1
|
Sarel-Gallily R, Gunapala KM, Benvenisty N. Large-scale analysis of loss of chromosome Y in human pluripotent stem cells: Implications for Turner syndrome and ribosomopathies. Stem Cell Reports 2025; 20:102471. [PMID: 40185088 DOI: 10.1016/j.stemcr.2025.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 04/07/2025] Open
Abstract
Loss of chromosome Y (LOY) occurs in aging and cancers, but its extent and implications in human embryonic stem cells (hESCs) have not been studied. Here, we analyzed over 2,650 RNA sequencing (RNA-seq) samples from hESCs and their differentiated derivatives to detect LOY. We found that 12% of hESC samples have lost their chromosome Y and identified LOY in all three germ layers. Differential expression analysis revealed that LOY samples showed a decrease in expression of pluripotency markers and in ribosomal protein (RP) genes. Strikingly, significant RP transcription downregulation was observed in most RP genes, although there is only one expressed Y-linked RP gene. We further analyzed RP expression in Turner syndrome and Diamond-Blackfan anemia samples and observed overall downregulation of RP transcription. This broad analysis sheds light on the scope and effects of LOY in hESCs, suggesting a novel dosage-sensitive mechanism regulating RP gene transcription in LOY and autosomal ribosomopathies.
Collapse
Affiliation(s)
- Roni Sarel-Gallily
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Keith M Gunapala
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
2
|
Andreatta F, Hendriks D, Artegiani B. Human Organoids as an Emerging Tool for Genome Screenings. Annu Rev Biomed Eng 2025; 27:157-183. [PMID: 40310889 DOI: 10.1146/annurev-bioeng-103023-122327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Over the last decade, a plethora of organoid models have been generated to recapitulate aspects of human development, disease, tissue homeostasis, and repair. Organoids representing multiple tissues have emerged and are typically categorized based on their origin. Tissue-derived organoids are established directly from tissue-resident stem/progenitor cells of either adult or fetal origin. Starting from pluripotent stem cells (PSCs), PSC-derived organoids instead recapitulate the developmental trajectory of a given organ. Gene editing technologies, particularly the CRISPR-Cas toolbox, have greatly facilitated gene manipulation experiments with considerable ease and scalability, revolutionizing organoid-based human biology research. Here, we review the recent adaptation of CRISPR-based screenings in organoids. We examine the strategies adopted to perform CRISPR screenings in organoids, discuss different screening scopes and readouts, and highlight organoid-specific challenges. We then discuss individual organoid-based genome screening studies that have uncovered novel genes involved in a variety of biological processes. We close by providing an outlook on how widespread adaptation of CRISPR screenings across the organoid field may be achieved, to ultimately leverage our understanding of human biology.
Collapse
Affiliation(s)
| | - Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; ,
| | | |
Collapse
|
3
|
Montilla-Rojo J, Hillenius S, Eleveld TF, Salvatori DCF, Looijenga LHJ. Chromosome-specific aberrations, rather than general aneuploidy, may drive mouse embryonic stem cell-derived teratoma metastasis. Stem Cell Res Ther 2025; 16:181. [PMID: 40234993 PMCID: PMC12001581 DOI: 10.1186/s13287-025-04305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
INTRODUCTION Pluripotent stem cells (PSC) are known to recurrently acquire genetic aberrations including chromosomal aneuploidy during long-term culture of which the consequences remain largely unknown. A recent study reported that xenografting of aneuploid mouse embryonic stem cells (mESC) gives rise to teratomas containing undifferentiated elements with metastatic capacity. This contrasts with benign teratomas composed of fully differentiated tissues from the three embryonic germ layers obtained by xenografting diploid mESCs. The highlighted study thus proposes that general aneuploidy may drive metastasis of PSC-derived teratomas, thus directly correlating it with malignant potential of PSCs. MAIN: The aneuploid mESC lines used in the aforementioned study showed trisomies of chromosomes 6, 8, 11, 15 or combinations thereof. Interestingly, several of these trisomies, specifically in chromosomes 6, 8, and 11, constitute well-known chromosomal aberrations recurrently acquired in mESCs upon (long-term) in vitro culture. This is suggested to be driven by numerous (proto)oncogenes in these regions. Notably, recurrent chromosomal aberrations are also observed in human PSCs (hPSCs), mostly in chromosome 1, 12, 17, 20 and X, and have similarly been associated with the acquisition of a malignant phenotype in vitro, posing a risk to their potential clinical application. There is synteny between the chromosomes recurrently affected by such aberrations in mouse and human PSCs, namely mouse chromosome 6 and human chromosome 12 as well as mouse and human chromosome 1, suggesting a chromosome-specific phenomenon that may transcend the species barrier. Additionally, in the field of cancer, malignant (but not benign) human germ cell tumors (hGCTs), pathologically similar to the tumors derived from the aforementioned aneuploid mouse PSCs, are characterized by supernumerical copies of chromosome 12, highlighting the additional clinical relevance of these findings and the aneuploid mESC models for GCT research and treatment. CONCLUSIONS We suggest that chromosome-specific trisomies, rather than general aneuploidy, might drive teratoma metastasis upon mESC xenografting in vivo. We also observed indications of synteny between the recurrent chromosomal aberrations among human and mouse PSCs, suggesting potentially common intraspecies selection mechanisms. We finally reiterate the similarities observed between the PSC and GCT field related to chromosomal aberrations and malignancy, highlighting the relevance of these experimental models in both research fields.
Collapse
Affiliation(s)
- Joaquin Montilla-Rojo
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Sanne Hillenius
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS, the Netherlands
| | - Thomas F Eleveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS, the Netherlands
| | - Daniela C F Salvatori
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Leendert H J Looijenga
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS, the Netherlands.
- Department of Pathology, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands.
| |
Collapse
|
4
|
Montilla‐Rojo J, Eleveld TF, van Soest M, Hillenius S, Timmerman DM, Gillis AJM, Roelen BAJ, Mummery CL, Looijenga LHJ, Salvatori DCF. Depletion of TP53 in Human Pluripotent Stem Cells Triggers Malignant-Like Behavior. Adv Biol (Weinh) 2025; 9:e2400538. [PMID: 39760438 PMCID: PMC12001006 DOI: 10.1002/adbi.202400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Human pluripotent stem cells (hPSCs) tend to acquire genetic aberrations upon culture in vitro. Common aberrations are mutations in the tumor suppressor TP53, suspected to confer a growth-advantage to the mutant cells. However, their full impact in the development of malignant features and safety of hPSCs for downstream applications is yet to be elucidated. Here, TP53 is knocked out in hPSCs using CRISPR-Cas9 and compared them with isogenic wild-type hPSCs and human germ cell tumor lines as models of malignancy. While no major changes in proliferation, pluripotency, and transcriptomic profiles are found, mutant lines display aberrations in some of the main chromosomal hotspots for genetic abnormalities in hPSCs. Additionally, enhanced clonogenic and anchorage-free growth, alongside resistance to chemotherapeutic compounds is observed. The results indicate that common TP53-depleting mutations in hPSCs, although potentially overlooked by standard analyses, can impact their behavior and safety in a clinical setting.
Collapse
Affiliation(s)
- Joaquin Montilla‐Rojo
- Anatomy and PhysiologyDepartment Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CLThe Netherlands
| | - Thomas F. Eleveld
- Princess Máxima Center for Pediatric OncologyUtrecht3584 CSThe Netherlands
| | - Marnix van Soest
- Anatomy and PhysiologyDepartment Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CLThe Netherlands
| | - Sanne Hillenius
- Princess Máxima Center for Pediatric OncologyUtrecht3584 CSThe Netherlands
| | | | - Ad J. M. Gillis
- Princess Máxima Center for Pediatric OncologyUtrecht3584 CSThe Netherlands
| | - Bernard A. J. Roelen
- Anatomy and PhysiologyDepartment Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CLThe Netherlands
| | - Christine L. Mummery
- Department of Anatomy and EmbryologyLeiden University Medical CentreLeiden2333 ZCThe Netherlands
| | - Leendert H. J. Looijenga
- Princess Máxima Center for Pediatric OncologyUtrecht3584 CSThe Netherlands
- Department of PathologyUniversity Medical Center UtrechtUtrecht3584 CXThe Netherlands
| | - Daniela C. F. Salvatori
- Anatomy and PhysiologyDepartment Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CLThe Netherlands
| |
Collapse
|
5
|
Vitillo L, Anjum F, Hewitt Z, Laing O, Ababneh NA, Baker D, Barbaric I, Coffey PJ. Gain of 20q11.21 in human pluripotent stem cells enhances differentiation to retinal pigment epithelium. Stem Cell Res Ther 2025; 16:82. [PMID: 39985055 PMCID: PMC11846190 DOI: 10.1186/s13287-025-04196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Cell therapies based on human pluripotent stem cells (hPSCs) are in clinical trials with the aim of restoring vision in people with age-related macular degeneration. The final cell therapy product consists of retinal pigment epithelium (RPE) cells differentiated from hPSCs. However, hPSCs recurrently acquire genetic abnormalities that give them an advantage in culture with unknown effects to the clinically-relevant cell progeny. One of the most common genetic abnormalities in hPSCs is the sub-karyotype 20q11.21 copy number variant, known to carry oncogenes. Understanding the impact of this variant on RPE differentiation and its potential for malignant transformation is crucial for the development of safe and effective cell therapies. METHODS We monitored the RPE differentiation efficiency of hPSCs with or without the 20q11.21 variant. We then phenotyped the purified RPE cells for functionality, purity and tumorigenicity potential. RESULTS We observed that 20q11.21 clones exhibited an enhanced differentiation capacity, developing pigmented foci at a higher rate and yield compared to normal clones. Gene expression analysis confirmed the upregulation of key RPE markers in 20q11.21 clones. The enhanced differentiation capacity of 20q11.21 clones was found to be dependent on the activity of BCL-XL, located within the amplicon. Furthermore, we demonstrated that 20q11.21-containing RPE cells displayed a mature phenotype, maintained long-term stability, and exhibited no malignant transformation capacity in vitro. CONCLUSION We demonstrated that gain of 20q11.21 enhances the speed and yield of RPE differentiation without compromising the phenotype of the derivatives. Finally, we discovered that 20q11.21-localised BCL-XL is important for RPE differentiation with potential non-canonical roles in retinal biology.
