carried out to investigate the molecular mechanisms of immune responses in vasculitis in KD and COVID-19. The analysis was performed on PBMCs from six children diagnosed with complete KD, three age-matched KD healthy controls (KHC), six COVID-19 patients (COV), three influenza patients (FLU), and four healthy controls (CHC). The results from the scRNA-seq analysis were validated through flow cytometry and immunofluorescence experiments on additional human samples. Subsequently, monocyte adhesion assays, immunofluorescence, and quantitative polymerase chain reaction (qPCR) were used to analyze the damages to endothelial cells post-interaction with monocytes in HUVEC and THP1 cultures. RESULTS The scRNA-seq analysis revealed the potential cellular types involved and the alterations in genetic transcriptions in the inflammatory responses. The findings indicated that while the immune cell compositions had been altered in KD and COV patients, and the ratio of CD14+ monocytes were both elevated in KD and COV. While the CD14+ monocytes share a large scale of same differentiated expressed geens between KD and COV. The differential activation of CD14 and CD16 monocytes was found to respond to both endothelial and epithelial dysfunctions. Furthermore, SELL+/CCR1+/XAF1+ CD14 monocytes were seen to enhance the adhesion and damage to endothelial cells. The results also showed that different types of B cells were involved in both KD and COV, while only the activation of T cells was recorded in KD. CONCLUSION In conclusion, our study demonstrated the role of the innate immune response in the regulation of endothelial dysfunction in both KD and COVID-19. Additionally, our findings indicate that the adaptive immunity activation differs between KD and COVID-19. Our results demonstrate that monocytes in COVID-19 exhibit adhesion to both endothelial cells and alveolar epithelial cells, thus providing insight into the mechanisms and shared phenotypes between KD and COVID-19.
Collapse
|
19
|
Tuning between Nuclear Organization and Functionality in Health and Disease. Cells 2023; 12:cells12050706. [PMID: 36899842 PMCID: PMC10000962 DOI: 10.3390/cells12050706] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The organization of eukaryotic genome in the nucleus, a double-membraned organelle separated from the cytoplasm, is highly complex and dynamic. The functional architecture of the nucleus is confined by the layers of internal and cytoplasmic elements, including chromatin organization, nuclear envelope associated proteome and transport, nuclear-cytoskeletal contacts, and the mechano-regulatory signaling cascades. The size and morphology of the nucleus could impose a significant impact on nuclear mechanics, chromatin organization, gene expression, cell functionality and disease development. The maintenance of nuclear organization during genetic or physical perturbation is crucial for the viability and lifespan of the cell. Abnormal nuclear envelope morphologies, such as invagination and blebbing, have functional implications in several human disorders, including cancer, accelerated aging, thyroid disorders, and different types of neuro-muscular diseases. Despite the evident interplay between nuclear structure and nuclear function, our knowledge about the underlying molecular mechanisms for regulation of nuclear morphology and cell functionality during health and illness is rather poor. This review highlights the essential nuclear, cellular, and extracellular components that govern the organization of nuclei and functional consequences associated with nuclear morphometric aberrations. Finally, we discuss the recent developments with diagnostic and therapeutic implications targeting nuclear morphology in health and disease.
Collapse
|
20
|
Chapman KB, Filipsky F, Peschke N, Gelléri M, Weinhardt V, Braun A, Hausmann M, Cremer C. A comprehensive method to study the DNA's association with lamin and chromatin compaction in intact cell nuclei at super resolution. NANOSCALE 2023; 15:742-756. [PMID: 36524744 PMCID: PMC9813922 DOI: 10.1039/d2nr02684h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Super-resolution fluorescence microscopy has revolutionized multicolor imaging of nuclear structures due to the combination of high labeling specificity and high resolution. Here we expanded the recently developed fBALM (DNA structure fluctuation-assisted binding activated localization microscopy) method by developing a stable methodological sequence that enables dual-color imaging of high-resolution genomic DNA together with an immunofluorescently labeled intranuclear protein. Our measurements of the nuclear periphery, imaging DNA and LaminB1 in biologically relevant samples, show that this novel dual-color imaging method is feasible for further quantitative evaluations. We were able to study the relative spatial signal organization between DNA and LaminB1 by means of highly specific colocalization measurements at nanometer resolution. Measurements were performed with and without the antifade embedding medium ProLong Gold, which proved to be essential for imaging of LaminB1, but not for imaging of SytoxOrange labeled DNA. The localization precision was used to differentiate between localizations with higher and lower amounts of emitting photons. We interpret high intensity localizations to be renatured DNA sections in which a high amount of Sytox Orange molecules were bound. This could give insight into the denaturation kinetics of DNA during fBALM. These results were further complemented by measurements of γH2AX and H3K9me3 signal organization to demonstrate differences within the chromatin landscape, which were quantified with image processing methods such as Voronoi segmentation.