Collapse
Affiliation(s)
- Loriana Vitillo
- Rescue, Repair and Regeneration, Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.
| | - Fabiha Anjum
- Rescue, Repair and Regeneration, Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Zoe Hewitt
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Owen Laing
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Nidaa A Ababneh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Duncan Baker
- Sheffield Diagnostic Genetic Services, Sheffield Children's Hospital, Sheffield, S10 2TH, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Peter J Coffey
- Rescue, Repair and Regeneration, Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
- Centre for Stem Cell Biology and Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
6
|
Lei Y, Duong MC, Krivec N, Janssens C, Regin M, Huyghebaert A, Couvreu de Deckersberg E, Sermon K, Al Delbany D, Spits C. Loss of 18q Alters TGFβ Signalling Affecting Anteroposterior Neuroectodermal Fate in Human Embryonic Stem Cells. Cell Prolif 2025:e13813. [PMID: 39908990 DOI: 10.1111/cpr.13813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 02/07/2025] Open
Abstract
Chromosomal abnormalities acquired during cell culture can compromise the differentiation potential of human pluripotent stem cells (hPSCs). In this work, we identified a diminished differentiation capacity to retinal progenitor cells in human embryonic stem cells (hESCs) with complex karyotypes that had in common the loss of part of chromosome 18q. Time-course gene-expression analysis during spontaneous differentiation and single-cell RNA sequencing found that these variant cell lines poorly specified into anterior neuroectoderm, and, when progressing through differentiation, they yielded poorly pigmented cells, with proliferating and pluripotent cell populations. The variant cell lines showed dysregulation of TGFβ signalling during differentiation, and chemical modulation of the TGFβ pathways showed that the basis of the improper specification was due to imbalances in the anteroposterior neuroectodermal fate commitment.
Collapse
Affiliation(s)
- Yingnan Lei
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Mai Chi Duong
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
- Department of Biochemistry, Ho Chi Minh city, Vietnam
| | - Nuša Krivec
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Charlotte Janssens
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Marius Regin
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Anfien Huyghebaert
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Karen Sermon
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Diana Al Delbany
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| | - Claudia Spits
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Brussels, Belgium
| |
Collapse
|
7
|
Narozna M, Latham MC, Gorbsky GJ. Origin of Chromosome 12 Trisomy Surge in Human Induced Pluripotent Stem Cells (iPSCs). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.02.626470. [PMID: 39677655 PMCID: PMC11642788 DOI: 10.1101/2024.12.02.626470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cultured pluripotent stem cells are unique in being the only fully diploid immortal human cell lines. However, during continued culture, they acquire significant chromosome abnormalities. Chromosome 12 trisomy is the most common whole-chromosome abnormality found during culture of human induced pluripotent stem cells (iPSCs). The conventional paradigm is that trisomy 12 occurs very rarely but provides a proliferative advantage, enabling these cells to outcompete the diploid. Here, we challenge this prevailing model by demonstrating that trisomy 12 arises simultaneously in a very high percentage of diploid cells. Using a single cell line that reproducibly undergoes transition from diploid to trisomy 12, we found that proliferation differences alone do not account for the rapid dominance of trisomic cells. Through careful mapping by fluorescent in-situ hybridization, we identified critical transition passages where trisomic cells first appeared and swiftly gained dominance. Remarkably, single trisomic cells repeatedly emerged de novo from diploid parents. Delving deeper, we discovered an extremely high incidence of chromosome 12 anaphase bridging exclusively during transition passages, along with overrepresentation of chromosome 12 chromatids in micronuclei. These micronuclei fail to replicate during S phase. Subsequently, when these micronucleated cells enter mitosis they contain an unreplicated chromosome 12 chromatids. We also found that nearly 20% of the shorter p arms of chromosome 12 but not the longer q arms exhibited loss of subtelomeric repeats during transition passages. Chromosome 12p arms were exclusively responsible for the bridging observed in anaphase cells. Our findings unveil a novel mechanism of whole-chromosome instability in human stem cells, where chromosome 12p arm-specific segregation errors occur simultaneously in a high percentage of cells. The slight yet significant growth advantage of trisomy 12 cells allows them to persist and eventually dominate the population. Our findings detailing this novel interpretation of the origin of chromosome instability in cultured of human stem cells may have broad implications for understanding the genesis of aneuploidy across diverse biological systems.
Collapse
Affiliation(s)
- Maria Narozna
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Megan C. Latham
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Gary J. Gorbsky
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
8
|
Pagliaro A, Artegiani B, Hendriks D. Emerging approaches to enhance human brain organoid physiology. Trends Cell Biol 2025:S0962-8924(24)00254-X. [PMID: 39826996 DOI: 10.1016/j.tcb.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
Brain organoids are important 3D models for studying human brain development, disease, and evolution. To overcome some of the existing limitations that affect organoid quality, reproducibility, characteristics, and in vivo resemblance, current efforts are directed to improve their physiological relevance by exploring different, yet interconnected, routes. In this review, these approaches and their latest developments are discussed, including stem cell optimization, refining morphogen administration strategies, altering the extracellular matrix (ECM) niche, and manipulating tissue architecture to mimic in vivo brain morphogenesis. Additionally, strategies to increase cell diversity and enhance organoid maturation, such as establishing co-cultures, assembloids, and organoid in vivo xenotransplantation, are reviewed. We explore how these various factors can be tuned and intermingled and speculate on future avenues towards even more physiologically-advanced brain organoids.
Collapse
Affiliation(s)
- Anna Pagliaro
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
9
|
Andrews PW. Germ cell tumors, cell surface markers, and the early search for human pluripotent stem cells. Bioessays 2024; 46:e2400094. [PMID: 39115324 PMCID: PMC11589668 DOI: 10.1002/bies.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 11/27/2024]
Abstract
Many strands of research by different groups, starting from teratocarcinomas in the laboratory mouse, later moving the corresponding human tumors, contributed to the isolation and description of human pluripotent stem cells (PSCs). In this review, I highlight the contributions from my own research, particularly at the Wistar Institute during the 1980s, when with my colleagues we characterized one of the first clonal lines of pluripotent human embryonal carcinoma (EC) cells, the stem cells of teratocarcinomas, and identified key features including cell surface antigen markers that have since found a place in the study and exploitation of human PSC. Much of this research depended upon close teamwork with colleagues, many in other laboratories, who contributed different expertise and experience. It was also often driven by circumstance and chance rather than pursuit of a grand design.
Collapse
Affiliation(s)
- Peter W. Andrews
- The Centre for Stem Cell BiologyThe School of BiosciencesThe University of SheffieldWestern BankSheffieldUK
| |
Collapse
|
10
|
Vales JP, Barbaric I. Culture-acquired genetic variation in human pluripotent stem cells: Twenty years on. Bioessays 2024; 46:e2400062. [PMID: 38873900 PMCID: PMC11589660 DOI: 10.1002/bies.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Genetic changes arising in human pluripotent stem cells (hPSC) upon culture may bestow unwanted or detrimental phenotypes to cells, thus potentially impacting on the applications of hPSCs for clinical use and basic research. In the 20 years since the first report of culture-acquired genetic aberrations in hPSCs, a characteristic spectrum of recurrent aberrations has emerged. The preponderance of such aberrations implies that they provide a selective growth advantage to hPSCs upon expansion. However, understanding the consequences of culture-acquired variants for specific applications in cell therapy or research has been more elusive. The rapid progress of hPSC-based therapies to clinics is galvanizing the field to address this uncertainty and provide definitive ways both for risk assessment of variants and reducing their prevalence in culture. Here, we aim to provide a timely update on almost 20 years of research on this fascinating, but a still unresolved and concerning, phenomenon.
Collapse
Affiliation(s)
- John P. Vales
- Centre for Stem Cell BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
- INSIGNEO InstituteUniversity of SheffieldSheffieldUK
| | - Ivana Barbaric
- Centre for Stem Cell BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
- INSIGNEO InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
11
|
Pera MF. A brief chronicle of research on human pluripotent stem cells. Bioessays 2024; 46:e2400092. [PMID: 39058898 DOI: 10.1002/bies.202400092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Today, human pluripotent stem cell technologies find widespread application across biomedical research, as models for early human development, as platforms for functional human genomics, as tools for the study of disease, drug screening and toxicology, and as a renewable source of cellular therapeutics for a range of intractable diseases. The foundations of this human pluripotent stem cell revolution rest on advances in a wide range of disciplines, including cancer biology, assisted reproduction, cell culture and organoid technology, somatic cell nuclear transfer, primate embryology, single-cell biology, and gene editing. This review surveys the slow emergence of the study of human pluripotency and the exponential growth of the field during the past several decades.
Collapse
Affiliation(s)
- Martin F Pera
- JAX Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| |
Collapse
|
12
|
Chen X, Zhao Y, Lv Y, Xie J. Immunological platelet transfusion refractoriness: current insights from mechanisms to therapeutics. Platelets 2024; 35:2306983. [PMID: 38314765 DOI: 10.1080/09537104.2024.2306983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024]
Abstract
Although there have been tremendous improvements in the production and storage of platelets, platelet transfusion refractoriness (PTR) remains a serious clinical issue that may lead to various severe adverse events. The burden of supplying platelets is worsened by rising market demand and limited donor pools of compatible platelets. Antibodies against platelet antigens are known to activate platelets through FcγR-dependent or complement-activated channels, thereby rapidly eliminating foreign platelets. Recently, other mechanisms of platelet clearance have been reported. The current treatment strategy for PTR is to select appropriate and compatible platelets; however, this necessitates a sizable donor pool and technical assistance for costly testing. Consolidation of these mechanisms should be of critical significance in providing insight to establish novel therapeutics to target immunological platelet refractoriness. Therefore, the purposes of this review were to explore the modulation of the immune system over the activation and elimination of allogeneic platelets and to summarize the development of alternative approaches for treating and avoiding alloimmunization to human leukocyte antigen or human platelet antigen in PTR.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhong Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Krivec N, Couvreu de Deckersberg E, Lei Y, Al Delbany D, Regin M, Verhulst S, van Grunsven LA, Sermon K, Spits C. Gain of 1q confers an MDM4-driven growth advantage to undifferentiated and differentiating hESC while altering their differentiation capacity. Cell Death Dis 2024; 15:852. [PMID: 39572522 PMCID: PMC11582570 DOI: 10.1038/s41419-024-07236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Gain of 1q is a highly recurrent chromosomal abnormality in human pluripotent stem cells. In this work, we show that gains of 1q impact the differentiation capacity to derivates of the three germ layers, leading to mis-specification to cranial placode and non-neural ectoderm during neuroectoderm differentiation. Also, we found a weaker expression of lineage-specific markers in hepatoblasts and cardiac progenitors. Competition assays show that the cells retain their selective advantage during differentiation, which is mediated by a higher expression of MDM4, a gene located in the common region of gain. MDM4 drives the winner phenotype of the mutant cells in both the undifferentiated and differentiating state by reducing the cells' sensitivity to DNA damage through decreased p53-mediated apoptosis. Finally, we found that cell density in culture plays a key role in promoting the competitive advantage of the cells by increasing DNA damage.
Collapse
Affiliation(s)
- Nuša Krivec
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Yingnan Lei
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Diana Al Delbany
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Marius Regin
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Karen Sermon
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Claudia Spits
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium.
| |
Collapse
|
14
|
Kim YJ, Kang B, Kweon S, Oh S, Kim D, Gil D, Lee H, Kim JH, Ju JH, Roh TY, Hong CP, Cha HJ. Longitudinal analysis of genetic and epigenetic changes in human pluripotent stem cells in the landscape of culture-induced abnormality. Exp Mol Med 2024; 56:2409-2422. [PMID: 39482531 PMCID: PMC11612254 DOI: 10.1038/s12276-024-01334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 11/03/2024] Open
Abstract
Human embryonic stem cells (hESCs) are naturally equipped to maintain genome integrity to minimize genetic mutations during early embryo development. However, genetic aberration risks and subsequent cellular changes in hESCs during in vitro culture pose a significant threat to stem cell therapy. While a few studies have reported specific somatic mutations and copy number variations (CNVs), the molecular mechanisms underlying the acquisition of 'culture-adapted phenotypes' by hESCs are largely unknown. Therefore, we conducted comprehensive genomic, single-cell transcriptomic, and single-cell ATAC-seq analyses of an isogenic hESC model displaying definitive 'culture-adapted phenotypes'. We found that hESCs lacking TP53, in which loss-of-function mutations were identified in human pluripotent stem cells (hPSCs), presented a surge in somatic mutations. Notably, hPSCs with a copy number gain of 20q11.21 during early passage did not present 'culture-adapted phenotypes' or BCL2L1 induction. Single-cell RNA-seq and ATAC-seq analyses revealed active transcriptional regulation at the 20q11.21 locus. Furthermore, the induction of BCL2L1 and TPX2 to trigger 'culture-adapted phenotypes' was associated with epigenetic changes facilitating TEA domain (TEAD) binding. These results suggest that 20q11.21 copy number gain and additional epigenetic changes are necessary for expressing 'culture-adapted phenotypes' by activating gene transcription at this specific locus.
Collapse
Affiliation(s)
- Yun-Jeong Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Byunghee Kang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Solbi Kweon
- Theragen Bio, Co., Ltd., Seongnam, Republic of Korea
| | - Sejin Oh
- Theragen Bio, Co., Ltd., Seongnam, Republic of Korea
| | - Dayeon Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Dayeon Gil
- Korea National Stem Cell Bank, Cheongju, Republic of Korea
- Division of Intractable Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Republic of Korea
| | - Hyeonji Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jung-Hyun Kim
- Korea National Stem Cell Bank, Cheongju, Republic of Korea
- Division of Intractable Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Republic of Korea
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Ji Hyeon Ju
- YiPSCELL Inc., Seoul, Republic of Korea
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea.
| | | | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Lezmi E, Jung J, Benvenisty N. High prevalence of acquired cancer-related mutations in 146 human pluripotent stem cell lines and their differentiated derivatives. Nat Biotechnol 2024; 42:1667-1671. [PMID: 38195986 DOI: 10.1038/s41587-023-02090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
To survey cancer-related mutations in human pluripotent stem cells and their derivatives, we analyzed >2,200 transcriptomes from 146 independent lines in the NCBI's Sequence Read Archive. Twenty-two per cent of samples had at least one cancer-related mutation; of these, 64% had TP53 mutations, which conferred a pronounced selective advantage, perturbed target gene expression and altered cellular differentiation. These findings underscore the need for robust surveillance of cancer-related mutations in pluripotent cells, especially in clinical applications.
Collapse
Affiliation(s)
- Elyad Lezmi
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Jonathan Jung
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Nissim Benvenisty
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
16
|
Pierson Smela M, Pepe V, Lubbe S, Kiskinis E, Church GM. SeqVerify: An accessible analysis tool for cell line genomic integrity, contamination, and gene editing outcomes. Stem Cell Reports 2024; 19:1505-1515. [PMID: 39270651 PMCID: PMC11561455 DOI: 10.1016/j.stemcr.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Over the last decade, advances in genome editing and pluripotent stem cell (PSC) culture have let researchers generate edited PSC lines to study a wide variety of biological questions. However, abnormalities in cell lines such as aneuploidy, mutations, on-target and off-target editing errors, and microbial contamination can arise during PSC culture or due to undesired editing outcomes. The ongoing decline of next-generation sequencing prices has made whole-genome sequencing (WGS) a promising option for detecting these abnormalities. However, this approach has been held back by a lack of easily usable data analysis software. Here, we present SeqVerify, a computational pipeline designed to take raw WGS data and a list of intended genome edits, and verify that the edits are present and that there are no abnormalities. We anticipate that SeqVerify will be a useful tool for researchers generating edited PSCs, and more broadly, for cell line quality control in general.