Collapse
Affiliation(s)
- Katarina B Chapman
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany.
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Filip Filipsky
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Nicolas Peschke
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany.
| | - Márton Gelléri
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Venera Weinhardt
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Andrejs Braun
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany.
| | - Christoph Cremer
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany.
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| |
Collapse
|
21
|
Moreno-Andrés D, Holl K, Antonin W. The second half of mitosis and its implications in cancer biology. Semin Cancer Biol 2023; 88:1-17. [PMID: 36436712 DOI: 10.1016/j.semcancer.2022.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
The nucleus undergoes dramatic structural and functional changes during cell division. With the entry into mitosis, in human cells the nuclear envelope breaks down, chromosomes rearrange into rod-like structures which are collected and segregated by the spindle apparatus. While these processes in the first half of mitosis have been intensively studied, much less is known about the second half of mitosis, when a functional nucleus reforms in each of the emerging cells. Here we review our current understanding of mitotic exit and nuclear reformation with spotlights on the links to cancer biology.
Collapse
Affiliation(s)
- Daniel Moreno-Andrés
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Kristin Holl
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
22
|
Ditadi A, Sturgeon CM. Back to the future: lessons from development drive innovation of human pluripotent stem cell therapies. Exp Hematol 2023; 117:9-14. [PMID: 36400313 DOI: 10.1016/j.exphem.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Christopher M Sturgeon
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai School of Medicine, New York, NY.
| |
Collapse
|
23
|
Cuartero S, Stik G, Stadhouders R. Three-dimensional genome organization in immune cell fate and function. Nat Rev Immunol 2022; 23:206-221. [PMID: 36127477 DOI: 10.1038/s41577-022-00774-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
Immune cell development and activation demand the precise and coordinated control of transcriptional programmes. Three-dimensional (3D) organization of the genome has emerged as an important regulator of chromatin state, transcriptional activity and cell identity by facilitating or impeding long-range genomic interactions among regulatory elements and genes. Chromatin folding thus enables cell type-specific and stimulus-specific transcriptional responses to extracellular signals, which are essential for the control of immune cell fate, for inflammatory responses and for generating a diverse repertoire of antigen receptor specificities. Here, we review recent findings connecting 3D genome organization to the control of immune cell differentiation and function, and discuss how alterations in genome folding may lead to immune dysfunction and malignancy.
Collapse
Affiliation(s)
- Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain. .,Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.
| | - Grégoire Stik
- Centre for Genomic Regulation (CRG), Institute of Science and Technology (BIST), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands. .,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
24
|
Li Y, Chen M, Chang W. Roles of the nucleus in leukocyte migration. J Leukoc Biol 2022; 112:771-783. [PMID: 35916042 DOI: 10.1002/jlb.1mr0622-473rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Leukocytes patrol our bodies in search of pathogens and migrate to sites of injury in response to various stimuli. Rapid and directed leukocyte motility is therefore crucial to our immunity. The nucleus is the largest and stiffest cellular organelle and a mechanical obstacle for migration through constrictions. However, the nucleus is also essential for 3D cell migration. Here, we review the roles of the nucleus in leukocyte migration, focusing on how cells deform their nuclei to aid cell motility and the contributions of the nucleus to cell migration. We discuss the regulation of the nuclear biomechanics by the nuclear lamina and how it, together with the cytoskeleton, modulates the shapes of leukocyte nuclei. We then summarize the functions of nesprins and SUN proteins in leukocytes and discuss how forces are exerted on the nucleus. Finally, we examine the mechanical roles of the nucleus in cell migration, including its roles in regulating the direction of migration and path selection.
Collapse
Affiliation(s)
- Yutao Li
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Mengqi Chen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wakam Chang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
25
|
MDS/AML with del5q: An acquired "laminopathy"? Cell Stem Cell 2022; 29:498-499. [PMID: 35395184 DOI: 10.1016/j.stem.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this issue of Cell Stem Cell, Reilly et al. propose loss of LMNB1, the gene encoding lamin B1, often deleted in MDS/AML, as a novel genetic basis for the abnormal nuclear shape of neutrophils (known as acquired Pelger-Huët anomaly) and a cause of HSPC fate alterations promoting malignancy.
Collapse
|