Collapse
Affiliation(s)
| | - Valerio Pepe
- Wyss Institute at Harvard University, Boston MA, USA
| | - Steven Lubbe
- The Ken & Ruth Davee Department of Neurology and Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Simpson Querrey Center of Neurogenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology and Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - George M Church
- Wyss Institute at Harvard University, Boston MA, USA; Department of Genetics, Harvard Medical School, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
17
|
Hou L, Chen YJ, Zhong Q, Pei J, Liu L, Pi H, Xie M, Zhao G. Function and mechanism of lysine crotonylation in health and disease. QJM 2024; 117:695-708. [PMID: 38390964 DOI: 10.1093/qjmed/hcae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Lysine crotonylation is a newly identified posttranslational modification that is different from the widely studied lysine acetylation in structure and function. In the last dozen years, great progress has been made in lysine crotonylation-related studies, and lysine crotonylation is involved in reproduction, development and disease. In this review, we highlight the similarities and differences between lysine crotonylation and lysine acetylation. We also summarize the methods and tools for the detection and prediction of lysine crotonylation. At the same time, we outline the recent advances in understanding the mechanisms of enzymatic and metabolic regulation of lysine crotonylation, as well as the regulating factors that selectively recognize this modification. Particularly, we discussed how dynamic changes in crotonylation status maintain physiological health and result in the development of disease. This review not only points out the new functions of lysine crotonylation but also provides new insights and exciting opportunities for managing various diseases.
Collapse
Affiliation(s)
- L Hou
- Guangzhou Huali Science and Technology Vocational College, Guangzhou, China
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - Y-J Chen
- Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Q Zhong
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - J Pei
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - L Liu
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - H Pi
- School of basic medicine, Dali University, Dali, China
| | - M Xie
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - G Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| |
Collapse
|
18
|
Kim SK, Seo S, Stein-O'Brien G, Jaishankar A, Ogawa K, Micali N, Luria V, Karger A, Wang Y, Kim H, Hyde TM, Kleinman JE, Voss T, Fertig EJ, Shin JH, Bürli R, Cross AJ, Brandon NJ, Weinberger DR, Chenoweth JG, Hoeppner DJ, Sestan N, Colantuoni C, McKay RD. Individual variation in the emergence of anterior-to-posterior neural fates from human pluripotent stem cells. Stem Cell Reports 2024; 19:1336-1350. [PMID: 39151428 PMCID: PMC11411333 DOI: 10.1016/j.stemcr.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/19/2024] Open
Abstract
Variability between human pluripotent stem cell (hPSC) lines remains a challenge and opportunity in biomedicine. In this study, hPSC lines from multiple donors were differentiated toward neuroectoderm and mesendoderm lineages. We revealed dynamic transcriptomic patterns that delineate the emergence of these lineages, which were conserved across lines, along with individual line-specific transcriptional signatures that were invariant throughout differentiation. These transcriptomic signatures predicted an antagonism between SOX21-driven forebrain fates and retinoic acid-induced hindbrain fates. Replicate lines and paired adult tissue demonstrated the stability of these line-specific transcriptomic traits. We show that this transcriptomic variation in lineage bias had both genetic and epigenetic origins, aligned with the anterior-to-posterior structure of early mammalian development, and was present across a large collection of hPSC lines. These findings contribute to developing systematic analyses of PSCs to define the origin and consequences of variation in the early events orchestrating individual human development.
Collapse
Affiliation(s)
- Suel-Kee Kim
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Seungmae Seo
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | | | - Amritha Jaishankar
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Kazuya Ogawa
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Nicola Micali
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA 02115, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Hyojin Kim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Departments of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ty Voss
- Division of Preclinical Innovation, Nation Center for Advancing Translational Science, NIH, Bethesda, MD 20892, USA
| | - Elana J Fertig
- Departments of Oncology, Biomedical Engineering, and Applied Mathematics and Statistics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joo-Heon Shin
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Roland Bürli
- Astra-Zeneca Neuroscience iMED., 141 Portland Street, Cambridge, MA 01239, USA
| | - Alan J Cross
- Astra-Zeneca Neuroscience iMED., 141 Portland Street, Cambridge, MA 01239, USA
| | - Nicholas J Brandon
- Astra-Zeneca Neuroscience iMED., 141 Portland Street, Cambridge, MA 01239, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Departments of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Departments of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joshua G Chenoweth
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Daniel J Hoeppner
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Genetics, Psychiatry, and Comparative Medicine, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Carlo Colantuoni
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Departments of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Ronald D McKay
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA; Departments of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Cai W, Yao X, Liu G, Liu X, Zhao B, Shi P. RetSat stabilizes mitotic chromosome segregation in pluripotent stem cells. Cell Mol Life Sci 2024; 81:366. [PMID: 39172275 PMCID: PMC11342912 DOI: 10.1007/s00018-024-05413-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Chromosome stability is crucial for homeostasis of pluripotent stem cells (PSCs) and early-stage embryonic development. Chromosomal defects may raise carcinogenic risks in regenerative medicine when using PSCs as original materials. However, the detailed mechanism regarding PSCs chromosome stability maintenance is not fully understood. METHODS Mouse embryonic stem cells (line D3) and human embryonic stem cells (line H9) were cultured under standard conditions. To confirm the loading of RetSat protein on mitotic chromosomes of PSCs, immunostaining was performed in PSCs spontaneous differentiation assay and iPSC reprogramming assay from mouse embryonic fibroblasts (MEFs), respectively. In addition, qPCR, immunoprecipitation, LC-MS/MS and immunoblotting were used to study the expression of RetSat, and interactions of RetSat with cohesin/condensin components. RNA sequencing and teratoma formation assay was conducted to evaluate the carcinogenic risk of mouse embryonic stem cells with RetSat deletion. RESULTS We reported a PSC high-expressing gene, RetSat, plays key roles in chromosome stabilization. We identified RetSat protein localizing onto mitotic chromosomes specifically in stemness positive cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We found dramatic chromosome instability, e.g. chromosome bridging, lagging and interphase micronuclei in mouse and human ESCs when down regulating RetSat. RetSat knock-out mouse ESCs upregulated cancer associated gene pathways, and displayed higher tumorigenic capacities in teratoma formation assay. Mechanistically, we confirmed that RetSat interacts with cohesin/condensin components Smc1a and Nudcd2. RetSat deletion impaired the chromosome loading dosage of Smc1a, Smc3 and Nudcd2. CONCLUSIONS In summary, we reported RetSat to be a key stabilizer of chromosome condensation in pluripotent stem cells. This highlights the crucial roles of RetSat in early-stage embryonic development, and potential value of RetSat as an effective biomarker for assessing the quality of pluripotent stem cells.
Collapse
Affiliation(s)
- Wanzhi Cai
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Yao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gaojing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuyun Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Peng Shi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
20
|
Al Delbany D, Ghosh MS, Krivec N, Huyghebaert A, Regin M, Duong MC, Lei Y, Sermon K, Olsen C, Spits C. De Novo Cancer Mutations Frequently Associate with Recurrent Chromosomal Abnormalities during Long-Term Human Pluripotent Stem Cell Culture. Cells 2024; 13:1395. [PMID: 39195283 PMCID: PMC11353044 DOI: 10.3390/cells13161395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Human pluripotent stem cells (hPSCs) are pivotal in regenerative medicine, yet their in vitro expansion often leads to genetic abnormalities, raising concerns about their safety in clinical applications. This study analyzed ten human embryonic stem cell lines across multiple passages to elucidate the dynamics of chromosomal abnormalities and single-nucleotide variants (SNVs) in 380 cancer-related genes. Prolonged in vitro culture resulted in 80% of the lines acquiring gains of chromosome 20q or 1q, both known for conferring an in vitro growth advantage. 70% of lines also acquired other copy number variants (CNVs) outside the recurrent set. Additionally, we detected 122 SNVs in 88 genes, with all lines acquiring at least one de novo SNV during culture. Our findings showed higher loads of both CNVs and SNVs at later passages, which were due to the cumulative acquisition of mutations over a longer time in culture, and not to an increased rate of mutagenesis over time. Importantly, we observed that SNVs and rare CNVs followed the acquisition of chromosomal gains in 1q and 20q, while most of the low-passage and genetically balanced samples were devoid of cancer-associated mutations. This suggests that recurrent chromosomal abnormalities are potential drivers for the acquisition of other mutations.
Collapse
Affiliation(s)
- Diana Al Delbany
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Manjusha S. Ghosh
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Nuša Krivec
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Anfien Huyghebaert
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Marius Regin
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Mai Chi Duong
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
- Department of Biochemistry, Military Hospital 175, 786 Nguyen Kiem Street, Ho Chi Minh City 71409, Vietnam
| | - Yingnan Lei
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Karen Sermon
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| | - Catharina Olsen
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), Vrije Universiteit Brussel (VUB)-Université Libre de Bruxelles (ULB), Laarbeeklaan 101, 1090 Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles (ULB)-Vrije Universiteit Brussel (VUB), La Plaine Campus Triomflaan, 1050 Brussels, Belgium
| | - Claudia Spits
- Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; (D.A.D.); (M.S.G.); (N.K.); (A.H.); (M.R.); (M.C.D.); (Y.L.); (K.S.); (C.O.)
| |
Collapse
|
21
|
Stavish D, Price CJ, Gelezauskaite G, Alsehli H, Leonhard KA, Taapken SM, McIntire EM, Laing O, James BM, Riley JJ, Zerbib J, Baker D, Harding AL, Jestice LH, Eleveld TF, Gillis AJM, Hillenius S, Looijenga LHJ, Gokhale PJ, Ben-David U, Ludwig TE, Barbaric I. Feeder-free culture of human pluripotent stem cells drives MDM4-mediated gain of chromosome 1q. Stem Cell Reports 2024; 19:1217-1232. [PMID: 38964325 PMCID: PMC11368687 DOI: 10.1016/j.stemcr.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Culture-acquired variants in human pluripotent stem cells (hPSCs) hinder their applications in research and clinic. However, the mechanisms that underpin selection of variants remain unclear. Here, through analysis of comprehensive karyotyping datasets from over 23,000 hPSC cultures of more than 1,500 lines, we explored how culture conditions shape variant selection. Strikingly, we identified an association of chromosome 1q gains with feeder-free cultures and noted a rise in its prevalence in recent years, coinciding with increased usage of feeder-free regimens. Competition experiments of multiple isogenic lines with and without a chromosome 1q gain confirmed that 1q variants have an advantage in feeder-free (E8/vitronectin), but not feeder-based, culture. Mechanistically, we show that overexpression of MDM4, located on chromosome 1q, drives variants' advantage in E8/vitronectin by alleviating genome damage-induced apoptosis, which is lower in feeder-based conditions. Our study explains condition-dependent patterns of hPSC aberrations and offers insights into the mechanisms of variant selection.
Collapse
Affiliation(s)
- Dylan Stavish
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK; Neuroscience Institute, The University of Sheffield, Sheffield, UK; INSIGNEO Institute, The University of Sheffield, Sheffield, UK
| | - Christopher J Price
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK; Neuroscience Institute, The University of Sheffield, Sheffield, UK; INSIGNEO Institute, The University of Sheffield, Sheffield, UK
| | - Gabriele Gelezauskaite
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK; Neuroscience Institute, The University of Sheffield, Sheffield, UK; INSIGNEO Institute, The University of Sheffield, Sheffield, UK
| | - Haneen Alsehli
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK; Neuroscience Institute, The University of Sheffield, Sheffield, UK; INSIGNEO Institute, The University of Sheffield, Sheffield, UK
| | | | | | - Erik M McIntire
- WiCell Research Institute, Madison, WI, USA; Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Owen Laing
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK; Neuroscience Institute, The University of Sheffield, Sheffield, UK; INSIGNEO Institute, The University of Sheffield, Sheffield, UK
| | - Bethany M James
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK; Neuroscience Institute, The University of Sheffield, Sheffield, UK; INSIGNEO Institute, The University of Sheffield, Sheffield, UK
| | - Jack J Riley
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Duncan Baker
- Sheffield Diagnostic Genetic Services, Sheffield Children's Hospital, Sheffield, UK
| | - Amy L Harding
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Lydia H Jestice
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK; Neuroscience Institute, The University of Sheffield, Sheffield, UK; INSIGNEO Institute, The University of Sheffield, Sheffield, UK
| | - Thomas F Eleveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Ad J M Gillis
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Sanne Hillenius
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Paul J Gokhale
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK; Neuroscience Institute, The University of Sheffield, Sheffield, UK; INSIGNEO Institute, The University of Sheffield, Sheffield, UK
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tenneille E Ludwig
- WiCell Research Institute, Madison, WI, USA; Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin-Madison, Madison, WI, USA
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK; Neuroscience Institute, The University of Sheffield, Sheffield, UK; INSIGNEO Institute, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
22
|
Akiyoshi R, Hase T, Sathiyananthavel M, Ghosh S, Kitano H, Yachie A. Noninvasive, label-free image approaches to predict multimodal molecular markers in pluripotency assessment. Sci Rep 2024; 14:15760. [PMID: 38977828 PMCID: PMC11231322 DOI: 10.1038/s41598-024-66591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Manufacturing regenerative medicine requires continuous monitoring of pluripotent cell culture and quality assessment while eliminating cell destruction and contaminants. In this study, we employed a novel method to monitor the pluripotency of stem cells through image analysis, avoiding the traditionally used invasive procedures. This approach employs machine learning algorithms to analyze stem cell images to predict the expression of pluripotency markers, such as OCT4 and NANOG, without physically interacting with or harming cells. We cultured induced pluripotent stem cells under various conditions to induce different pluripotent states and imaged the cells using bright-field microscopy. Pluripotency states of induced pluripotent stem cells were assessed using invasive methods, including qPCR, immunostaining, flow cytometry, and RNA sequencing. Unsupervised and semi-supervised learning models were applied to evaluate the results and accurately predict the pluripotency of the cells using only image analysis. Our approach directly links images to invasive assessment results, making the analysis of cell labeling and annotation of cells in images by experts dispensable. This core achievement not only contributes for safer and more reliable stem cell research but also opens new avenues for real-time monitoring and quality control in regenerative medicine manufacturing. Our research fills an important gap in the field by providing a viable, noninvasive alternative to traditional invasive methods for assessing pluripotency. This innovation is expected to make a significant contribution to improving regenerative medicine manufacturing because it will enable a more detailed and feasible understanding of cellular status during the manufacturing process.
Collapse
Affiliation(s)
- Ryutaro Akiyoshi
- Yokogawa Electric Corporation, 2-9-32 Nakacho, Musashino-shi, Tokyo, 180-8750, Japan
| | - Takeshi Hase
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
- SBX BioSciences, Inc, 1111 West Georgia Street, 20th Floor, Vancouver, BC, V6E 4G2, Canada
| | - Mayuri Sathiyananthavel
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
- SBX BioSciences, Inc, 1111 West Georgia Street, 20th Floor, Vancouver, BC, V6E 4G2, Canada
| | - Samik Ghosh
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
| | - Ayako Yachie
- The Systems Biology Institute, Saisei Ikedayama Bldg., 5-10-25, Higashi Gotanda, Shinagawa-ku, Tokyo, 141-0022, Japan.
- SBX BioSciences, Inc, 1111 West Georgia Street, 20th Floor, Vancouver, BC, V6E 4G2, Canada.
| |
Collapse
|
23
|
Parikh C, Glenn RA, Shi Y, Chatterjee K, Swanzey EE, Singer S, Do SC, Zhan Y, Furuta Y, Tahiliani M, Apostolou E, Polyzos A, Koche R, Mezey JG, Vierbuchen T, Stadtfeld M. Genetic variation modulates susceptibility to aberrant DNA hypomethylation and imprint deregulation in naïve pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600805. [PMID: 38979237 PMCID: PMC11230387 DOI: 10.1101/2024.06.26.600805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Naïve pluripotent stem cells (nPSC) frequently undergo pathological and not readily reversible loss of DNA methylation marks at imprinted gene loci. This abnormality poses a hurdle for using pluripotent cell lines in biomedical applications and underscores the need to identify the causes of imprint instability in these cells. We show that nPSCs from inbred mouse strains exhibit pronounced strain-specific susceptibility to locus-specific deregulation of imprinting marks during reprogramming to pluripotency and upon culture with MAP kinase inhibitors, a common approach to maintain naïve pluripotency. Analysis of genetically highly diverse nPSCs from the Diversity Outbred (DO) stock confirms that genetic variation is a major determinant of epigenome stability in pluripotent cells. We leverage the variable DNA hypomethylation in DO lines to identify several trans-acting quantitative trait loci (QTLs) that determine epigenome stability at either specific target loci or genome-wide. Candidate factors encoded by two multi-target QTLs on chromosomes 4 and 17 suggest specific transcriptional regulators that contribute to DNA methylation maintenance in nPSCs. We propose that genetic variants represent candidate biomarkers to identify pluripotent cell lines with desirable properties and might serve as entry points for the targeted engineering of nPSCs with stable epigenomes. Highlights Naïve pluripotent stem cells from distinct inbred mouse strains exhibit variable DNA methylation levels at imprinted gene loci.The vulnerability of pluripotent stem cells to loss of genomic imprinting caused by MAP kinase inhibition strongly differs between inbred mouse strains.Genetically diverse pluripotent stem cell lines from Diversity Outbred mouse stock allow the identification of quantitative trait loci controlling DNA methylation stability.Genetic variants may serve as biomarkers to identify naïve pluripotent stem cell lines that are epigenetically stable in specific culture conditions.
Collapse
|
24
|
Lei Y, Al Delbany D, Krivec N, Regin M, Couvreu de Deckersberg E, Janssens C, Ghosh M, Sermon K, Spits C. SALL3 mediates the loss of neuroectodermal differentiation potential in human embryonic stem cells with chromosome 18q loss. Stem Cell Reports 2024; 19:562-578. [PMID: 38552632 PMCID: PMC11096619 DOI: 10.1016/j.stemcr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024] Open
Abstract
Human pluripotent stem cell (hPSC) cultures are prone to genetic drift, because cells that have acquired specific genetic abnormalities experience a selective advantage in vitro. These abnormalities are highly recurrent in hPSC lines worldwide, but their functional consequences in differentiating cells are scarcely described. In this work, we show that the loss of chromosome 18q impairs neuroectoderm commitment and that downregulation of SALL3, a gene located in the common 18q loss region, is responsible for this failed neuroectodermal differentiation. Knockdown of SALL3 in control lines impaired differentiation in a manner similar to the loss of 18q, and transgenic overexpression of SALL3 in hESCs with 18q loss rescued the differentiation capacity of the cells. Finally, we show that loss of 18q and downregulation of SALL3 leads to changes in the expression of genes involved in pathways regulating pluripotency and differentiation, suggesting that these cells are in an altered state of pluripotency.
Collapse
Affiliation(s)
- Yingnan Lei
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Diana Al Delbany
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nuša Krivec
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Marius Regin
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Charlotte Janssens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Manjusha Ghosh
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
25
|
Goecke T, Ius F, Ruhparwar A, Martin U. Unlocking the Future: Pluripotent Stem Cell-Based Lung Repair. Cells 2024; 13:635. [PMID: 38607074 PMCID: PMC11012168 DOI: 10.3390/cells13070635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
The human respiratory system is susceptible to a variety of diseases, ranging from chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis to acute respiratory distress syndrome (ARDS). Today, lung diseases represent one of the major challenges to the health care sector and represent one of the leading causes of death worldwide. Current treatment options often focus on managing symptoms rather than addressing the underlying cause of the disease. The limitations of conventional therapies highlight the urgent clinical need for innovative solutions capable of repairing damaged lung tissue at a fundamental level. Pluripotent stem cell technologies have now reached clinical maturity and hold immense potential to revolutionize the landscape of lung repair and regenerative medicine. Meanwhile, human embryonic (HESCs) and human-induced pluripotent stem cells (hiPSCs) can be coaxed to differentiate into lung-specific cell types such as bronchial and alveolar epithelial cells, or pulmonary endothelial cells. This holds the promise of regenerating damaged lung tissue and restoring normal respiratory function. While methods for targeted genetic engineering of hPSCs and lung cell differentiation have substantially advanced, the required GMP-grade clinical-scale production technologies as well as the development of suitable preclinical animal models and cell application strategies are less advanced. This review provides an overview of current perspectives on PSC-based therapies for lung repair, explores key advances, and envisions future directions in this dynamic field.
Collapse
Affiliation(s)
- Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Fabio Ius
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Arjang Ruhparwar
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
26
|
Arthur TD, Nguyen JP, D'Antonio-Chronowska A, Matsui H, Silva NS, Joshua IN, Luchessi AD, Greenwald WWY, D'Antonio M, Pera MF, Frazer KA. Complex regulatory networks influence pluripotent cell state transitions in human iPSCs. Nat Commun 2024; 15:1664. [PMID: 38395976 PMCID: PMC10891157 DOI: 10.1038/s41467-024-45506-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Stem cells exist in vitro in a spectrum of interconvertible pluripotent states. Analyzing hundreds of hiPSCs derived from different individuals, we show the proportions of these pluripotent states vary considerably across lines. We discover 13 gene network modules (GNMs) and 13 regulatory network modules (RNMs), which are highly correlated with each other suggesting that the coordinated co-accessibility of regulatory elements in the RNMs likely underlie the coordinated expression of genes in the GNMs. Epigenetic analyses reveal that regulatory networks underlying self-renewal and pluripotency are more complex than previously realized. Genetic analyses identify thousands of regulatory variants that overlapped predicted transcription factor binding sites and are associated with chromatin accessibility in the hiPSCs. We show that the master regulator of pluripotency, the NANOG-OCT4 Complex, and its associated network are significantly enriched for regulatory variants with large effects, suggesting that they play a role in the varying cellular proportions of pluripotency states between hiPSCs. Our work bins tens of thousands of regulatory elements in hiPSCs into discrete regulatory networks, shows that pluripotency and self-renewal processes have a surprising level of regulatory complexity, and suggests that genetic factors may contribute to cell state transitions in human iPSC lines.
Collapse
Affiliation(s)
- Timothy D Arthur
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jennifer P Nguyen
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Hiroko Matsui
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Nayara S Silva
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Isaac N Joshua
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - André D Luchessi
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - William W Young Greenwald
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Matteo D'Antonio
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | | | - Kelly A Frazer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
27
|
Wang J, Deng G, Wang S, Li S, Song P, Lin K, Xu X, He Z. Enhancing regenerative medicine: the crucial role of stem cell therapy. Front Neurosci 2024; 18:1269577. [PMID: 38389789 PMCID: PMC10881826 DOI: 10.3389/fnins.2024.1269577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Stem cells offer new therapeutic avenues for the repair and replacement of damaged tissues and organs owing to their self-renewal and multipotent differentiation capabilities. In this paper, we conduct a systematic review of the characteristics of various types of stem cells and offer insights into their potential applications in both cellular and cell-free therapies. In addition, we provide a comprehensive summary of the technical routes of stem cell therapy and discuss in detail current challenges, including safety issues and differentiation control. Although some issues remain, stem cell therapy demonstrates excellent potential in the field of regenerative medicine and provides novel tactics and methodologies for managing a wider spectrum of illnesses and traumas.
Collapse
Affiliation(s)
- Jipeng Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kun Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Krivec N, Ghosh MS, Spits C. Gains of 20q11.21 in human pluripotent stem cells: Insights from cancer research. Stem Cell Reports 2024; 19:11-27. [PMID: 38157850 PMCID: PMC10828824 DOI: 10.1016/j.stemcr.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
The genetic abnormalities observed in hPSC cultures worldwide have been suggested to pose an important hurdle in their safe use in regenerative medicine due to the possibility of oncogenic transformation by mutant cells in the patient posttransplantation. One of the best-characterized genetic lesions in hPSCs is the gain of 20q11.21, found in 20% of hPSC lines worldwide, and strikingly, also amplified in 20% of human cancers. In this review, we have curated the existing knowledge on the incidence of this mutation in hPSCs and cancer, explored the significance of chromosome 20q11.21 amplification in cancer progression, and reviewed the oncogenic role of the genes in the smallest common region of gain, to shed light on the significance of this mutation in hPSC-based cell therapy. Lastly, we discuss the state-of-the-art strategies devised to detect aneuploidies in hPSC cultures, avoid genetic changes in vitro cultures of hPSCs, and strategies to eliminate genetically abnormal cells from culture.
Collapse
Affiliation(s)
- Nuša Krivec
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Manjusha S Ghosh
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
29
|
Clairmont CD, Gell JJ, Lau CC. Pediatric Tumors as Disorders of Development: The Case for In Vitro Modeling Based on Human Stem Cells. Cancer Control 2024; 31:10732748241270564. [PMID: 39118322 PMCID: PMC11311176 DOI: 10.1177/10732748241270564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Despite improvements in patient outcomes, pediatric cancer remains a leading cause of non-accidental death in children. Recent genetic analysis of patients with pediatric cancers indicates an important role for both germline genetic predisposition and cancer-specific somatic driver mutations. Increasingly, evidence demonstrates that the developmental timepoint at which the cancer cell-of-origin transforms is critical to tumor identity and therapeutic response. Therefore, future therapeutic development would be bolstered by the use of disease models that faithfully recapitulate the genetic context, cell-of-origin, and developmental window of vulnerability in pediatric cancers. Human stem cells have the potential to incorporate all of these characteristics into a pediatric cancer model, while serving as a platform for rapid genetic and pharmacological testing. In this review, we describe how human stem cells have been used to model pediatric cancers and how these models compare to other pediatric cancer model modalities.
Collapse
Affiliation(s)
- Cullen D. Clairmont
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joanna J. Gell
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Connecticut Children’s Medical Center, Center for Cancer and Blood Disorders, Hartford, CT, USA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UConn Health, Farmington, CT, USA
| | - Ching C. Lau
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Connecticut Children’s Medical Center, Center for Cancer and Blood Disorders, Hartford, CT, USA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UConn Health, Farmington, CT, USA
| |
Collapse
|
30
|
Abstract
Age-related macular degeneration (AMD) is a prevalent and complex disease leading to severe vision loss. Stem cells offer promising prospects for AMD treatment as they can be differentiated into critical retinal cell types that could replace lost host retinal cells or provide trophic support to promote host retinal cell survival. However, challenges such as immune rejection, concerns regarding tumorigenicity, and genomic integrity must be addressed. Clinical trials with stem cell-derived retinal pigment epithelial cells have shown preliminary safety in treating dry AMD, but improvements in manufacturing and surgical techniques cell delivery are needed. Late-stage AMD poses additional hurdles, possibly requiring multi-layered grafts. Advancements in automation technologies and gene correction strategies show potential to enhance iPSC-based therapies. Stem cell-based treatments offer hope for AMD management, but further research and optimization are essential for successful clinical implementation.
Collapse
Affiliation(s)
- Joseph C. Giacalone
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - David H. Parkinson
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Daniel A. Balikov
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - C. Rao Rajesh
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI, USA
- Division of Ophthalmology, Surgical Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Kuebler B, Alvarez-Palomo B, Aran B, Castaño J, Rodriguez L, Raya A, Querol Giner S, Veiga A. Generation of a bank of clinical-grade, HLA-homozygous iPSC lines with high coverage of the Spanish population. Stem Cell Res Ther 2023; 14:366. [PMID: 38093328 PMCID: PMC10720139 DOI: 10.1186/s13287-023-03576-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Induced pluripotent stem cell (iPSC)-derived cell therapies are an interesting new area in the field of regenerative medicine. One of the approaches to decrease the costs of iPSC-derived therapies is the use of allogenic homozygous human leukocyte antigen (HLA)-matched donors to generate iPSC lines and to build a clinical-grade iPSC bank covering a high percentage of the Spanish population. METHODS The Spanish Stem Cell Transplantation Registry was screened for cord blood units (CBUs) homozygous for the most common HLA-A, HLA-B and HLA-DRB1 haplotypes. Seven donors were selected with haplotypes covering 21.37% of the haplotypes of the Spanish population. CD34-positive hematopoietic progenitors were isolated from the mononuclear cell fraction of frozen cord blood units from each donor by density gradient centrifugation and further by immune magnetic labeling and separation using purification columns. Purified CD34 + cells were reprogrammed to iPSCs by transduction with the CTS CytoTune-iPS 2.1 Sendai Reprogramming Kit. RESULTS The iPSCs generated from the 7 donors were expanded, characterized, banked and registered. Master cell banks (MCBs) and working cell banks (WCBs) from the iPSCs of each donor were produced under GMP conditions in qualified clean rooms. CONCLUSIONS Here, we present the first clinical-grade, iPSC haplobank in Spain made from CD34 + cells from seven cord blood units homozygous for the most common HLA-A, HLA-B and HLA-DRB1 haplotypes within the Spanish population. We describe their generation by transduction with Sendai viral vectors and their GMP-compliant expansion and banking. These haplolines will constitute starting materials for advanced therapy medicinal product development (ATMP).
Collapse
Affiliation(s)
- B Kuebler
- Pluripotent Stem Cell Group, Regenerative Medicine Program, Institut d'Investigació Biomédica de Bellvitge (IDIBELL), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Program for Translation of Regenerative Medicine in Catalonia (P-[CMRC]), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - B Alvarez-Palomo
- Advanced and Cell Therapy Service, Banc de Sang I Teixits, Edifici Dr. Frederic Duran I Jordà, Passeig de Taulat, 106-116, 08005, Barcelona, Spain
| | - B Aran
- Pluripotent Stem Cell Group, Regenerative Medicine Program, Institut d'Investigació Biomédica de Bellvitge (IDIBELL), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Program for Translation of Regenerative Medicine in Catalonia (P-[CMRC]), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - J Castaño
- Advanced and Cell Therapy Service, Banc de Sang I Teixits, Edifici Dr. Frederic Duran I Jordà, Passeig de Taulat, 106-116, 08005, Barcelona, Spain
- Advanced Therapy Platform, Hospital Sant Joan de Déu de Barcelona, Pg. de Sant Joan de Déu, 2, Espluges de Llobregat, 08950, Barcelona, Spain
| | - L Rodriguez
- Advanced and Cell Therapy Service, Banc de Sang I Teixits, Edifici Dr. Frederic Duran I Jordà, Passeig de Taulat, 106-116, 08005, Barcelona, Spain
| | - A Raya
- Program for Translation of Regenerative Medicine in Catalonia (P-[CMRC]), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
- Stem Cell Potency Group, Regenerative Medicine Program, Institut d´Investigació Biomédica de Bellvitge (IDIBELL), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
- Centre for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain.
| | - S Querol Giner
- Advanced and Cell Therapy Service, Banc de Sang I Teixits, Edifici Dr. Frederic Duran I Jordà, Passeig de Taulat, 106-116, 08005, Barcelona, Spain.
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona (UAB), Barcelona, Spain.
| | - A Veiga
- Pluripotent Stem Cell Group, Regenerative Medicine Program, Institut d'Investigació Biomédica de Bellvitge (IDIBELL), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
- Program for Translation of Regenerative Medicine in Catalonia (P-[CMRC]), Hospital Duran I Reynals, Gran Via de L'Hospitalet, 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
| |
Collapse
|
32
|
Arthur TD, Nguyen JP, D'Antonio-Chronowska A, Matsui H, Silva NS, Joshua IN, Luchessi AD, Young Greenwald WW, D'Antonio M, Pera MF, Frazer KA. Analysis of regulatory network modules in hundreds of human stem cell lines reveals complex epigenetic and genetic factors contribute to pluripotency state differences between subpopulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541447. [PMID: 37292794 PMCID: PMC10245835 DOI: 10.1101/2023.05.20.541447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stem cells exist in vitro in a spectrum of interconvertible pluripotent states. Analyzing hundreds of hiPSCs derived from different individuals, we show the proportions of these pluripotent states vary considerably across lines. We discovered 13 gene network modules (GNMs) and 13 regulatory network modules (RNMs), which were highly correlated with each other suggesting that the coordinated co-accessibility of regulatory elements in the RNMs likely underlied the coordinated expression of genes in the GNMs. Epigenetic analyses revealed that regulatory networks underlying self-renewal and pluripotency have a surprising level of complexity. Genetic analyses identified thousands of regulatory variants that overlapped predicted transcription factor binding sites and were associated with chromatin accessibility in the hiPSCs. We show that the master regulator of pluripotency, the NANOG-OCT4 Complex, and its associated network were significantly enriched for regulatory variants with large effects, suggesting that they may play a role in the varying cellular proportions of pluripotency states between hiPSCs. Our work captures the coordinated activity of tens of thousands of regulatory elements in hiPSCs and bins these elements into discrete functionally characterized regulatory networks, shows that regulatory elements in pluripotency networks harbor variants with large effects, and provides a rich resource for future pluripotent stem cell research.
Collapse
|
33
|
Ludwig TE, Andrews PW, Barbaric I, Benvenisty N, Bhattacharyya A, Crook JM, Daheron LM, Draper JS, Healy LE, Huch M, Inamdar MS, Jensen KB, Kurtz A, Lancaster MA, Liberali P, Lutolf MP, Mummery CL, Pera MF, Sato Y, Shimasaki N, Smith AG, Song J, Spits C, Stacey G, Wells CA, Zhao T, Mosher JT. ISSCR standards for the use of human stem cells in basic research. Stem Cell Reports 2023; 18:1744-1752. [PMID: 37703820 PMCID: PMC10545481 DOI: 10.1016/j.stemcr.2023.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
The laboratory culture of human stem cells seeks to capture a cellular state as an in vitro surrogate of a biological system. For the results and outputs from this research to be accurate, meaningful, and durable, standards that ensure reproducibility and reliability of the data should be applied. Although such standards have been previously proposed for repositories and distribution centers, no widely accepted best practices exist for laboratory research with human pluripotent and tissue stem cells. To fill that void, the International Society for Stem Cell Research has developed a set of recommendations, including reporting criteria, for scientists in basic research laboratories. These criteria are designed to be technically and financially feasible and, when implemented, enhance the reproducibility and rigor of stem cell research.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeremy M Crook
- The University of Sydney, Camperdown, NSW Australia; Chris O'Brien Lifehouse, Camperdown, NSW, Australia; The University of Wollongong, Wollongong, NSW, Australia
| | | | | | | | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Maneesha S Inamdar
- Jawaharlal Nehru Centre for Advanced Scientific Research, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka, India
| | - Kim B Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kurtz
- Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany; Berlin Institute of Health at Charité, Berlin, Germany
| | | | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basal, Switzerland
| | | | | | | | - Yoji Sato
- National Institute of Health Sciences, Kawasaki, Japan
| | - Noriko Shimasaki
- Center for iPS Research and Application, Kyoto, Japan; Prefectural University of Medicine, Nagoya University, Nagoya, Japan; National University of Singapore, Singapore, Singapore
| | | | - Jihwan Song
- CHA University, Seoul, Korea; iPS Bio, Inc, Seoul, Korea
| | | | - Glyn Stacey
- International Stem Cell Banking Initiative, Barley, Herts, UK
| | | | - Tongbiao Zhao
- Institute of Zoology Chinese Academy of Sciences, Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jack T Mosher
- International Society for Stem Cell Research, Evanston, IL, USA
| |
Collapse
|
34
|
Tan Y, Huang J, Li D, Zou C, Liu D, Qin B. Single-cell RNA sequencing in dissecting microenvironment of age-related macular degeneration: Challenges and perspectives. Ageing Res Rev 2023; 90:102030. [PMID: 37549871 DOI: 10.1016/j.arr.2023.102030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/29/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in individuals over the age of 50 years, yet its etiology and pathogenesis largely remain uncovered. Single-cell RNA sequencing (scRNA-seq) technologies are recently developed and have a number of advantages over conventional bulk RNA sequencing techniques in uncovering the heterogeneity of complex microenvironments containing numerous cell types and cell communications during various biological processes. In this review, we summarize the latest discovered cellular components and regulatory mechanisms during AMD development revealed by scRNA-seq. In addition, we discuss the main challenges and future directions in exploring the pathophysiology of AMD equipped with single-cell technologies. Our review underscores the importance of multimodal single-cell platforms (such as single-cell spatiotemporal multi-omics and single-cell exosome omics) as new approaches for basic and clinical AMD research in identifying biomarker, characterizing cellular responses to drug treatment and environmental stimulation.
Collapse
Affiliation(s)
- Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Jianguo Huang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Deshuang Li
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Chang Zou
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China; School of Life and Health Sciences, The Chinese University of Kong Hong, Shenzhen 518000, Guangdong, China.
| | - Dongcheng Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China.
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China; Aier School of Ophthalmology, Central South University, Changsha, China.
| |
Collapse
|
35
|
Hirai T, Yasuda S, Umezawa A, Sato Y. Country-specific regulation and international standardization of cell-based therapeutic products derived from pluripotent stem cells. Stem Cell Reports 2023; 18:1573-1591. [PMID: 37557074 PMCID: PMC10444560 DOI: 10.1016/j.stemcr.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 08/11/2023] Open
Abstract
Currently, many types of cell-based therapeutic products (CTPs) derived from pluripotent stem cells (PSCs) are being developed in a lot of countries, some of which are in clinical trial stages. CTPs are classified differently in different countries and regions. The evaluation of their efficacy, safety, and quality also differs from that for conventional small-molecule drugs and biopharmaceuticals, which reflects the complex properties of living cells and unmet medical needs. Since there are no international guidelines to evaluate CTPs, including PSC-derived products, it is necessary to be aware of differences in relevant laws and regulations in different countries and regions. International consortia are organized and actively working to standardize/harmonize the evaluation methods and regulations to facilitate the development and global distribution of PSC-derived CTPs. In this paper, we outline the regulations related to PSC-derived CTPs in the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use founding regions (US, EU/UK, Japan) and introduce representative consortia working on their standardization.
Collapse
Affiliation(s)
- Takamasa Hirai
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan.
| |
Collapse
|
36
|
Jiang F, Wang L, Dong Y, Nie W, Zhou H, Gao J, Zheng P. DPPA5A suppresses the mutagenic TLS and MMEJ pathways by modulating the cryptic splicing of Rev1 and Polq in mouse embryonic stem cells. Proc Natl Acad Sci U S A 2023; 120:e2305187120. [PMID: 37459543 PMCID: PMC10372678 DOI: 10.1073/pnas.2305187120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Genetic alterations are often acquired during prolonged propagation of pluripotent stem cells (PSCs). This ruins the stem cell quality and hampers their full applications. Understanding how PSCs maintain genomic integrity would provide the clues to overcome the hurdle. It has been known that embryonic stem cells (ESCs) utilize high-fidelity pathways to ensure genomic stability, but the underlying mechanisms remain largely elusive. Here, we show that many DNA damage response and repair genes display differential alternative splicing in mouse ESCs compared to differentiated cells. Particularly, Rev1 and Polq, two key genes for mutagenic translesion DNA synthesis (TLS) and microhomology-mediated end joining (MMEJ) repair pathways, respectively, display a significantly higher rate of cryptic exon (CE) inclusion in ESCs. The frequent CE inclusion disrupts the normal protein expressions of REV1 and POLθ, thereby suppressing the mutagenic TLS and MMEJ. Further, we identify an ESC-specific RNA binding protein DPPA5A which stimulates the CE inclusion in Rev1 and Polq. Depletion of DPPA5A in mouse ESCs decreased the CE inclusion of Rev1 and Polq, induced the protein expression, and stimulated the TLS and MMEJ activity. Enforced expression of DPPA5A in NIH3T3 cells displayed reverse effects. Mechanistically, we found that DPPA5A directly regulated CE splicing of Rev1. DPPA5A associates with U2 small nuclear ribonucleoprotein of the spliceosome and binds to the GA-rich motif in the CE of Rev1 to promote CE inclusion. Thus, our study uncovers a mechanism to suppress mutagenic TLS and MMEJ pathways in ESCs.
Collapse
Affiliation(s)
- Fangjie Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
- University of Chinese Academy of Sciences, Beijing101408, China
- Department of Reproductive Medicine, The Second Affiliated Hospital of Kunming Medical University,Kunming650101, China
| | - Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
| | - Yuping Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
- University of Chinese Academy of Sciences, Beijing101408, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
| | - Wenhui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
| | - Hu Zhou
- Department of Analytical Chemistry and Key Laboratory of Receptor Research of Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Jing Gao
- Department of Analytical Chemistry and Key Laboratory of Receptor Research of Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
- The Chinese University of Hong Kong and Kunming Institute of Zoology Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, China
| |
Collapse
|
37
|
Shang Z, Wanyan P, Wang M, Zhang B, Cui X, Wang X. Bibliometric analysis of stem cells for spinal cord injury: current status and emerging frontiers. Front Pharmacol 2023; 14:1235324. [PMID: 37533634 PMCID: PMC10392836 DOI: 10.3389/fphar.2023.1235324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023] Open
Abstract
Background: This study aimed to conduct a bibliometric analysis of the literature on stem cell therapy for spinal cord injury to visualize the research status, identify hotspots, and explore the development trends in this field. Methods: We searched the Web of Science Core Collection database using relevant keywords ("stem cells" and "spinal cord injury") and retrieved the published literature between 2000 and 2022. Data such as journal title, author information, institutional affiliation, country, and keywords were extracted. Afterwards, we performed bibliometric analysis of the retrieved data using Bibliometrix, VOSviewer, and CiteSpace. Results: A total of 5375 articles related to stem cell therapy for spinal cord injury were retrieved, and both the annual publication volume and the cumulative publication volume showed an upward trend. neural regeneration research was the journal with the most publications and the fastest cumulative publication growth (162 articles), Okano Hideyuki was the author with the highest number of publications and citations (114 articles), Sun Yat-sen University was the institution with the highest number of publications (420 articles), and China was the country with the highest number of publications (5357 articles). However, different authors, institutions, and countries need to enhance their cooperation in order to promote the generation of significant academic achievements. Current research in this field has focused on stem cell transplantation, neural regeneration, motor function recovery, exosomes, and tissue engineering. Meanwhile, future research directions are primarily concerned with the molecular mechanisms, safety, clinical trials, exosomes, scaffolds, hydrogels, and inflammatory responses of stem cell therapy for spinal cord injuries. Conclusion: In summary, this study provided a comprehensive analysis of the current research status and frontiers of stem cell therapy for spinal cord injury. The findings provide a foundation for future research and clinical translation efforts of stem cell therapy in this field.
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Pingping Wanyan
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of Nephrology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Mingchuan Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaoqian Cui
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Chengren Institute of Traditional Chinese Medicine, Lanzhou, Gansu, China
- Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
38
|
Gong D, Wang L, Zhou H, Gao J, Zhang W, Zheng P. Long noncoding RNA Lnc530 localizes on R-loops and regulates R-loop formation and genomic stability in mouse embryonic stem cells. Stem Cell Reports 2023; 18:952-968. [PMID: 36931280 PMCID: PMC10147553 DOI: 10.1016/j.stemcr.2023.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
Embryonic stem cells (ESCs) are superior to differentiated cells to maintain genome stability, but the underlying mechanisms remain largely elusive. R-loops are constantly formed during transcription and are inducers of DNA damage if not resolved. Here we report that mouse ESCs (mESCs) can efficiently prevent unscheduled R-loop formation, and a long noncoding RNA Lnc530 plays regulatory role. Lnc530 is expressed in mESCs and localizes on R-loops. Depletion of Lnc530 in mESCs causes R-loop accumulation and DNA damage, whereas forced expression of Lnc530 in differentiated cells suppresses the R-loop formation. Mechanistically, Lnc530 associates with DDX5 and TDP-43 in an inter-dependent manner on R-loops. Formation of Lnc530-DDX5-TDP-43 complex substantially increases the local protein levels of DDX5 and TDP-43, both of which play critical roles in R-loop regulation. This study uncovers an efficient strategy to prevent R-loop accumulation and preserve genomic stability in mESCs and possibly other stem cell types.
Collapse
Affiliation(s)
- Daohua Gong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China; University of Chinese Academy of Sciences, Beijing 101408, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| | - Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weidao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China.
| |
Collapse
|
39
|
Abstract
The generation of donor-derived induced pluripotent stem cells (iPSCs) for allogeneic transplantation is a major challenge in regenerative medicine. Yoshida et al. now report on the establishment of an HLA-homozygous haplobank of iPSCs that covers approximately 40% of the Japanese population and describe quality and safety considerations for manufacturing.
Collapse
Affiliation(s)
- Glyn Nigel Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley SG88HZ, UK; National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; SSCBio Ltd, 2 High Street, Barley, Hertfordshire SG88HZ, UK.
| |
Collapse
|